1
|
Liu X, Liao N, Tang X, Wang K, Wang W, Khan A, Wang C, Yuan L, Chen G. TMT-label comparative proteomics reveals the vernalization mechanism in Wucai (Brassica campestris L.). J Proteomics 2025; 314:105398. [PMID: 39922279 DOI: 10.1016/j.jprot.2025.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
To investigate the molecular basis of vernalization in Wucai [Brassica campestris L. (Syn. Brassica rapa L.) ssp. chinensis var. rosularis Tsen], we performed differential proteomic analysis using a tandem mass tags (TMT)-based approach. Proteins from shoot apices subjected to 0, 15, and 30 days of vernalization (V0, V15, and V30) were analyzed to identify differentially abundant proteins (DAPs). A total of 8066 proteins were obtained, and 507 shared DAPs were involved in both initiation and progression of vernalization. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations revealed functional enrichment in cellular processes, metabolic pathways, and translation-related activities, including photosynthesis, glucosinolate biosynthesis, and flavonoid biosynthesis. Proteomic data showed reduced abundance of photosynthesis-related proteins and upregulation of flavonoid biosynthesis during vernalization. Transcriptional validation of 24 proteins across metabolic and regulatory pathways corroborated proteomic findings, with notable peaks in genes associated with flavonoid biosynthesis at 15 days of vernalization, such as VESR1,CH13, CHS1, FHT, and FLS1. The functions of these genes in vernalization will be further analyzed. SIGNIFICANCE: Wucai is prone to premature bolting and flowering under cold conditions, as vernalization plays a key role in controlling flowering time in Chinese cabbage crops. However, the proteomic basis of vernalization remains poorly understood. In this study, TMT-based proteomic analysis identified DAPs associated with vernalization. Pathway enrichment analysis highlighted key DAPs and their roles in significantly enriched pathways relevant to vernalization. Notably, genes in the flavonoid biosynthesis pathway genes, including VESR1, CH13, CHS1, FHT, and FLS1, respond to vernalization. These findings offer novel insights into the molecular mechanisms underlying flowering time regulation in Wucai.
Collapse
Affiliation(s)
- Xueqing Liu
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China; College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Na Liao
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China
| | - Xiaoyan Tang
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China; College of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| | - Kang Wang
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China
| | - Wenjie Wang
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China.
| | - Afrasyab Khan
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China
| | - Chenggang Wang
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China; College of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| | - Lingyun Yuan
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China.
| | - Guohu Chen
- Anhui Provincial Engineering Research Center for Horticultural Crop Breeding, Hefei 230036, China; College of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Bhoria S, Saini P, Chaudhary D, Jaiwal R, Jaiwal PK. Engineering Camelina sativa Seeds as a Green Bioreactor for the Production of Affordable Human Pro-insulin that Demonstrates Anti-diabetic Efficacy in Rats. Mol Biotechnol 2025; 67:575-587. [PMID: 38368589 DOI: 10.1007/s12033-024-01068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
The current production of recombinant insulin via fermenter-based platforms (Escherichia coli and yeast) could not fulfill its fast-growing commercial demands, thus leading to a great interest in its sustainable large-scale production at low cost using a plant-based system. In the present study, Agrobacterium tumefaciens-mediated nuclear stable genetic transformation of an industrial oilseed crop, Camelina sativa, to express pro-insulin (with three furin endoprotease cleavage sites) fused with cholera toxin B subunit (CTB) in their seeds was successfully achieved for the first time. The bar gene was used as a selectable marker for selecting transformants and producing herbicide-resistant camelina plants. The transformation process involved the infiltration of camelina inflorescences (at flower buds with partially opened flowers) with A. tumefaciens and harvesting the seeds (T0) at maturity. The T0 seeds were raised into the putative T1 plants sprayed with Basta herbicide (0.03%, v/v), and the survived green transformed plants tested positive for pro-insulin and bar genes. A transformation frequency of 6.96% was obtained. The integration and copy number of the pro-insulin transgene and its expression at RNA and protein levels were confirmed in T1 plants using Southern hybridization, semi-quantitative Reverse Transcriptase-Polymerase Chain Reaction (sqPCR), and quantitative real-time Time PCR (qPCR) and western blot analysis, respectively. Enzyme-linked immunosorbent Assay (ELISA) quantified the amount of expressed pro-insulin protein, and its anti-diabetic efficacy was validated in diabetic rats on oral feeding. Transgenic plants integrated the pro-insulin gene into their genomes and produced a maximum of 197 µg/100 mg of pro-insulin (0.804% of TSP) that had anti-diabetic efficacy in rats.
Collapse
Affiliation(s)
- Sapna Bhoria
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India
| | - Priyanka Saini
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | | | - Ranjana Jaiwal
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | - Pawan K Jaiwal
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India.
| |
Collapse
|
3
|
Liu X, Wang Y, Tang X, Wang W, Khan A, Pang X, Wang Y, Wang C, Yuan L, Hou J, Chen G. Genome-wide identification, transcript profiling and functional analyses of PCP gene family in Wucai (Brassica campestris). Sci Rep 2024; 14:28236. [PMID: 39548243 PMCID: PMC11568302 DOI: 10.1038/s41598-024-79544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Pollen coat proteins (PCPs) are cysteine-rich small-molecule proteins, which exhibit high levels of polymorphism and are expressed in gametocytes. Previous investigations have revealed that PCP genes are involved in pollen wall synthesis, pollen-stigma recognition, and pollen development and germination. However, gene expression and function of PCP family in pollen development is not well understood in Wucai (Brassica campestris L.). In this study, genome-wide identification and expression analysis of the BcPCP gene family members were conducted, including their physical and chemical properties, chromosome localization, phylogenetic relationships, gene structure, and tertiary structure. A total of 20 BcPCP genes were identified and classified into three subfamilies showing high homology to Arabidopsis thaliana. Expression pattern analysis indicated that the BcPCP gene family exhibits higher expression levels in reproductive organs, suggesting their potential involvement in the reproductive development. Notably, BraA02g002400.3 C, potentially associated with male sterility, was identified through multiple transcriptomic and proteomic datasets. Subsequently, sequence analysis revealed its homology with the Arabidopsis GRP20 gene, and thus it was named BcGRP20. Functional analysis of this gene showed that overexpression of BcGRP20 gene in the Arabidopsis grp20 mutant could restore anther fertility. Overall, our findings indicate that BcGRP20 plays a critical role in pollen development and may be the causative gene for male sterility in Wucai. This study provides candidate genes for further functional identification of BcPCP genes in Wucai, which are crucial for anther development.
Collapse
Affiliation(s)
- Xueqing Liu
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Wang
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, China
| | - Xiaoyan Tang
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wenjie Wang
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Afrasyab Khan
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoke Pang
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yongkang Wang
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Chenggang Wang
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, China
| | - Lingyun Yuan
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, China
| | - Jinfeng Hou
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guohu Chen
- Anhui Provincial Engineering Center of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, China.
| |
Collapse
|
4
|
Calabuig-Serna A, Mir R, Porcel R, Seguí-Simarro JM. The Highly Embryogenic Brassica napus DH4079 Line Is Recalcitrant to Agrobacterium-Mediated Genetic Transformation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2008. [PMID: 37653925 PMCID: PMC10221801 DOI: 10.3390/plants12102008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 08/15/2023]
Abstract
Brassica napus is a species of high agronomic interest, used as a model to study different processes, including microspore embryogenesis. The DH4079 and DH12075 lines show high and low embryogenic response, respectively, which makes them ideal to study the basic mechanisms controlling embryogenesis induction. Therefore, the availability of protocols for genetic transformation of these two backgrounds would help to generate tools to better understand this process. There are some reports in the literature showing the stable transformation of DH12075. However, no equivalent studies in DH4079 have been reported to date. We explored the ability of DH4079 plants to be genetically transformed. As a reference to compare with, we used the same protocols to transform DH12075. We used three different protocols previously reported as successful for B. napus stable transformation with Agrobacterium tumefaciens and analyzed the response of plants. Whereas DH12075 plants responded to genetic transformation, DH4079 plants were completely recalcitrant, not producing any single regenerant out of the 1784 explants transformed and cultured. Additionally, an Agrobacterium rhizogenes transient transformation assay was performed on both lines, and only DH12075, but no DH4079 seedlings, responded to A. rhizogenes infection. Therefore, we propose that the DH4079 line is recalcitrant to Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
| | | | | | - Jose M. Seguí-Simarro
- Cell Biology Group-COMAV Institute, Universitat Politècnica de València, 46022 Valencia, Spain; (A.C.-S.); (R.P.)
| |
Collapse
|
5
|
Pandey K, Karthik K, Singh SK, Vinod, Sreevathsa R, Srivastav M. Amenability of an Agrobacterium tumefaciens-mediated shoot apical meristem-targeted in planta transformation strategy in Mango ( Mangifera indica L.). GM CROPS & FOOD 2022; 13:342-354. [DOI: 10.1080/21645698.2022.2141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Kuldeep Pandey
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kesiraju Karthik
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, India
| | - Manish Srivastav
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Li J, Lu Z, Yang Y, Hou J, Yuan L, Chen G, Wang C, Jia S, Feng X, Zhu S. Transcriptome Analysis Reveals the Symbiotic Mechanism of Ustilago esculenta-Induced Gall Formation of Zizania latifolia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:168-185. [PMID: 33400553 DOI: 10.1094/mpmi-05-20-0126-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zizania latifolia is a perennial aquatic vegetable, whose symbiosis with the fungus Ustilago esculenta (member of Basidiomycota, class Ustilaginaceae) results in the establishment of swollen gall formations. Here, we analyzed symbiotic relations of Z. latifolia and U. esculenta, using a triadimefon (TDF) treatment and transcriptome sequencing (RNA-seq). Specifically, accurately identify the whole growth cycle of Z. latifolia. Microstructure observations showed that the presence of U. esculenta could be clearly observed after gall formation but was absent after the TDF treatment. A total of 17,541 differentially expressed genes (DEGs) were identified, based on the transcriptome. According to gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway results, plant hormone signal transduction, and cell wall-loosening factors were all significantly enriched due to U. esculenta infecting Z. latifolia; relative expression levels of hormone-related genes were identified, of which downregulation of indole 3-acetic acid (IAA)-related DEGs was most pronounced in JB_D versus JB_B. The ultra-high performance liquid chromatography analysis revealed that IAA, zeatin+trans zeatin riboside, and gibberellin 3 were increased under U. esculenta infection. Based on our results, we proposed a hormone-cell wall loosening model to study the symbiotic mechanism of gall formation after U. esculenta infects Z. latifolia. Our study thus provides a new perspective for studying the physiological and molecular mechanisms of U. esculenta infection of Z. latifolia causing swollen gall formations as well as a theoretical basis for enhancing future yields of cultivated Z. latifolia.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Jie Li
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Zhiyuan Lu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Yang Yang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Shaoke Jia
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Xuming Feng
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| |
Collapse
|
7
|
Xiao Z, Xing M, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. PLANTA 2020; 252:42. [PMID: 32870402 DOI: 10.1007/s00425-020-03454-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Miaomiao Xing
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
8
|
Chen G, Wang J, Wang H, Wang C, Tang X, Li J, Zhang L, Song J, Hou J, Yuan L. Genome-wide analysis of proline-rich extension-like receptor protein kinase (PERK) in Brassica rapa and its association with the pollen development. BMC Genomics 2020; 21:401. [PMID: 32539701 PMCID: PMC7296749 DOI: 10.1186/s12864-020-06802-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Proline-rich extension-like receptor protein kinases (PERKs) are an important class of receptor kinases located in the plasma membrane, most of which play a vital role in pollen development. RESULTS Our study identified 25 putative PERK genes from the whole Brassica rapa genome (AA). Phylogenetic analysis of PERK protein sequences from 16 Brassicaceae species divided them into four subfamilies. The biophysical properties of the BrPERKs were investigated. Gene duplication and synteny analyses and the calculation of Ka/Ks values suggested that all 80 orthologous/paralogous gene pairs between B. rapa and A. thaliana, B. nigra and B. oleracea have experienced strong purifying selection. RNA-Seq data and qRT-PCR analyses showed that several BrPERK genes were expressed in different tissues, while some BrPERKs exhibited high expression levels only in buds. Furthermore, comparative transcriptome analyses from six male-sterile lines of B. rapa indicated that 7 BrPERK genes were downregulated in all six male-sterile lines. Meanwhile, the interaction networks of the BrPERK genes were constructed and 13 PERK coexpressed genes were identified, most of which were downregulated in the male sterile buds. CONCLUSION Combined with interaction networks, coexpression and qRT-PCR analyses, these results demonstrated that two BrPERK genes, Bra001723.1 and Bra037558.1 (the orthologs of AtPERK6 (AT3G18810)), were downregulated beginning in the meiosis II period of male sterile lines and involved in anther development. Overall, this comprehensive analysis of some BrPERK genes elucidated their roles in male sterility.
Collapse
Affiliation(s)
- Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China. .,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China. .,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, China.
| | - Jian Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Hao Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China. .,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China. .,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, China.
| | - Xiaoyan Tang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Jie Li
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Zhang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jianghua Song
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
9
|
Amal TC, Karthika P, Dhandapani G, Selvakumar S, Vasanth K. A simple and efficient Agrobacterium-mediated in planta transformation protocol for horse gram (Macrotyloma uniflorum Lam. Verdc.). J Genet Eng Biotechnol 2020; 18:9. [PMID: 32206908 PMCID: PMC7090105 DOI: 10.1186/s43141-020-00023-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recalcitrant nature is a major constraint for the in vitro regeneration and genetic transformation of leguminous species members. Therefore, an improved genetic transformation in horse gram has been developed via in planta method, in which Agrobacterium strain harboring binary vector pCAMBIA2301 was used for the transformation. Several factors affecting in planta transformations were put forth viz. Agrobacterium cell density, co-cultivation, and sonication combined with vacuum infiltration duration which were optimized. RESULTS Germinated seeds were sonicated and vacuum infiltrated with different densities of Agrobacterium culture and co-cultivated in half-strength MS medium with 100 μM of acetosyringone for 48 h. Seedlings were washed with cefotaxime and sowed in vermiculite soil for maturation. T1 plants were subjected to histochemical and molecular analysis to ensure transformation efficiency. Among various combinations analyzed, maximum transformation efficiency (20.8%) was attained with seeds of 5 min sonication combined with vacuum infiltration with 0.6 optical density of Agrobacterium culture. CONCLUSIONS It concludes that a different Agrobacterium cell density with sonication combined with vacuum infiltration has improved transgenic efficiency in horse gram plants. This simple and efficient method is feasible for the stable expression of foreign genes that could be beneficial for future food security.
Collapse
Affiliation(s)
- Thomas Cheeran Amal
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Palanisamy Karthika
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Gurusamy Dhandapani
- PG Research Department of Botany, Kongunadu Arts and Science College, Bharathiar University, Coimbatore, Tamil Nadu 641029 India
| | - Subramaniam Selvakumar
- Department of Biochemistry, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Krishnan Vasanth
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| |
Collapse
|
10
|
Zlobin NE, Lebedeva MV, Taranov VV. CRISPR/Cas9 genome editing through in planta transformation. Crit Rev Biotechnol 2020; 40:153-168. [PMID: 31903793 DOI: 10.1080/07388551.2019.1709795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, the application of CRISPR/Cas9 plant genome editing using alternative transformation methods is discussed. Genome editing by the CRISPR/Cas9 system is usually implemented via the generation of transgenic plants carrying Cas9 and sgRNA genes in the genome. Transgenic plants are usually developed by in vitro regeneration from single transformed cells, which requires using different in vitro culture-based methods. Despite their common application, these methods have some disadvantages and limitations. Thus, some methods of plant transformation that do not depend on in vitro regeneration have been developed. These methods are known as "in planta" transformation. The main focus of this review is the so-called floral dip in planta transformation method, although other approaches are also described. The main features of in planta transformation in the context of CRISPR/Cas9 genome editing are discussed. Furthermore, multiple ways to increase the effectiveness of this approach and to broaden its use in different plant species are considered.
Collapse
Affiliation(s)
- Nikolay E Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Marina V Lebedeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Vasiliy V Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| |
Collapse
|
11
|
Jing C, Li P, Zhang J, Wang R, Wu G, Li M, Xie L, Qing L. The Malvastrum Yellow Vein Virus C4 Protein Promotes Disease Symptom Development and Enhances Virus Accumulation in Plants. Front Microbiol 2019; 10:2425. [PMID: 31708897 PMCID: PMC6823909 DOI: 10.3389/fmicb.2019.02425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
The begomovirus C4 protein is required for disease symptom development during virus infection in host plants. It can reprogram the cell cycle process for more efficient virus accumulation. In this study, we showed that the Malvastrum yellow vein virus (MaYVV) C4 protein could cause leaf up-ward curling and flower malformation, and increase virus accumulation in plants using PVX-based transient expression technology. We also demonstrated that, in the presence of its cognate betasatellite DNA (MaYVB), a mutant MaYVV, defective in producing the C4 protein (MaYVVΔC4), caused and alleviated infection in Nicotiana benthamiana. Transgenic plants expressing the MaYVV C4 protein showed upward leaf curling and uneven leaf lamina growth. Microscopic analysis showed that the epidermal cells of the C4 transgenic leaves were much smaller than those in the wild type (WT) leaves, and the mesophyll cells size and arrangement of transgenic plants was significantly altered. Inoculation of C4 transgenic plants with MaYVV or MaYVVΔC4 alone or associated with MaYVB showed that the transgenic C4 protein could promote viral and betasatellite accumulation and rescue the accumulation defect of MaYVVΔC4. Other transient expression assays also confirmed that the MaYVV C4 protein could suppress silencing of a GFP gene. In summary, our results indicate that the MaYVV C4 protein is a determinant of disease symptom and viral DNA accumulation. This protein can also function as a suppressor of RNA silencing and alter cell division and expansion.
Collapse
Affiliation(s)
- Chenchen Jing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Pengbai Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Jiayuan Zhang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Rui Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Li Xie
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|