1
|
Bennett S, Hirpara DH, Raphael M, Karanicolas PJ. Focused ultrasound and concurrent chemotherapy for the treatment of advanced pancreatic cancer: A systematic review. J Surg Oncol 2024; 130:1617-1623. [PMID: 39165232 PMCID: PMC11849704 DOI: 10.1002/jso.27832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND AND OBJECTIVES The combination of focused ultrasound (FUS) and chemotherapy is a novel treatment for pancreatic cancer. This paper reviews the literature on this combined therapy. METHODS The medical literature was searched according to PRISMA guidelines. Inclusion criteria were any study of patients with pancreatic cancer undergoing treatment with FUS and chemotherapy. Data extracted included stage, radiologic response, resection rate, survival, and adverse events. RESULTS The initial search yielded 212 citations; 10 studies met inclusion criteria (9 retrospective cohorts; 1 randomized trial). A total of 631 patients received FUS + chemotherapy; 63.6% being stage 4, and 29.7% stage 3. Patient selection, FUS parameters, and chemotherapy used were all heterogeneous. Overall survival ranged from 7.4 to 21.6 months, radiologic response rate was 44.1%, and 24.4% of stage 3 patients underwent resection. All four studies with a comparison group demonstrated improved survival. FUS + chemotherapy decreased pain in 69.7% of patients. Severe adverse events occurred in 0.65%. CONCLUSIONS The literature on combined FUS and chemotherapy for pancreatic cancer is heterogeneous. There is good evidence that adverse events are low, and that it provides effective palliation. There is evidence to suggest oncologic benefit, however, this is subject to selection bias and prospective trials are needed.
Collapse
Affiliation(s)
- Sean Bennett
- Division of General SurgeryQueen's UniversityKingstonOntarioCanada
| | | | - Michael Raphael
- Sunnybrook Research Institute, Sunnybrook Health Sciences CentreTorontoOntarioCanada
- Division of Medical OncologyUniversity of TorontoTorontoOntarioCanada
| | - Paul J. Karanicolas
- Division of General SurgeryUniversity of TorontoTorontoOntarioCanada
- Sunnybrook Research Institute, Sunnybrook Health Sciences CentreTorontoOntarioCanada
- Division of General SurgerySunnybrook Health Sciences CentreTorontoOntarioCanada
| |
Collapse
|
2
|
Yao Y, Zheng Y, Wu M, Gao Y, Yu Q, Liu M, Luo X, Wang R, Jiang L. CD133-targeted multifunctional nanomicelles for dual-modality imaging and synergistic high-intensity focus ultrasound (HIFU) ablation on pancreatic cancer in nude mice. J Mater Chem B 2024; 12:5884-5897. [PMID: 38775254 DOI: 10.1039/d4tb00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is an aggressive and highly fatal malignant tumor. Recent studies have shown that cancer stem cells (CSCs) play an important role in resisting current therapeutic modalities. Furthermore, CD133 is highly expressed in CSCs. High-intensity focused ultrasound (HIFU) is a promising non-invasive therapeutic strategy for unresectable pancreatic cancers. In our study, we synthesized targeted CD133 organosilane nanomicelles by encapsulating perfluorohexane (PFH). The CD133 antibody on the surface could specifically bind to CD133-positive pancreatic cancer cells and selectively concentrate in pancreatic cancer tumor tissues. PFH was introduced to improve the ablation effect of HIFU due to its liquid-gas phase transition properties. By combining with the dorsal skinfold window chamber model (DSWC) of pancreatic cancer in nude mice, multiphoton fluorescence microscopy was used to evaluate the targeting effect of nanomicelles on pancreatic cancer tumor tissue. These multifunctional nanomicelles synergistically affected HIFU treatment of pancreatic cancer, providing an integrated research platform for diagnosing and treating pancreatic cancer with HIFU.
Collapse
Affiliation(s)
- Yijing Yao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yiwen Zheng
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mingtai Wu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yihui Gao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Qian Yu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mengyao Liu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Xiaoxiao Luo
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Rui Wang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
3
|
Coppola A, Grasso D, Fontana F, Piacentino F, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, Venturini M. Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. J Clin Med 2023; 12:7677. [PMID: 38137745 PMCID: PMC10743777 DOI: 10.3390/jcm12247677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer with one of the highest mortality rates in the world. Several studies have been conductedusing preclinical experiments in mice to find new therapeutic strategies. Experimental ultrasound, in expert hands, is a safe, multifaceted, and relatively not-expensive device that helps researchers in several ways. In this systematic review, we propose a summary of the applications of ultrasonography in a preclinical mouse model of PDAC. Eighty-eight studies met our inclusion criteria. The included studies could be divided into seven main topics: ultrasound in pancreatic cancer diagnosis and progression (n: 21); dynamic contrast-enhanced ultrasound (DCE-US) (n: 5); microbubble ultra-sound-mediated drug delivery; focused ultrasound (n: 23); sonodynamic therapy (SDT) (n: 7); harmonic motion elastography (HME) and shear wave elastography (SWE) (n: 6); ultrasound-guided procedures (n: 9). In six cases, the articles fit into two or more sections. In conclusion, ultrasound can be a really useful, eclectic, and ductile tool in different diagnostic areas, not only regarding diagnosis but also in therapy, pharmacological and interventional treatment, and follow-up. All these multiple possibilities of use certainly represent a good starting point for the effective and wide use of murine ultrasonography in the study and comprehensive evaluation of pancreatic cancer.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Dario Grasso
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Maria Ierardi
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Fabio D’Angelo
- Department of Medicine and Surgery, Insubria University, 21100 Varese, Italy;
- Orthopedic Surgery Unit, ASST Sette Laghi, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Emergency and Transplant Surgery Department, ASST Sette Laghi, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| |
Collapse
|
4
|
Wang R, Yao Y, Gao Y, Liu M, Yu Q, Song X, Han X, Niu D, Jiang L. CD133-Targeted Hybrid Nanovesicles for Fluorescent/Ultrasonic Imaging-Guided HIFU Pancreatic Cancer Therapy. Int J Nanomedicine 2023; 18:2539-2552. [PMID: 37207110 PMCID: PMC10188615 DOI: 10.2147/ijn.s391382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
Background Pancreatic cancer is regarded as one of the most lethal types of tumor in the world, and optional way to treat the tumor are urgently needed. Cancer stem cells (CSCs) play a key role in the occurrence and development of pancreatic tumors. CD133 is a specific antigen for targeting the pancreatic CSCs subpopulation. Previous studies have shown that CSC-targeted therapy is effective in inhibiting tumorigenesis and transmission. However, CD133 targeted therapy combined with HIFU for pancreatic cancer is absent. Purpose To improve therapeutic efficiency and minimize side effects, we carry a potent combination of CSCs antibody with synergist by an effective and visualized delivery nanocarrier to pancreatic cancer. Materials and Methods Multifunctional CD133-targeted nanovesicles (CD133-grafted Cy5.5/PFOB@P-HVs) with encapsulated perfluorooctyl bromide (PFOB) in a 3-mercaptopropyltrimethoxysilane (MPTMS) shell modified with poly ethylene glycol (PEG) and superficially modified with CD133 and Cy 5.5 were constructed following the prescribed order. The nanovesicles were characterized for the biological and chemical characteristics feature. We explored the specific targeting capacity in vitro and the therapeutic effect in vivo. Results The in vitro targeting experiment and in vivo FL and ultrasonic experiments showed the aggregation of CD133-grafted Cy5.5/PFOB@P-HVs around CSCs. In vivo FL imaging experiments demonstrated that the nanovesicles assemble for the highest concentration in the tumor at 24 h after administration. Under HIFU irradiation, the synergistic efficacy of the combination of the CD133-targeting carrier and HIFU for tumor treatment was obvious. Conclusion CD133-grafted Cy5.5/PFOB@P-HVs combined with HIFU irradiation could enhance the tumor treatment effect not only by improving the delivery of nanovesicles but also by enhancing the HIFU thermal and mechanical effects in the tumor microenvironment, which is a highly effective targeted therapy for treating pancreatic cancer.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
| | - Yijing Yao
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
- Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People’s Republic of China
| | - Yihui Gao
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
| | - Mengyao Liu
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
| | - Qian Yu
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People’s Republic of China
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211800, People’s Republic of China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
- Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People’s Republic of China
- Correspondence: Lixin Jiang; Dechao Niu, Email ;
| |
Collapse
|
5
|
Early Assessment of Chemoradiotherapy Response for Locally Advanced Pancreatic Ductal Adenocarcinoma by Dynamic Contrast-Enhanced Ultrasound. Diagnostics (Basel) 2022; 12:diagnostics12112662. [PMID: 36359506 PMCID: PMC9689529 DOI: 10.3390/diagnostics12112662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: To evaluate the value of dynamic contrast-enhanced ultrasound (DCE-US) and quantitative parameters in early prediction of tumor response to chemoradiotherapy (CRT) in patients with locally advanced pancreatic ductal adenocarcinoma (LAPC). Patients and Methods: In this prospective study, patients with biopsy-proved and histopathologically proved LAPC who underwent regular CRT were recruited. DCE-US evaluations were performed before and four months after CRT. SonoVue-enhanced contrast-enhanced ultrasound (CEUS) was performed by an ultrasound system (ACUSON Sequoia; Siemens Medical Solutions, USA) equipped with a 5C1 MHz convex array transducer. Time−intensity curves were created by VueBox software (Bracco, Italy), and various DCE-US quantitative parameters were obtained. Taking Response Evaluation Criteria in Solid Tumors (RECIST) based on computed tomography (CT) or magnetic resonance imaging (MRI) as the gold standard, DCE-US parameters were compared between the treatment responder group (RG) and non-responder group (NRG). The correlation between the DCE-US parameters and the serum carbohydrate antigen 19-9 (CA 19-9) level was also analyzed. Results: Finally, 21 LAPC patients (mean age 59.3 ± 7.2 years) were included. In comparing the RG (n = 18) and NRG (n = 3), no significant change could be found among the mean size of the lesions (31.2 ± 8.1 mm vs. 27.2 ± 8.3 mm, p = 0.135). In comparing the TICs between the two groups, the LAPC lesions in the RG took a longer time to reach peak enhancement and to wash out. Among all the DCE-US parameters, RT (rise time), WiAUC (wash-in area under the curve), WoAUC (wash-out area under the curve) and WiWoAUC (wash-in and wash-out area under the curve) decreased significantly after CRT in the RG (p < 0.05). The RT ratio, WiAUC ratio, WoAUC ratio and WiWoAUC ratio were closely correlated with the change in serum CA 19-9 level in the RG (p < 0.05). Conclusion: DCE-US might be a potential imaging method for non-invasive follow-up for early response in LAPC patients treated by CRT.
Collapse
|
6
|
Sofuni A, Asai Y, Mukai S, Yamamoto K, Itoi T. High-intensity focused ultrasound therapy for pancreatic cancer. J Med Ultrason (2001) 2022:10.1007/s10396-022-01208-4. [PMID: 35551555 DOI: 10.1007/s10396-022-01208-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer (PC) has one of the poorest prognoses among solid cancers, and its incidence has increased recently. Satisfactory outcomes are not achieved with current therapies; thus, novel treatments are urgently needed. High-intensity focused ultrasound (HIFU) is a novel therapy for ablating tissue from the outside of the body by focusing ultrasonic waves from multiple sources on the tumor. In this therapy, only the focal area is heated to 80-100 ºC, which causes coagulative necrosis of the tissue, with hardly any impact on the tissue outside the focal area. Although HIFU is a minimally invasive treatment and is expected to be useful, it is not yet generally known. Here, we discuss the usefulness of HIFU treatment for un-resectable advanced PC using the results of previous research, meta-analyses, and systematic reviews on its efficacy and safety. HIFU therapy for un-resectable PC is useful for its anti-tumor effect and pain relief, and is expected to prolong survival time and improve quality of life. Although HIFU for PC has several limitations and further study is needed, this technique can be safely performed on un-resectable advanced PC. In future, HIFU could be utilized as a minimally invasive treatment strategy for PC patients with a poor prognosis.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yasutsugu Asai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Kenjiro Yamamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
7
|
Mouratidis PXE, ter Haar G. Latest Advances in the Use of Therapeutic Focused Ultrasound in the Treatment of Pancreatic Cancer. Cancers (Basel) 2022; 14:638. [PMID: 35158903 PMCID: PMC8833696 DOI: 10.3390/cancers14030638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Traditional oncological interventions have failed to improve survival for pancreatic cancer patients significantly. Novel treatment modalities able to release cancer-specific antigens, render immunologically "cold" pancreatic tumours "hot" and disrupt or reprogram the pancreatic tumour microenvironment are thus urgently needed. Therapeutic focused ultrasound exerts thermal and mechanical effects on tissue, killing cancer cells and inducing an anti-cancer immune response. The most important advances in therapeutic focused ultrasound use for initiation and augmentation of the cancer immunity cycle against pancreatic cancer are described. We provide a comprehensive review of the use of therapeutic focused ultrasound for the treatment of pancreatic cancer patients and describe recent studies that have shown an ultrasound-induced anti-cancer immune response in several tumour models. Published studies that have investigated the immunological effects of therapeutic focused ultrasound in pancreatic cancer are described. This article shows that therapeutic focused ultrasound has been deemed to be a safe technique for treating pancreatic cancer patients, providing pain relief and improving survival rates in pancreatic cancer patients. Promotion of an immune response in the clinic and sensitisation of tumours to the effects of immunotherapy in preclinical models of pancreatic cancer is shown, making it a promising candidate for use in the clinic.
Collapse
Affiliation(s)
- Petros X. E. Mouratidis
- Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research: Royal Marsden Hospital, Sutton, London SM25NG, UK;
| | | |
Collapse
|
8
|
Qiu YJ, Zhao GC, Shi SN, Zuo D, Zhang Q, Dong Y, Lou WH, Wang WP. Application of dynamic contrast enhanced ultrasound in distinguishing focal-type autoimmune pancreatitis from pancreatic ductal adenocarcinoma. Clin Hemorheol Microcirc 2022; 81:149-161. [PMID: 35253737 DOI: 10.3233/ch-221390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the value of dynamic contrast enhanced ultrasound (DCE-US) in preoperative differential diagnosis of focal-type autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS From May 2016 to March 2020, patients with biopsy and histopathologically confirmed focal-type AIP (n = 9) were retrospectively included. All patients received contrast enhanced ultrasound (CEUS) examinations one week before surgery/biopsy. Dynamic analysis was performed by VueBox® software (Bracco, Italy). Eighteen cases of resection and histopathologically proved PDAC lesions were also included as control group. B mode ultrasound (BMUS) features, CEUS enhancement patterns, time intensity curves (TICs) and CEUS quantitative parameters were obtained and compared between AIP and PDAC lesions. RESULTS After injection of ultrasound contrast agents, most focal-type AIP lesions displayed hyper-enhancement (2/9, 22.2%) or iso-enhancement (6/9, 66.7%) during arterial phase of CEUS, while most of PDAC lesions showed hypo-enhancement (88.9%) (P < 0.01). During late phase, most of AIP lesions showed iso-enhancement (8/9, 88.9%), while most of PDAC lesions showed hypo-enhancement (94.4%) (P < 0.001). Compared with PDAC lesions, TICs of AIP lesions showed delayed and higher enhancement. Among all CEUS perfusion parameters, ratio of PE (peak enhancement), WiAUC (wash-in area under the curve), WiR (wash-in rate), WiPI (wash-in perfusion index, WiPI = WiAUC/ rise time), WoAUC (wash-out area under the curve), WiWoAUC (wash-in and wash-out area under the curve) and WoR (wash-out rate) between pancreatic lesion and surrounding normal pancreatic tissue were significantly higher in AIP lesions than PDAC lesions (P < 0.05). CONCLUSION DCE-US with quantitative analysis has the potential to make preoperative differential diagnosis between focal-type AIP and PDAC non-invasively.
Collapse
Affiliation(s)
- Yi-Jie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Chao Zhao
- Department of Pancreas Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai-Nan Shi
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Zuo
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Hui Lou
- Department of Pancreas Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Sofuni A, Asai Y, Tsuchiya T, Ishii K, Tanaka R, Tonozuka R, Honjo M, Mukai S, Nagai K, Yamamoto K, Matsunami Y, Kurosawa T, Kojima H, Homma T, Minami H, Nakatsubo R, Hirakawa N, Miyazawa H, Nagakawa Y, Tsuchida A, Itoi T. Novel Therapeutic Method for Unresectable Pancreatic Cancer-The Impact of the Long-Term Research in Therapeutic Effect of High-Intensity Focused Ultrasound (HIFU) Therapy. Curr Oncol 2021; 28:4845-4861. [PMID: 34898585 PMCID: PMC8628685 DOI: 10.3390/curroncol28060409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/18/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a novel advanced therapy for unresectable pancreatic cancer (PC). HIFU therapy with chemotherapy is being promoted as a novel method to control local advancement by tumor ablation. We evaluated the therapeutic effects of HIFU therapy in locally advanced and metastatic PC. PC patients were treated with HIFU as an optional local therapy and systemic chemotherapy. The FEP-BY02 (Yuande Bio-Medical Engineering) HIFU device was used under ultrasound guidance. Of 176 PC patients, 89 cases were Stage III and 87 were Stage IV. The rate of complete tumor ablation was 90.3%, while that of symptom relief was 66.7%. The effectiveness on the primary lesions were as follows: complete response (CR): n = 0, partial response (PR): n = 21, stable disease (SD): n = 106, and progressive disease (PD): n = 49; the primary disease control rate was 72.2%. Eight patients underwent surgery. The median survival time (MST) after diagnosis for HIFU with chemotherapy compared to chemotherapy alone (100 patients in our hospital) was 648 vs. 288 days (p < 0.001). Compared with chemotherapy alone, the combination of HIFU therapy and chemotherapy demonstrated significant prolongation of prognosis. This study suggests that HIFU therapy has the potential to be a novel combination therapy for unresectable PC.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yasutsugu Asai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Takayoshi Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kentaro Ishii
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Reina Tanaka
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Ryosuke Tonozuka
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Mitsuyoshi Honjo
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kazumasa Nagai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kenjiro Yamamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yukitoshi Matsunami
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Takashi Kurosawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hiroyuki Kojima
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Toshihiro Homma
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hirohito Minami
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Ryosuke Nakatsubo
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Noriyuki Hirakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hideaki Miyazawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Akihiko Tsuchida
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| |
Collapse
|
10
|
Saccomandi P, Lapergola A, Longo F, Schena E, Quero G. Thermal ablation of pancreatic cancer: A systematic literature review of clinical practice and pre-clinical studies. Int J Hyperthermia 2018; 35:398-418. [PMID: 30428728 DOI: 10.1080/02656736.2018.1506165] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Pancreatic cancer is a challenging malignancy with low treatment option and poor life expectancy. Thermal ablation techniques were proposed as alternative treatment options, especially in advanced stages and for unfit-for-surgery patients. This systematic review describes the thermal ablative techniques -i.e., Laser (LA), Radiofrequency (RFA), Microwave (MWA) Ablation, High-Intensity Focused Ultrasound (HIFU) and cryoablation- available for pancreatic cancer treatment. Additionally, an analysis of the efficacy, complication rate and overall survival for each technique is conducted. MATERIAL AND METHODS This review collects the ex vivo, preclinical and clinical studies presenting the use of thermal techniques in the pancreatic cancer treatment, searched up to March 2018 in PubMed and Medline. Abstracts, letters-to-the-editor, expert opinions, reviews and non-English language manuscripts were excluded. RESULTS Sixty-five papers were included. For the ex vivo and preclinical studies, there are: 12 records for LA, 8 for RFA, 0 for MWA, 6 for HIFU, 1 for cryoablation and 3 for hybrid techniques. For clinical studies, 1 paper for LA, 14 for RFA, 1 for MWA, 17 for HIFU, 1 for cryoablation and 1 for hybrid techniques. CONCLUSIONS Important technological advances are presented in ex vivo and preclinical studies, as the real-time thermometry, nanotechnology and hybrid techniques to enhance the thermal outcome. Conversely, a lack of standardization in the clinical employment of the procedures emerged, leading to contrasting results on the safety and feasibility of some analyzed techniques. Uniform conclusions on the safety and feasibility of these techniques for pancreatic cancer will require further structured investigation.
Collapse
Affiliation(s)
- Paola Saccomandi
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,b Departement of Mechanical Engineering, Politecnico di Milano , Milan , Italy
| | - Alfonso Lapergola
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,c Università G. D'Annunzio , Chieti , Italy
| | - Fabio Longo
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| | | | - Giuseppe Quero
- d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| |
Collapse
|
11
|
Chang W, Lee JY, Lee JH, Bae JS, Cho YJ, Kang KJ, Son K, Chung YR, Lee KB, Han JK. A portable high-intensity focused ultrasound system for the pancreas with 3D electronic steering: a preclinical study in a swine model. Ultrasonography 2018; 37:298-306. [PMID: 29166762 PMCID: PMC6177688 DOI: 10.14366/usg.17048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The aim of this animal study was to evaluate the safety and feasibility of a portable, ultrasonography-guided, high-intensity focused ultrasound (USg-HIFU) system to treat the pancreas. METHODS Eight swine were included. Using a portable HIFU device (ALPIUS 900, Alpinion Medical Systems), ablations were performed on the pancreas in vivo. Different acoustic intensities were applied (1.7 kW/cm2 or 1.5 kW/cm2 , n=2 [group A for a pilot study]; 1.5 kW/ cm2 , n=3 [group B]; and 1.2 kW/cm2 , n=3 [group C]). Magnetic resonance imaging (MRI) was performed immediately (group A) or 7 days (groups B and C) after HIFU treatment. In groups B and C, serum amylase and lipase levels were measured on days 0 and 7, and performance status was observed every day. Necropsy was performed on days 0 (group A) or 7 (groups B and C) to assess the presence of unintended injuries and to obtain pancreatic and peripancreatic tissue for histological analysis. RESULTS Ablation was noted in the pancreas in all swine on MRI, and all pathologic specimens showed coagulation necrosis in the treated area. The mean ablation areas on MRI were 85.3±38.1 mm2, 90.7±21.2 mm2, and 54.4±30.6 mm2 in groups A, B, and C, respectively (P>0.05). No animals showed evidence of complications, except for one case of a pseudocyst in group B. CONCLUSION This study showed that pancreas ablation using a portable USg-HIFU system may be safe and feasible, and that coagulation necrosis of the pancreas was successfully achieved with a range of acoustic intensities.
Collapse
Affiliation(s)
- Won Chang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Young Lee
- Department of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jae Hwan Lee
- Department of Radiology, National Cancer Center, Goyang, Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Yeon Jin Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Kook Jin Kang
- Therapeutic Ultrasound Division, Alpinion Medical Systems Co., Ltd., Seoul, Korea
| | - Keonho Son
- Therapeutic Ultrasound Division, Alpinion Medical Systems Co., Ltd., Seoul, Korea
| | - Yul Ri Chung
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyoung Bun Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
12
|
Zhu J, Zhang F, Zhou J, Li H. Assessment of therapeutic response in Crohn's disease using quantitative dynamic contrast enhanced MRI (DCE-MRI) parameters: A preliminary study. Medicine (Baltimore) 2017; 96:e7759. [PMID: 28796069 PMCID: PMC5556235 DOI: 10.1097/md.0000000000007759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to investigate dynamic contrast enhanced MRI (DCE-MRI) as a potential marker to assess the therapeutic responses of fecal microbiota transplantation (FMT) in patients with Crohn's disease (CD) and to determine the parameter or combination of parameters most strongly associated with changes in clinical indicators after treatment.In 22 CD patients, DCE-MRI was performed with a 3.0T scanner. Parameters of DCE-MRI (vascular transfer constant [K] and blood volume [BV]) in the terminal ileum were compared between before and day 90 after FMT treatment. The differences of clinical indicators (C-reactive protein [CRP], Harvey-Bradshaw index [HBI]) and DCE-MRI parameters (K, BV) between pre- and post-treatment was calculated by Student's 2-tailed, paired t-test. The correlations between percent change of clinical indicators (ΔCRP, ΔHBI) with DCE-MRI parameters (ΔK, ΔBV) were analyzed by Pearson's correlation coefficients. A logistic regression model was used to identify the changes of DCE-MRI parameters related to the treatment outcomes. Receiver operating characteristic curves (ROCs) were generated to assess which DCE-MRI parameter showed the best accuracy for evaluation of therapeutic response.After treatment, mean values of clinical indicators decreased significantly (CRP: 62.68 ± 31.86 vs 43.55 ± 29.63 mg/L, P = .008; HBI: 7.18 ± 2.10 vs 5.73 ± 2.33, P = 0.012). Both DCE-MRI parameters showed prominent differences before and after treatment: K (1.86 ± 0.87 vs 1.39 ± 0.83 min, P = .017), BV (61.02 ± 28.49 vs 41.96 ± 22.75 mL/100 g, P = .005). There were significant correlations between ΔCRP or ΔHBI and percent change of CDE-MRI parameters (ΔK to ΔCRP: 0.659; ΔK to ΔHBI: 0.496; ΔBV to ΔCRP: 0.442; ΔBV to ΔHBI: 0.476). Compared to ΔK and ΔBV individually, the combination of both parameters performed best in assessment of therapeutic response with an area under the ROCs (AUC) of 0.948.K and BV parameters derived from DCE-MRI have the potential to assess for therapeutic response after FMT treatment for CD. The combination of K and BV measurements improved the predictive capability compared to the individual parameters.
Collapse
Affiliation(s)
| | - Faming Zhang
- Center of Intestinal Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | |
Collapse
|
13
|
Contrast-enhanced ultrasound evaluation of pancreatic cancer xenografts in nude mice after irradiation with sub-threshold focused ultrasound for tumor ablation. Oncotarget 2017; 8:37584-37593. [PMID: 28402267 PMCID: PMC5514932 DOI: 10.18632/oncotarget.16621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 01/15/2023] Open
Abstract
We evaluated the efficacy of contrast-enhanced ultrasound for assessing tumors after irradiation with sub-threshold focused ultrasound (FUS) ablation in pancreatic cancer xenografts in nude mice. Thirty tumor-bearing nude mice were divided into three groups: Group A received sham irradiation, Group B received a moderate-acoustic energy dose (sub-threshold), and Group C received a high-acoustic energy dose. In Group B, B-mode ultrasound (US), color Doppler US, and dynamic contrast-enhanced ultrasound (DCE-US) studies were conducted before and after irradiation. After irradiation, tumor growth was inhibited in Group B, and the tumors shrank in Group C. In Group A, the tumor sizes were unchanged. In Group B, contrast-enhanced ultrasound (CEUS) images showed a rapid rush of contrast agent into and out of tumors before irradiation. After irradiation, CEUS revealed contrast agent perfusion only at the tumor periphery and irregular, un-perfused volumes of contrast agent within the tumors. DCE-US perfusion parameters, including peak intensity (PI) and area under the curve (AUC), had decreased 24 hours after irradiation. PI and AUC were increased 48 hours and 2weeks after irradiation. Time to peak (TP) and sharpness were increased 24 hours after irradiation. TP decreased at 48 hours and 2 weeks after irradiation. CEUS is thus an effective method for early evaluation after irradiation with sub-threshold FUS.
Collapse
|
14
|
Yu MH, Lee JY, Kim HR, Kim BR, Park EJ, Kim HS, Han JK, Choi BI. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model. Korean J Radiol 2016; 17:779-88. [PMID: 27587968 PMCID: PMC5007406 DOI: 10.3348/kjr.2016.17.5.779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Objective To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. Materials and Methods A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. Results The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. Conclusion High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.
Collapse
Affiliation(s)
- Mi Hye Yu
- Department of Radiology, Konkuk University Medical Center, Seoul 05030, Korea
| | - Jae Young Lee
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Hae Ri Kim
- Department of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, Korea
| | - Bo Ram Kim
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Eun-Joo Park
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Byung Ihn Choi
- Department of Radiology, Chung-Ang University Hospital, Seoul 06973, Korea
| |
Collapse
|
15
|
Zhu J, Zhang F, Luan Y, Cao P, Liu F, He W, Wang D. Can Dynamic Contrast-Enhanced MRI (DCE-MRI) and Diffusion-Weighted MRI (DW-MRI) Evaluate Inflammation Disease: A Preliminary Study of Crohn's Disease. Medicine (Baltimore) 2016; 95:e3239. [PMID: 27057860 PMCID: PMC4998776 DOI: 10.1097/md.0000000000003239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to investigate diagnosis efficacy of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in Crohn's disease (CD). To find out the correlations between functional MRI parameters including K, Kep, Ve, Vp, and apparent diffusion coefficient (ADC) with a serologic biomarker. The relationships between pharmacokinetic parameters and ADC were also studied.Thirty-two patients with CD (22 men, 10 women; mean age: 30.5 years) and 18 healthy volunteers without any inflammatory disease (10 men, 8 women; mean age, 34.11 years) were enrolled into this approved prospective study. Pearson analysis was used to evaluate the correlation between K, Kep, Ve, Vp, and C-reactive protein (CRP), ADC, and CRP respectively. The diagnostic efficacy of the functional MRI parameters in terms of sensitivity and specificity were analyzed by receiver operating characteristic (ROC) curve analyses. Optimal cut-off values of each functional MRI parameters for differentiation of inflammatory from normal bowel were determined according to the Youden criterion.Mean value of K in the CD group was significantly higher than that of normal control group. Similar results were observed for Kep and Ve. On the contrary, the ADC value was lower in the CD group than that in the control group. K and Ve were shown to be correlated with CRP (r = 0.725, P < 0.001; r = 0.533, P = 0.002), meanwhile ADC showed negative correlation with CRP (r = -0.630, P < 0.001). There were negative correlations between the pharmacokinetic parameters and ADC, such as K to ADC (r = -0.856, P < 0.001), and Ve to ADC (r = -0.451, P = 0.01). The area under the curve (AUC) was 0.994 for K (P < 0.001), 0.905 for ADC (P < 0.001), 0.806 for Ve (P < 0.001), and 0.764 for Kep (P = 0.002). The cut-off point of the K was found to be 0.931 min. This value provided the best trade-off between sensitivity (93.8%) and specificity (100%). The best cut-off point of ADC was 1.11 × 10 mm/s. At this level, sensitivity was 100% and specificity was 68.8%.DCE-MRI and DW-MRI were helpful in the diagnosis of CD. Quantitative MRI parameters could be used to assess the severity of inflammation. The relationships between pharmacokinetic parameters (K and Ve) and ADC reflected microstructure and microcirculation of CD to some extent.
Collapse
Affiliation(s)
- Jianguo Zhu
- From the Department of Radiology (JZhu, DWang), The First Affiliated Hospital of Nanjing Medical University; Department of Gastroenterology (FZhang), The Second Affiliated Hospital of Nanjing Medical University; Department of Ultrasound (YLuan), Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing; GE HealthCare (China) (PCao), Shanghai; and Department of Radiology (JZhu, FLiu, WHe), The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Marinova M, Rauch M, Mücke M, Rolke R, Gonzalez-Carmona MA, Henseler J, Cuhls H, Radbruch L, Strassburg CP, Zhang L, Schild HH, Strunk HM. High-intensity focused ultrasound (HIFU) for pancreatic carcinoma: evaluation of feasibility, reduction of tumour volume and pain intensity. Eur Radiol 2016; 26:4047-4056. [PMID: 26886904 DOI: 10.1007/s00330-016-4239-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/08/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Prognosis of patients with locally advanced pancreatic adenocarcinoma is extremely poor. They often suffer from cancer-related pain reducing their quality of life. This prospective observational study aimed to evaluate feasibility, local tumour response, and changes in quality of life and symptoms in Caucasian patients with locally advanced pancreatic cancer treated by ultrasound-guided high-intensity focused ultrasound (HIFU). METHODS Thirteen patients underwent HIFU, five with stage III, eight with stage IV UICC disease. Ten patients received simultaneous palliative chemotherapy. Postinterventional clinical assessment included evaluation of quality of life and symptom changes using standardized questionnaires. CT and MRI follow-up evaluated the local tumour response. RESULTS HIFU was successfully performed in all patients. Average tumour reduction was 34.2 % at 6 weeks and 63.9 % at 3 months. Complete or partial relief of cancer-related pain was achieved in 10 patients (77 %), five of whom required less analgesics for pain control. Quality of life was improved revealing increased global health status and alleviated symptoms. HIFU treatment was well tolerated. Eight patients experienced transient abdominal pain directly after HIFU. CONCLUSIONS HIFU ablation of pancreatic carcinoma is a feasible, safe and effective treatment with a crucial benefit in terms of reduction of tumour volume and pain intensity. KEY POINTS • US-guided HIFU is feasible and safe for patients with unresectable pancreatic cancer. • HIFU can considerably reduce tumour volume and cancer-related pain. • Patients treated with HIFU experienced significant and lasting reduction of pain intensity. • HIFU has a crucial clinical benefit for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Milka Marinova
- Department of Radiology, Medical School & Hospital, University of Bonn, Siegmund-Freud-Str. 25, D-53105, Bonn, Germany.
| | - Maximilian Rauch
- Department of Radiology, Medical School & Hospital, University of Bonn, Siegmund-Freud-Str. 25, D-53105, Bonn, Germany
| | - Martin Mücke
- Department of Palliative Medicine, Medical School & Hospital, University of Bonn, Bonn, Germany.,Department of General Practice and Family Medicine, Medical School & Hospital, University of Bonn, Bonn, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | | | - Jana Henseler
- Department of Radiology, Medical School & Hospital, University of Bonn, Siegmund-Freud-Str. 25, D-53105, Bonn, Germany
| | - Henning Cuhls
- Department of Palliative Medicine, Medical School & Hospital, University of Bonn, Bonn, Germany
| | - Lukas Radbruch
- Department of Palliative Medicine, Medical School & Hospital, University of Bonn, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, Medical School & Hospital, University of Bonn, Bonn, Germany
| | - Lian Zhang
- Clinical Center of Tumor Therapy Chongqing, Chongqing, China
| | - Hans H Schild
- Department of Radiology, Medical School & Hospital, University of Bonn, Siegmund-Freud-Str. 25, D-53105, Bonn, Germany
| | - Holger M Strunk
- Department of Radiology, Medical School & Hospital, University of Bonn, Siegmund-Freud-Str. 25, D-53105, Bonn, Germany
| |
Collapse
|