1
|
Korek M, Uhrig RG, Marzec M. Strigolactone insensitivity affects differential shoot and root transcriptome in barley. J Appl Genet 2025; 66:15-28. [PMID: 38877382 PMCID: PMC11762224 DOI: 10.1007/s13353-024-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Strigolactones (SLs) are plant hormones that play a crucial role in regulating various aspects of plant architecture, such as shoot and root branching. However, the knowledge of SL-responsive genes and transcription factors (TFs) that control the shaping of plant architecture remains elusive. Here, transcriptomic analysis was conducted using the SL-insensitive barley mutant hvd14.d (carried mutation in SL receptor DWARF14, HvD14) and its wild-type (WT) to unravel the differences in gene expression separately in root and shoot tissues. This approach enabled us to select more than six thousand SL-dependent genes that were exclusive to each studied organ or not tissue-specific. The data obtained, along with in silico analyses, found several TFs that exhibited changed expression between the analyzed genotypes and that recognized binding sites in promoters of other identified differentially expressed genes (DEGs). In total, 28 TFs that recognize motifs over-represented in DEG promoters were identified. Moreover, nearly half of the identified TFs were connected in a single network of known and predicted interactions, highlighting the complexity and multidimensionality of SL-related signalling in barley. Finally, the SL control on the expression of one of the identified TFs in HvD14- and dose-dependent manners was proved. Obtained results bring us closer to understanding the signalling pathways regulating SL-dependent plant development.
Collapse
Affiliation(s)
- Magdalena Korek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| |
Collapse
|
2
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
3
|
Özbilen A, Sezer F, Taşkin KM. Identification and expression of strigolactone biosynthesis and signaling genes and the in vitro effects of strigolactones in olive ( Olea europaea L.). PLANT DIRECT 2024; 8:e568. [PMID: 38405354 PMCID: PMC10894696 DOI: 10.1002/pld3.568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Strigolactones (SLs), synthesized in plant roots, play a dual role in modulating plant growth and development, and in inducing the germination of parasitic plant seeds and arbuscular mycorrhizal fungi in the rhizosphere. As phytohormones, SLs are crucial in regulating branching and shaping plant architecture. Despite the significant impact of branching strategies on the yield performance of fruit crops, limited research has been conducted on SLs in these crops. In our study, we identified the transcript sequences of SL biosynthesis and signaling genes in olive (Olea europaea L.) using rapid amplification of cDNA ends. We predicted the corresponding protein sequences, analyzed their characteristics, and conducted molecular docking with bioinformatics tools. Furthermore, we quantified the expression levels of these genes in various tissues using quantitative real-time PCR. Our findings demonstrate the predominant expression of SL biosynthesis and signaling genes (OeD27, OeMAX3, OeMAX4, OeMAX1, OeD14, and OeMAX2) in roots and lateral buds, highlighting their importance in branching. Treatment with rac-GR24, an SL analog, enhanced the germination frequency of olive seeds in vitro compared with untreated embryos. Conversely, inhibition of SL biosynthesis with TIS108 increased lateral bud formation in a hard-to-root cultivar, underscoring the role of SLs as phytohormones in olives. These results suggest that modifying SL biosynthesis and signaling pathways could offer novel approaches for olive breeding, with potential applicability to other fruit crops.
Collapse
Affiliation(s)
- Aslıhan Özbilen
- Department of BiologyCanakkale Onsekiz Mart UniversityCanakkaleTurkey
| | - Fatih Sezer
- Department of Molecular Biology and GeneticsCanakkale Onsekiz Mart UniversityCanakkaleTurkey
| | - Kemal Melih Taşkin
- Department of Molecular Biology and GeneticsCanakkale Onsekiz Mart UniversityCanakkaleTurkey
| |
Collapse
|
4
|
Park JS, Park KH, Park SJ, Ko SR, Moon KB, Koo H, Cho HS, Park SU, Jeon JH, Kim HS, Lee HJ. WUSCHEL controls genotype-dependent shoot regeneration capacity in potato. PLANT PHYSIOLOGY 2023; 193:661-676. [PMID: 37348867 DOI: 10.1093/plphys/kiad345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Plant cells can reprogram their fate. The combinatorial actions of auxin and cytokinin dedifferentiate somatic cells to regenerate organs, which can develop into individual plants. As transgenic plants can be generated from genetically modified somatic cells through these processes, cell fate transition is an unavoidable step in crop genetic engineering. However, regeneration capacity closely depends on the genotype, and the molecular events underlying these variances remain elusive. In the present study, we demonstrated that WUSCHEL (WUS)-a homeodomain transcription factor-determines regeneration capacity in different potato (Solanum tuberosum) genotypes. Comparative analysis of shoot regeneration efficiency and expression of genes related to cell fate transition revealed that WUS expression coincided with regeneration rate in different potato genotypes. Moreover, in a high-efficiency genotype, WUS silencing suppressed shoot regeneration. Meanwhile, in a low-efficiency genotype, regeneration could be enhanced through the supplementation of a different type of cytokinin that promoted WUS expression. Computational modeling of cytokinin receptor-ligand interactions suggested that the docking pose of cytokinins mediated by hydrogen bonding with the core residues may be pivotal for WUS expression and shoot regeneration in potatoes. Furthermore, our whole-genome sequencing analysis revealed core sequence variations in the WUS promoters that differentiate low- and high-efficiency genotypes. The present study revealed that cytokinin responses, particularly WUS expression, determine shoot regeneration efficiency in different potato genotypes.
Collapse
Affiliation(s)
- Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
- Department of Crop Science, Chungnam National University, Daejeon 34134, South Korea
| | - Kwang Hyun Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, South Korea
| | - Su-Jin Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, South Korea
| | - Seo-Rin Ko
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Hyunjin Koo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, South Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, Daejeon 34134, South Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
5
|
Komatsu A, Kodama K, Mizuno Y, Fujibayashi M, Naramoto S, Kyozuka J. Control of vegetative reproduction in Marchantiapolymorpha by the KAI2-ligand signaling pathway. Curr Biol 2023; 33:1196-1210.e4. [PMID: 36863344 DOI: 10.1016/j.cub.2023.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
In vegetative reproduction of Marchantia polymorpha (M. polymorpha), propagules, called gemmae, are formed in gemma cups. Despite its significance for survival, control of gemma and gemma cup formation by environmental cues is not well understood. We show here that the number of gemmae formed in a gemma cup is a genetic trait. Gemma formation starts from the central region of the floor of the gemma cup, proceeds to the periphery, and terminates when the appropriate number of gemmae is initiated. The MpKARRIKIN INSENSITIVE2 (MpKAI2)-dependent signaling pathway promotes gemma cup formation and gemma initiation. The number of gemmae in a cup is controlled by modulating the ON/OFF switch of the KAI2-dependent signaling. Termination of the signaling results in the accumulation of MpSMXL, a suppressor protein. In the Mpsmxl mutants, gemma initiation continues, leading to the formation of a highly increased number of gemmae in a cup. Consistent with its function, the MpKAI2-dependent signaling pathway is active in gemma cups where gemmae initiate, as well as in the notch region of the mature gemma and midrib of the ventral side of the thallus. In this work, we also show that GEMMA CUP-ASSOCIATED MYB1 works downstream of this signaling pathway to promote gemma cup formation and gemma initiation. We also found that the availability of potassium affects gemma cup formation independently from the KAI2-dependent signaling pathway in M. polymorpha. We propose that the KAI2-dependent signaling pathway functions to optimize vegetative reproduction by adapting to the environment in M. polymorpha.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Mizuki Fujibayashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
6
|
Fan X, Li Y, Deng CH, Wang S, Wang Z, Wang Y, Qiu C, Xu X, Han Z, Li W. Strigolactone regulates adventitious root formation via the MdSMXL7-MdWRKY6-MdBRC1 signaling cascade in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:772-786. [PMID: 36575587 DOI: 10.1111/tpj.16082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Propagation through stem cuttings is a popular method worldwide for species such as fruit tree rootstocks and forest trees. Adventitious root (AR) formation from stem cuttings is crucial for effective and successful clonal propagation of apple rootstocks. Strigolactones (SLs) are newly identified hormones involved in AR formation. However, the regulatory mechanisms underpinning this process remain elusive. In the present study, weighted gene co-expression network analysis, as well as rooting assays using stable transgenic apple materials, revealed that MdBRC1 served as a key gene in the inhibition of AR formation by SLs. We have demonstrated that MdSMXL7 and MdWRKY6 synergistically regulated MdBRC1 expression, depending on the interactions of MdSMXL7 and MdWRKY6 at the protein level downstream of SLs as well as the direct promoter binding on MdBRC1 by MdWRKY6. Furthermore, biochemical studies and genetic analysis revealed that MdBRC1 inhibited AR formation by triggering the expression of MdGH3.1 in a transcriptional activation pathway. Finally, the present study not only proposes a component, MdWRKY6, that enables MdSMXL7 to regulate MdBRC1 during the process of SL-controlled AR formation in apple, but also provides prospective target genes to enhance AR formation capacity using CRISPR (i.e. clustered regularly interspaced short palindromic repeats) technology, particularly in woody plants.
Collapse
Affiliation(s)
- Xingqiang Fan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuqi Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mt Albert, Auckland, 1025, New Zealand
| | - Shiyao Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zijun Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changpeng Qiu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|