1
|
Shalders TC, Champion C, Coleman MA, Benkendorff K. The nutritional and sensory quality of seafood in a changing climate. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105590. [PMID: 35255319 DOI: 10.1016/j.marenvres.2022.105590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Climate change is impacting living marine resources, whilst concomitantly, global reliance on seafood as a source of nutrition is increasing. Here we review an emerging research frontier, identifying significant impacts of climate-driven environmental change on the nutritional and sensory quality of seafood, and implications for human health. We highlight that changing ocean temperature, pH and salinity can lead to reductions in seafood macro and micronutrients, including essential nutrients such as protein and lipids. However, the nutritional quality of seafood appears to be more resilient in taxa that inhabit naturally variable environments such as estuaries and shallow near-coastal habitats. We develop criteria for assessing confidence in categorising the nutritional quality of seafood as vulnerable or resilient to climate change. The application of this criteria to a subset of seafood nutritional studies demonstrates confidence levels are generally low and could be improved by more realistic experimental designs and research collaboration. We highlight knowledge gaps to guide future research in this emerging field.
Collapse
Affiliation(s)
- Tanika C Shalders
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia.
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
2
|
Araujo P, Truzzi C, Belghit I, Antonucci M. The impact of seawater warming on fatty acid composition and nutritional quality indices of Trematomus bernacchii from the Antarctic region. Food Chem 2021; 365:130500. [PMID: 34246152 DOI: 10.1016/j.foodchem.2021.130500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 01/20/2023]
Abstract
There is a growing interest in exploiting Antarctic fisheries for human consumption. However, information on how the nutritional qualities of these resources will respond to the predicted seawater warming in the region for the next century is poor. The present research investigates changes in various nutritional indices of dietary importance (e.g. the ratio polyunsaturated to saturated fatty acids, the atherogenicity index, the thrombogenicity index, the hypo-cholesterolemic to hyper-cholesterolemic index, the health-promoting index, the flesh lipid quality and the ratio omega-3 to omega-6 index) by determining the fatty acid composition in muscle of Trematomus bernacchii (an Antarctic fish species) in its natural habitat (-1.87 °C) and warmer temperatures (0.0, 1.0, 2.0 °C). Comparison of the estimated nutritional indices at -1.87 °C with those at warmer temperatures revealed that seawater warming caused changes in the nutritional indices in the range of -12%<Δ < 30%. The observed changes were not statistically significant and ascribed to biological variability. Therefore, the nutritional values of T. bernacchii muscle were preserved after increasing the temperature of its natural habitat by + 4 °C. The present research is the first report describing the nutritional quality indices for an Antarctic fish species and the consequences of seawater warming on the nutritional value of T. bernacchii.
Collapse
Affiliation(s)
- Pedro Araujo
- Feed and Nutrition Group, Institute of Marine Research (IMR), PO Box 1870 Nordnes, N-5817 Bergen, Norway.
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Ikram Belghit
- Feed and Nutrition Group, Institute of Marine Research (IMR), PO Box 1870 Nordnes, N-5817 Bergen, Norway
| | | |
Collapse
|
3
|
Madeira D, Fernandes JF, Jerónimo D, Ricardo F, Santos A, Domingues MR, Calado R. Calcium homeostasis and stable fatty acid composition underpin heatwave tolerance of the keystone polychaete Hediste diversicolor. ENVIRONMENTAL RESEARCH 2021; 195:110885. [PMID: 33609552 DOI: 10.1016/j.envres.2021.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Extreme weather events, such as heatwaves, are becoming increasingly frequent, long-lasting and severe as global climate change continues, shaping marine biodiversity patterns worldwide. Increased risk of overheating and mortality across major taxa have been recurrently observed, jeopardizing the sustainability of ecosystem services. Molecular responses of species, which scale up to physiological and population responses, are determinant processes that modulate species sensitivity or tolerance to extreme weather events. Here, by integrating proteomic, fatty acid profiling and physiological approaches, we show that the tolerance of the intertidal ragworm Hediste diversicolor, a keystone species in estuarine ecosystems and an emergent blue bio-resource, to long-lasting heatwaves (24 vs 30 °C for 30 days) is shaped by calcium homeostasis, immune function and stability of fatty acid profiles. These features potentially enabled H. diversicolor to increase its thermal tolerance limit by 0.81 °C under the heatwave scenario and maintain survival. No growth trade-offs were detected, as wet weight remained stable across conditions. Biological variation of physiological parameters was lower when compared to molecular measures. Proteins showed an overall elevated coefficient of variation, although decreasing molecular variance under the heatwave scenario was observed for both proteins and fatty acids. This finding is consistent with the phenomenon of physiological canalization in extreme environments and contradicts the theory that novel conditions increase trait variation. Our results show that keystone highly valued marine polychaetes are tolerant to heatwaves, confirming the potential of H. diversicolor as a blue bio-resource and opening new avenues for sustainable marine aquaculture development.
Collapse
Affiliation(s)
- Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal; UCIBIO, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; University of Quebec in Rimouski (UQAR), Department of Biology, Chemistry and Geography, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
| | - Joana Filipa Fernandes
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Daniel Jerónimo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Fernando Ricardo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Andreia Santos
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal.
| |
Collapse
|