1
|
Benoit JB, Finch G, Ankrum AL, Niemantsverdriet J, Paul B, Kelley M, Gantz JD, Matter SF, Lee RE, Denlinger DL. Reduced male fertility of an Antarctic mite following extreme heat stress could prompt localized population declines. Cell Stress Chaperones 2023; 28:541-549. [PMID: 37392307 PMCID: PMC10468472 DOI: 10.1007/s12192-023-01359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023] Open
Abstract
Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Therefore, it is important to examine the impact of heat stress on the reproduction of polar terrestrial arthropods, specifically, how brief extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross-mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the negative impacts are transient as the effect on fertility declines with recovery time under less stressful conditions. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial reproductive effects on local populations of Antarctic arthropods.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrea L Ankrum
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | | | - Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Fang Y, Sun M, Fang Y, Zuo Z, Liu L, Chu L, Ding L, Hu C, Li F, Han R, Xia X, Zhou S, Sun E. Complete mitochondrial genomes of Thyreophagus entomophagus and Acarus siro (Sarcoptiformes: Astigmatina) provide insight into mitogenome features, evolution, and phylogeny among Acaroidea mites. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:219-233. [PMID: 36255591 DOI: 10.1007/s10493-022-00727-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/23/2022] [Indexed: 05/24/2023]
Abstract
Mites from the Acaroidea (Sarcoptiformes: Astigmatina) are important pests of various stored products, posing potential threats to preserved foods. In addition, mites can cause allergic diseases. Complete mitochondrial genomes (mitogenomes) are valuable resources for different research fields, including comparative genomics, molecular evolutionary analysis, and phylogenetic inference. We sequenced and annotated the complete mitogenomes of Thyreophagus entomophagus and Acarus siro. A comparative analysis was made between mitogenomic sequences from 10 species representing nine genera within Acaroidea. The mitogenomes of T. entomophagus and A. siro contained 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region. In Acaroidea species, mitogenomes have highly conserved gene size and order, and codon usage. Among Acaroidea mites, most PCGs were found to be under purifying selection, implying that most PCGs might have evolved slowly. Our findings showed that nad4 evolved most rapidly, whereas cox1 and cox3 evolved most slowly. The evolutionary rates of Acaroidea vary considerably across families. In addition, selection analyses were also performed in 23 astigmatid mite species, and the evolutionary rate of the same genes in different superfamilies exhibited large differences. Phylogenetic results are mostly consistent with those identified by previous phylogenetic studies on astigmatid mites. The monophyly of Acaroidea was rejected, and the Suidasiidae and Lardoglyphidae appeared to deviate from the Acaroidea branch. Our research proposed a review of the current Acaroidea classification system.
Collapse
Affiliation(s)
- Yu Fang
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
- Department of Medical Parasitology, Wannan Medical College, Wuhu, China
| | - Mingzhong Sun
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Ying Fang
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Zetao Zuo
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Luyao Liu
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Lingmiao Chu
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Lan Ding
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Caixiao Hu
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Feiyan Li
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Renrui Han
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China
| | - Xingquan Xia
- College of Life Science, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China.
| | - Shulin Zhou
- Department of Medical Parasitology, Wannan Medical College, Wuhu, China.
| | - Entao Sun
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
3
|
Ajayi OM, Gantz JD, Finch G, Lee RE, Denlinger DL, Benoit JB. Rapid stress hardening in the Antarctic midge improves male fertility by increasing courtship success and preventing decline of accessory gland proteins following cold exposure. J Exp Biol 2021; 224:271037. [PMID: 34297110 DOI: 10.1242/jeb.242506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
Rapid hardening is a process that quickly improves an animal's performance following exposure to potentially damaging stress. In this study of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae), we examined how rapid hardening in response to dehydration (RDH) or cold (RCH) improves male pre- and post-copulatory function when the insects are subsequently subjected to a damaging cold exposure. Neither RDH nor RCH improved survival in response to lethal cold stress, but male activity and mating success following sublethal cold exposure were enhanced. Egg viability decreased following direct exposure of the mating males to sublethal cold but improved following RCH and RDH. Sublethal cold exposure reduced the expression of four accessory gland proteins, while expression remained high in males exposed to RCH. Though rapid hardening may be cryptic in males, this study shows that it can be revealed by pre- and post-copulatory interactions with females.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - J D Gantz
- Department of Biology and Health Science, Hendrix College, Conway, AR 72032, USA
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
4
|
Stribling D, Chang PL, Dalton JE, Conow CA, Rosenthal M, Hebets E, Graze RM, Arbeitman MN. The brain transcriptome of the wolf spider, Schizocosa ocreata. BMC Res Notes 2021; 14:236. [PMID: 34162407 PMCID: PMC8220750 DOI: 10.1186/s13104-021-05648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Arachnids have fascinating and unique biology, particularly for questions on sex differences and behavior, creating the potential for development of powerful emerging models in this group. Recent advances in genomic techniques have paved the way for a significant increase in the breadth of genomic studies in non-model organisms. One growing area of research is comparative transcriptomics. When phylogenetic relationships to model organisms are known, comparative genomic studies provide context for analysis of homologous genes and pathways. The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. DATA DESCRIPTION To examine sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA was isolated from brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The raw data consist of sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly and differential expression analyses. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from publicly-available databases.
Collapse
Affiliation(s)
- Daniel Stribling
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, FL 32306 USA
- Present Address: Department of Molecular Genetics and Microbiology, Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| | - Peter L. Chang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
| | - Justin E. Dalton
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, FL 32306 USA
| | - Christopher A. Conow
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
| | - Malcolm Rosenthal
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Eileen Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Rita M. Graze
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 USA
| | - Michelle N. Arbeitman
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, FL 32306 USA
| |
Collapse
|
5
|
Jennings EC, Korthauer MW, Hendershot JM, Bailey ST, Weirauch MT, Ribeiro JMC, Benoit JB. Molecular mechanisms underlying milk production and viviparity in the cockroach, Diploptera punctata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103333. [PMID: 32119906 PMCID: PMC7293887 DOI: 10.1016/j.ibmb.2020.103333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 05/09/2023]
Abstract
Viviparous reproduction is characterized by maternal retention of developing offspring within the reproductive tract during gestation, culminating in live birth. In some cases, a mother will provide nutrition beyond that present in the yolk; this is known as matrotrophic viviparity. While this phenomenon is best associated with mammals, it is observed in insects such as the viviparous cockroach, Diploptera punctata. Female D. punctata carry developing embryos in the brood sac, a reproductive organ that acts as both a uterus and a placenta by protecting and providing a nutritive secretion to the intrauterine developing progeny. While the basic physiology of D. punctata pregnancy has been characterized, little is known about the molecular mechanisms underlying this phenomenon. This study combined RNA-seq analysis, RNA interference, and other assays to characterize molecular and physiological changes associated with D. punctata reproduction. A comparison of four stages of the female reproductive cycle and males revealed unique gene expression profiles corresponding to each stage and between sexes. Differentially regulated transcripts of interest include the previously identified family of milk proteins and transcripts associated with juvenile hormone metabolism. RNA interference and methoprene application experiments established the potential impacts of bothbreakdown and synthesis reduction of juvenile hormone in maintaining pregnancy in D. punctata. These studies provide the comprehensive molecular mechanisms associated with cockroach viviparity, which will be a critical resource for comparative purposes among viviparity in insect systems.
Collapse
Affiliation(s)
- Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Matthew W Korthauer
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jacob M Hendershot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Jose M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Bethesda, MD, 20892, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|