1
|
Kong L, Huang S, Zhang J, Ji L, Duan S, Xu X, Tian S, Shi F, Wu F, Shen D, Zhang X, Zhao M. Effect of fetal growth restriction on the development of regional brain volume and neurodevelopmental outcomes: Evidence from magnetic resonance imaging based on a fully automated segmentation method. Magn Reson Imaging 2025; 121:110407. [PMID: 40339945 DOI: 10.1016/j.mri.2025.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
PURPOSE To investigate the impact of fetal growth restriction (FGR) on brain volume development and to identify imaging indicators predictive of poor neurodevelopmental outcomes. METHODS The MRI images of fetuses with FGR diagnosed by ultrasound at 27-38 weeks and matched normal fetuses were collected. The isotropic high-resolution images were reconstructed and processed to extract 17 brain regions. Subsequently, volume and the ratio to total brain volume of each brain region was calculated. Using logistic regression analysis to identify the independent risk factors of the neurodevelopmental outcomes. RESULTS The study included 51 FGR fetuses and 78 healthy controls (HCs). Significant differences were discovered in the cingulate gyrus, brainstem, corpus callosum, basal ganglia, insula, frontal lobe, temporal lobe, parietal lobe and cerebrospinal fluid of their ratio to the total brain volume between the two groups (P<0.05). The prognostic group consisted of 28 fetuses with good fetal neurodevelopment and 15 fetuses with poor neurodevelopment. The ratio of brainstem was identified as independent predictors for poor neurodevelopmental outcome (OR: 2.069; 95 % CI: 1.061 to 4.035). CONCLUSION Brain development was not uniformly restricted in FGR fetuses. Additionally, the ratio of brainstem to total brain volume may be associated with poor neurodevelopment.
Collapse
Affiliation(s)
- Lingnan Kong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shijie Huang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Jin Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liangyu Ji
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shaofeng Duan
- Central Research Institute, UIH Group, Shanghai, China
| | - Xiaoquan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Feiyun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dinggang Shen
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| | - Xuan Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Meng Zhao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Meijerink L, van Ooijen IM, Alderliesten T, Terstappen F, Benders MJNL, Bekker MN. Fetal brain development in fetal growth restriction using MRI: a systematic review. BMC Pregnancy Childbirth 2025; 25:208. [PMID: 40012049 PMCID: PMC11863776 DOI: 10.1186/s12884-024-07124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/26/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND This systematic review investigates potential differences in brain development between growth restricted (FGR)-fetuses compared to appropriate for gestational age (AGA) fetuses using MRI. METHODS PubMed, Embase, Cochrane Library and Web of Science databases were searched from 1985 to 2023. FGR was defined as an estimated fetal weight (EFW) < p10 and/or an abdominal circumference (AC) < p10, or 20% reduction in EFW or AC using a minimum interval of two weeks. Outcomes included volumetrics, biometrics, apparent diffusion coefficients (ADC), 1H-MRS-metabolites, and oxygenation of the fetal brain. Risk of bias was assessed using Newcastle-Ottawa Scale (NOS). A meta-analysis was conducted on variables when reported in at least three studies, calculating the mean difference (MD) with a 95% confidence interval (CI). RESULTS Twenty-nine studies were included after three-phase screening, 13 used the FGR consensus definition according to the Delphi procedure. Total brain volume and cerebellar volume were significantly reduced in FGR fetuses (n = 183; 74) when compared to AGA fetuses (n = 283; 166) with a MD of -30.84 cm3 (p < 0.01) and - 2.24 cm3 (p < 0.01). ADC values in the frontal white matter (FWM), occipital white matter (OWM), temporal white matter (TWM), thalami, centrum semiovale (CSO), basal ganglia, pons and cerebellum, significantly lower in growth restricted fetuses (-0.07 × 10-3 mm2/s (p < 0.01); -0.06 × 10-3 mm2/s (p < 0.01); -0.07 × 10-3 mm2/s (p < 0.01); -0.10 × 10-3 mm2/s (p < 0.01); -0.06 × 10-3 mm2/s (p < 0.01); -0.07 × 10-3 mm2/s (p < 0.01); -0.07 × 10-3 mm2/s (p < 0.01); -0.02 × 10-3 mm2/s (p < 0.01); respectively). 1H-MRS showed reduced levels of N-acetyl aspartate (NAA): Choline (Cho) and NAA: Creatine(CR) levels in the frontal lobe and central brain tissue, whilst contradictive findings concerning Cho: Cr and Inositol(Ino): Cho ratios were found. Two studies investigated the cerebral hemodynamic changes in FGR fetuses showing no difference in fractional moving blood volume, similar venous blood oxygenation in the superior sagittal sinus and no difference in T2* in the fetal brain. DISCUSSION MRI provides additional information on fetal brain development in a growth restricted population. Smaller total brain and cerebellar volumes and lower ADC values in the FWM, OWM, TWM, thalami, CSO, basal ganglia, pons and cerebellum have been observed in FGR. These conclusions are drawn on relatively small sample sizes with high heterogeneity resulting from diverse study populations and MRI techniques. Furthermore, how these findings correlate to long-term neurocognitive abnormalities associated with FGR remains to be elucidated. A large cohort study comparing brain maturation, myelination, metabolic and hemodynamic status between brain-sparing FGR fetuses to healthy age-matched controls is needed.
Collapse
Affiliation(s)
- L Meijerink
- Department of Obstetrics, Division Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands.
| | - I M van Ooijen
- Department of Neonatology, Divison Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| | - T Alderliesten
- Department of Neonatology, Divison Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| | - F Terstappen
- Department of Neonatology, Divison Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
- Department of Obstetrics, Division Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| | - M J N L Benders
- Department of Neonatology, Divison Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| | - M N Bekker
- Department of Obstetrics, Division Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| |
Collapse
|
3
|
Chen Z, Chen M, Huang S, Wang Z, Zhang Y, Huang Y, Li W, Huang X. Texture-Based Classification of Fetal Growth Restriction From Intrauterine Neurosonographic Image. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:177-188. [PMID: 39365033 DOI: 10.1002/jum.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVE Fetal growth restriction (FGR) is a condition where fetuses fail to reach their genetic potential for growth, posing a significant health challenge for newborns. The aim of this research was to explore the efficacy of texture-based analysis of neurosonographic images in identifying FGR in fetuses, which may provide a promising tool for early assessment of FGR. METHODS A retrospective analysis collected 100 intrauterine neurosonographic images from 50 FGR and 50 gestational age-appropriate fetuses. Using MaZda software, approximately 300 texture features were extracted from occipital white matter (OWM) and cerebellum of intrauterine neurosonographic images, respectively. Then 10 optimal features were separately selected by 3 algorithms, including the Fisher coefficient method, the method of minimizing classification error probability and average correlation coefficients, and the mutual information coefficient method. Further, the 10 statistically most significant features were selected from these sets to form the mixed feature set. After nonlinear discriminant analysis was performed to reduce feature dimensionality, the artificial neural network (ANN) classifier was conducted, respectively. RESULTS For OWM and cerebellum, a total of 11 and 14 statistically significant features were selected. When the mixed feature sets of OWM and cerebellum were applied to ANN classifier, classification accuracy were 90.00% (κ = 0.800; P < .001) and 93.00% (κ = 0.860; P < .001), and the receiver operating characteristic curve for identifying FGR showed an area under the curve of 0.82 and 0.87. CONCLUSIONS Texture analysis of fetal intrauterine neurosonographic images is a feasible and noninvasive strategy for evaluating FGR fetuses.
Collapse
Affiliation(s)
- Zehao Chen
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
| | - Mengjie Chen
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shiying Huang
- Department of Medical Ultrasonics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhongming Wang
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
| | - Yiheng Zhang
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
| | - Yuhan Huang
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
| | - Weiling Li
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
| | - Xiaowei Huang
- School of Computer Science and Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
4
|
Onn-Margalit L, Weissbach T, Gafner M, Fried S, Wandel A, Ziv-Baran T, Katorza E. An Association Between Fetal Subarachnoid Space and Various Pathologies Using MR Imaging. Diagnostics (Basel) 2024; 14:2535. [PMID: 39594200 PMCID: PMC11592746 DOI: 10.3390/diagnostics14222535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: This study aimed to explore a relationship between the fetal subarachnoid space (SAS) width and various fetal pathologies, employing fetal brain MRI scans. Methods: A retrospective collection of fetal brain MRI scans of 78 fetuses was performed with sonographic indications of microcephaly, macrocephaly, or fetal growth restriction (FGR), during a 7-year period at a single tertiary center. The SAS width (named the SAS index) was manually measured in millimeters in ten specific anatomical locations (four in the axial plane and six in the coronal plane), and then converted to centiles by comparing it to (previously collected) data of apparently healthy fetuses. We evaluated the median SAS centiles using the Kruskal-Wallis and Mann-Whitney U tests for statistical comparison. Results: Seventy-eight subjects (mean gestational age of MRI scan 34.2 ± 2.2 weeks) were evaluated. The median SAS centiles were consistently higher in the macrocephaly group compared to the microcephaly group in all ten anatomical locations (statistically significant except coronal left inferior temporal gyri). Most pronounced difference was displayed in the insula gyri (axial and coronal). The median SAS centiles were higher in the microcephaly group when compared with FGR across all ten anatomical locations (all were statistically significant except for coronal frontal and insula gyri), and the maximal difference was found in the frontal gyri of both planes. The median SAS indexes (IQR) of the three groups in millimeters: macrocephaly 91.55 (86.35-101.05), microcephaly 59.46 (50.00-66.91), and FGR 53.21 (49.71-59.10), p < 0.001. Conclusions: We found a statistically significant association between the fetal subarachnoid space and various fetal pathologies: macrocephaly, microcephaly, and FGR.
Collapse
Affiliation(s)
- Lior Onn-Margalit
- Arrow Program for Medical Research Education, Sheba Medical Center, Ramat-Gan 5262000, Israel; (T.W.); (E.K.)
| | - Tal Weissbach
- Arrow Program for Medical Research Education, Sheba Medical Center, Ramat-Gan 5262000, Israel; (T.W.); (E.K.)
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan 5262000, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
| | - Michal Gafner
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
- Department of Pediatrics B, Schneider Children’s Medical Center of Israel, Petach Tikva 4917002, Israel
| | - Shalev Fried
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
- The Goldschleger Eye Institute, Sheba Medical Center, Ramat-Gan 5262000, Israel
| | - Ayelet Wandel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
- Department of Diagnostic Radiology, Shamir Medical Center, Be’er Yaakov 7033001, Israel
| | - Tomer Ziv-Baran
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
| | - Eldad Katorza
- Arrow Program for Medical Research Education, Sheba Medical Center, Ramat-Gan 5262000, Israel; (T.W.); (E.K.)
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan 5262000, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
- The Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Ramat-Gan 5262000, Israel
| |
Collapse
|
5
|
Xu E, Jouannic JM, Alison M, Ancel PY, Friszer S, Rousseau J, Guilbaud L, Adamsbaum C, Goffinet F, Blondiaux E. Analysis of MRI brain biometrics in fetuses monitored for intra uterine growth restriction and their prognostic value: Results of a prospective multicenter study. Eur J Obstet Gynecol Reprod Biol 2024; 298:91-97. [PMID: 38735121 DOI: 10.1016/j.ejogrb.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Show a prognostic value of brain changes in fetuses with intra uterine growth restriction (IUGR) on early neonatal outcome. STUDY DESIGN We prospectively recruited pregnant women whose fetuses presented fetal weight < 5th centile. A brain MRI was performed between 28 and 32 weeks of gestation (WG). Several brain biometrics were measured (as fronto-occipital diameter (FOD) and transverse cerebellar diameter (TCD)). Neonatal prognosis was evaluated according to a composite criterion. RESULTS Of the 78 patients included, 62 had a fetal brain MRI. The mean centile value of FOD was lower in the unfavorable outcome group (n = 9) compared to the favorable outcome group (n = 53) (24.5 ± 16.8 vs. 8.6 ± 13.2, p = 0.004). The ROC curve for predicting risk of unfavorable neonatal outcome based on FOD presented an area under the curve of 0.81 (95 % CI, [0.63---0.99]) and a threshold determined at the 3rd centile was associated with sensitivity of 0.78 and a specificity of 0.89. In multivariate analysis, a FOD less than the 3rd centile was significantly associated with an unfavorable neonatal risk. There also was a reduction in TCD (25.5 ± 21.5 vs. 10.4 ± 10.4, p = 0.03) in the unfavorable neonatal outcome group. CONCLUSION We found an association between a reduction in FOD and TCD in fetal MRIs conducted between 28 and 32 WG in fetuses monitored for IUGR with an unfavorable neonatal outcome. Our results suggest that these biometric changes could constitute markers of poor neonatal prognosis.
Collapse
Affiliation(s)
- Eric Xu
- Service de Radiologie Pédiatrique, Hôpital Armand Trousseau, GRC IMAGES, Médecine Sorbonne Université, APHP, Paris, France
| | - Jean-Marie Jouannic
- Service de Médecine Fœtale, Hôpital Armand Trousseau, Médecine Sorbonne Université, APHP, Paris, France
| | - Marianne Alison
- Service de Radiologie Pédiatrique, Hôpital Robert Debré, APHP, Université Paris Diderot, Paris France
| | - Pierre-Yves Ancel
- Obstetrical, Perinatal, and Pediatric Epidemiology Team and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM and Université Paris Descartes, Paris, France; Unité de recherche clinique, CIC-Mère enfant, AP-HP, FHU PREMA, Hôpital Cochin, F-75014 Paris, France
| | - Stéphanie Friszer
- Service de Médecine Fœtale, Hôpital Armand Trousseau, Médecine Sorbonne Université, APHP, Paris, France
| | - Jessica Rousseau
- Obstetrical, Perinatal, and Pediatric Epidemiology Team and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM and Université Paris Descartes, Paris, France
| | - Lucie Guilbaud
- Service de Médecine Fœtale, Hôpital Armand Trousseau, Médecine Sorbonne Université, APHP, Paris, France
| | - Catherine Adamsbaum
- Service de Radiopédiatrie, Hôpital Bicêtre, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - François Goffinet
- Obstetrical, Perinatal, and Pediatric Epidemiology Team and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM and Université Paris Descartes, Paris, France; Maternité Port Royal, Hôpital Cochin, APHP, DHU Risques et Grossesse, Université Paris Descartes, Paris, France
| | - Eléonore Blondiaux
- Service de Radiologie Pédiatrique, Hôpital Armand Trousseau, GRC IMAGES, Médecine Sorbonne Université, APHP, Paris, France.
| |
Collapse
|
6
|
Yehuda B, Rabinowich A, Zilberman A, Wexler Y, Haratz KK, Miller E, Sira LB, Hiersch L, Bashat DB. Reduced gyrification in fetal growth restriction with prenatal magnetic resonance images. Cereb Cortex 2024; 34:bhae250. [PMID: 38879758 DOI: 10.1093/cercor/bhae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/28/2024] [Accepted: 06/02/2024] [Indexed: 01/28/2025] Open
Abstract
Placental-related fetal growth restriction, resulting from placental dysfunction, impacts 3-5% of pregnancies and is linked to elevated risk of adverse neurodevelopmental outcomes. In response, the fetus employs a mechanism known as brain-sparing, redirecting blood flow to the cerebral circuit, for adequate supply to the brain. In this study we aimed to quantitatively evaluate disparities in gyrification and brain volumes among fetal growth restriction, small for gestational age and appropriate-for gestational-age fetuses. Additionally, we compared fetal growth restriction fetuses with and without brain-sparing. The study encompassed 106 fetuses: 35 fetal growth restriction (14 with and 21 without brain-sparing), 8 small for gestational age, and 63 appropriate for gestational age. Gyrification, supratentorial, and infratentorial brain volumes were automatically computed from T2-weighted magnetic resonance images, following semi-automatic brain segmentation. Fetal growth restriction fetuses exhibited significantly reduced gyrification and brain volumes compared to appropriate for gestational age (P < 0.001). Small for gestational age fetuses displayed significantly reduced gyrification (P = 0.038) and smaller supratentorial volume (P < 0.001) compared to appropriate for gestational age. Moreover, fetal growth restriction fetuses with BS demonstrated reduced gyrification compared to those without BS (P = 0.04), with no significant differences observed in brain volumes. These findings demonstrate that brain development is affected in fetuses with fetal growth restriction, more severely than in small for gestational age, and support the concept that vasodilatation of the fetal middle cerebral artery reflects more severe hypoxemia, affecting brain development.
Collapse
Affiliation(s)
- Bossmat Yehuda
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Aviad Rabinowich
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Department of Radiology, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Ayala Zilberman
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Obstetrics and Gynecology, Lis Maternity and Women's Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
| | - Yair Wexler
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Karina Krajden Haratz
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
- Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity and Women's Hospital, Tel Aviv Medical Center, Tel Aviv 64239 Israel
| | - Elka Miller
- Department of Diagnostic and Interventional Radiology, The Hospital of Sick Children, University of Toronto, Canada. Affiliate to CHEO, University of Ottawa, Ontario K1H 8M5, Canada
| | - Liat Ben Sira
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Radiology, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Liran Hiersch
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Obstetrics and Gynecology, Lis Maternity and Women's Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
| | - Dafna Ben Bashat
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
7
|
Putra M, Hamidi OP, Driver C, Peek EE, Bolt MA, Gumina D, Reeves SA, Hobbins JC. Corpus Callosum Length and Cerebellar Vermian Height in Fetal Growth Restriction. Fetal Diagn Ther 2024; 51:255-266. [PMID: 38461813 DOI: 10.1159/000538123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Growth-restricted fetuses may have changes in their neuroanatomical structures that can be detected in prenatal imaging. We aim to compare corpus callosal length (CCL) and cerebellar vermian height (CVH) measurements between fetal growth restriction (FGR) and control fetuses and to correlate them with cerebral Doppler velocimetry in growth-restricted fetuses. METHODS This was a prospective cohort of FGR after 20 weeks of gestation with ultrasound measurements of CCL and CVH. Control cohort was assembled from fetuses without FGR who had growth ultrasound after 20 weeks of gestation. We compared differences of CCL or CVH between FGR and controls. We also tested for the correlations of CCL and CVH with middle cerebral artery (MCA) pulsatility index (PI) and vertebral artery (VA) PI in the FGR group. CCL and CVH measurements were adjusted by head circumference (HC). RESULTS CCL and CVH were obtained in 68 and 55 fetuses, respectively. CCL/HC was smaller in FGR fetuses when compared to control fetuses (difference = 0.03, 95% CI: [0.02, 0.04], p < 0.001). CVH/HC was larger in FGR fetuses compared to NG fetuses (difference = 0.1, 95% CI: [-0.01, 0.02], p = < 0.001). VA PI multiples of the median were inversely correlated with CVH/HC (rho = -0.53, p = 0.007), while CCL/HC was not correlated with VA PI. Neither CCL/HC nor CVH/HC was correlated with MCA PI. CONCLUSIONS CCL/HC and CVH/HC measurements show differences in growth-restricted fetuses compared to a control cohort. We also found an inverse relationship between VA PI and CVH/HC. The potential use of neurosonography assessment in FGR assessment requires continued explorations.
Collapse
Affiliation(s)
- Manesha Putra
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Odessa P Hamidi
- St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Camille Driver
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emma E Peek
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew A Bolt
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diane Gumina
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shane A Reeves
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Hobbins
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Putra M, Peek E, Hobbins JC. Fetal insular measurements in pregnancy with estimated fetal weight <10th centile and childhood neurodevelopmental outcomes. Am J Obstet Gynecol 2024; 230:85.e1-85.e15. [PMID: 37442246 DOI: 10.1016/j.ajog.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND A growing body of evidence suggests that fetal growth restriction is associated with changes in brain structures as a result of chronic hypoxia. However, less is known about the effects of growth restriction on the fetal insula, particularly in less severely affected late-onset growth-restricted fetuses. OBJECTIVE This study aimed to (1) compare sonographic insular measurements between fetal-growth restricted, small-for-gestational-age, and appropriate-for-gestational-age control fetuses; and (2) evaluate the association of sonographic insular measurements with perinatal and neurodevelopmental outcomes in fetuses categorized as fetal-growth restricted or small-for-gestational-age. STUDY DESIGN This was a cohort study of singleton nonanomalous pregnancies with an estimated fetal weight <10th centile. Using data from the last examination before delivery, fetal insular depth, Sylvian fissure depth, hypoechoic insular zone thickness, circumference, and area were measured. All measurements were adjusted for by head circumference. Neurodevelopmental outcomes were evaluated at 2 to 3 years of age using the Bayley-III scales. Kruskal-Wallis H tests were performed to compare insular measurements between groups. Paired t tests were used to compare insular measurements between appropriate-for-gestational-age fetuses and gestational age-matched growth-restricted fetuses. Insular measurements for patients with and without an adverse perinatal outcome were compared using independent-samples t-tests. Spearman correlations were performed to evaluate the relationship of insular measurements to the percentile scores for each of the 5 Bayley-III subscales and to a summative percentile of these subscales. RESULTS A total of 89 pregnancies were included in the study; 68 of these pregnancies had an estimated fetal weight <10th percentile (fetal-growth restricted: n=39; small-for-gestational-age: n=29). The appropriate-for-gestational-age cohort consisted of 21 pregnancies. The gestational age at measurement was similar between fetal-growth restricted and small-for-gestational-age groups, but lower in the appropriate-for-gestational-age group. Differences between groups were noted in normalized insular depth, Sylvian fissure depth, and hypoechoic insular zone (P<.01). Normalized insular depth and hypoechoic insular zone circumference were larger in the growth-restricted cohort (P<.01). Normalized Sylvian fissure depth was smaller in the growth-restricted cohort (P<.01). There were no significant differences in insular measurements between pregnancies with and without an adverse perinatal outcome. Bayley-III results were available in 32 of the growth-restricted cases. Of all insular measurements, hypoechoic insular zone circumference was inversely correlated with the adaptive behavior Bayley-III score. CONCLUSION In our cohort, fetuses with estimated fetal weight <10th percentile had smaller Sylvian fissure depths and larger insular depths and hypoechoic insular zone circumferences than normally grown controls. A larger hypoechoic insular zone circumference was substantially correlated with worse neurodevelopmental outcomes in early childhood. We speculate that enlargement of this region may be an indication of accelerated neuronal maturation in growth-restricted fetuses with mild hypoxia.
Collapse
Affiliation(s)
- Manesha Putra
- University of Colorado Anschutz Medical Campus, Aurora, CO.
| | - Emma Peek
- University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John C Hobbins
- University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
9
|
Neves Silva S, Aviles Verdera J, Tomi‐Tricot R, Neji R, Uus A, Grigorescu I, Wilkinson T, Ozenne V, Lewin A, Story L, De Vita E, Rutherford M, Pushparajah K, Hajnal J, Hutter J. Real-time fetal brain tracking for functional fetal MRI. Magn Reson Med 2023; 90:2306-2320. [PMID: 37465882 PMCID: PMC10952752 DOI: 10.1002/mrm.29803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE To improve motion robustness of functional fetal MRI scans by developing an intrinsic real-time motion correction method. MRI provides an ideal tool to characterize fetal brain development and growth. It is, however, a relatively slow imaging technique and therefore extremely susceptible to subject motion, particularly in functional MRI experiments acquiring multiple Echo-Planar-Imaging-based repetitions, for example, diffusion MRI or blood-oxygen-level-dependency MRI. METHODS A 3D UNet was trained on 125 fetal datasets to track the fetal brain position in each repetition of the scan in real time. This tracking, inserted into a Gadgetron pipeline on a clinical scanner, allows updating the position of the field of view in a modified echo-planar imaging sequence. The method was evaluated in real-time in controlled-motion phantom experiments and ten fetal MR studies (17 + 4-34 + 3 gestational weeks) at 3T. The localization network was additionally tested retrospectively on 29 low-field (0.55T) datasets. RESULTS Our method achieved real-time fetal head tracking and prospective correction of the acquisition geometry. Localization performance achieved Dice scores of 84.4% and 82.3%, respectively for both the unseen 1.5T/3T and 0.55T fetal data, with values higher for cephalic fetuses and increasing with gestational age. CONCLUSIONS Our technique was able to follow the fetal brain even for fetuses under 18 weeks GA in real-time at 3T and was successfully applied "offline" to new cohorts on 0.55T. Next, it will be deployed to other modalities such as fetal diffusion MRI and to cohorts of pregnant participants diagnosed with pregnancy complications, for example, pre-eclampsia and congenital heart disease.
Collapse
Affiliation(s)
- Sara Neves Silva
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Jordina Aviles Verdera
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Raphael Tomi‐Tricot
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUK
| | - Radhouene Neji
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUK
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Irina Grigorescu
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Thomas Wilkinson
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Valery Ozenne
- CNRS, CRMSB, UMR 5536, IHU LirycUniversité de BordeauxBordeauxFrance
| | - Alexander Lewin
- Institute of Neuroscience and Medicine 11, INM‐11Forschungszentrum JülichJülichGermany
- RWTHAachen UniversityAachenGermany
| | - Lisa Story
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Department of Women & Children's HealthKing's College LondonLondonUK
| | - Enrico De Vita
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- MRI Physics GroupGreat Ormond Street HospitalLondonUK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Kuberan Pushparajah
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Jo Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
10
|
Halevy J, Peretz R, Ziv-Baran T, Katorza E. Fetal brain volumes and neurodevelopmental outcome of intrauterine growth restricted fetuses. Eur J Radiol 2023; 168:111143. [PMID: 37832199 DOI: 10.1016/j.ejrad.2023.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE This study aims to investigate the correlation of MRI measured fetal brain volumetrics with long-term neurodevelopmental outcome, among intrauterine growth restricted (IUGR) and apparently healthy fetuses. STUDY DESIGN A historical cohort study at a single tertiary referral medical center during 6 years period, of fetuses diagnosed with IUGR due to placental insufficiency, and apparently healthy fetuses, who had fetal brain MRI scan. The volumes of the supratentorial brain region, both hemispheres and the cerebellum were measured by 3D MRI semi-automated volume measurements. The cerebellar to supratentorial ratio (CER/ST) was calculated. Volumes were plotted on normal growth curves. 17 IUGR fetuses, and 53 apparently healthy fetuses adhered to participate in the VABS-II questionnaire, evaluating neurodevelopmental outcome. RESULTS 70 patients (mean age at conducting VABS-II questionnaire 4.4 ± 2.1 years, 38 males) were evaluated. Among fetuses born in a gestational age of 36 weeks or later, IUGR fetuses demonstrated a significantly larger number of abnormal results in the VABS-II communication domain (p =.049). No significant differences were found in other domains or in overall neurodevelopmental outcome. The CER/ST ratio correlated with the overall neurodevelopmental outcome of the total study population (r = 0.40, p <.001), and of the IUGR group separately (ρ = 0.58, p =.02). CONCLUSION CER/ST ratio measured using fetal brain MRI was found to be correlated with long term neurodevelopmental outcome. This result may aid in clinical interpretation of biometric data obtained by fetal brain MRI, linking it with long term neurodevelopmental outcome.
Collapse
Affiliation(s)
- Jorden Halevy
- Faculty of Health Sciences, Joyce & Irving Goldman Medical School at Ben Gurion University of the Negev, Israel.
| | - Reut Peretz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tomer Ziv-Baran
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eldad Katorza
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel; Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
11
|
Cortez Ferreira M, Mafra J, Dias A, Santos Silva I, Taborda A. Impact of early-onset fetal growth restriction on the neurodevelopmental outcome of very preterm infants at 24 months: a retrospective cohort study. BMC Pediatr 2023; 23:533. [PMID: 37884935 PMCID: PMC10601105 DOI: 10.1186/s12887-023-04361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The association between fetal growth restriction (FGR) and childhood neurodevelopmental delay is unclear and the evidence available to the present date shows conflicting results. Our aim was to analyse the impact of early-onset FGR on the neurodevelopmental outcome at 24 months of corrected age in very preterm infants. METHODS Retrospective cohort study of very preterm infants (≤ 32 weeks' gestation) admitted to a neonatal intensive care unit between 1 January 2013-31 December 2019. The control group comprised appropriate for gestational age (AGA) newborns. Griffiths III Mental Development Scale was performed at 24 months of corrected age. RESULTS 132 infants were included: 44 FGR and 88 AGA. Mean Global Development Quotient (GDQ) was lower for FGR infants (p = 0.004) even after adjusting for maternal and perinatal factors (βadjusted -16.703; p = 0.009). The average scores for the neurodevelopmental domains were highest for personal-social-emotional skills (107.02 ± 16.34), followed by eye/hand coordination (105.61 ± 14.20) and foundation of learning skills (102.23 ± 13.74) and were lowest for gross motor (97.90 ± 11.88) and language/communication skills (96.39 ± 18.88). FGR had a significant negative impact on all domains except for gross motor skills. After adjustment, FGR continued to have a significant adverse impact on language/communication (βadjusted -21.924; p = 0.013), eye/hand coordination (βadjusted -15.446; p = 0.015) and foundation of learning skills (βadjusted -15.211; p = 0.013). CONCLUSIONS In very preterm infants, FGR was associated with a significantly increased risk of poor neurodevelopmental outcome at 24 months of corrected age compared to age-matched AGA infants.
Collapse
Affiliation(s)
- Mariana Cortez Ferreira
- Neonatology Department, Maternidade Bissaya Barreto, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Joana Mafra
- Obstetrics Department, Maternidade Bissaya Barreto, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Dias
- Neonatology Department, Maternidade Bissaya Barreto, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Isabel Santos Silva
- Obstetrics Department, Maternidade Bissaya Barreto, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Adelaide Taborda
- Neonatology Department, Maternidade Bissaya Barreto, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Payette K, Li HB, de Dumast P, Licandro R, Ji H, Siddiquee MMR, Xu D, Myronenko A, Liu H, Pei Y, Wang L, Peng Y, Xie J, Zhang H, Dong G, Fu H, Wang G, Rieu Z, Kim D, Kim HG, Karimi D, Gholipour A, Torres HR, Oliveira B, Vilaça JL, Lin Y, Avisdris N, Ben-Zvi O, Bashat DB, Fidon L, Aertsen M, Vercauteren T, Sobotka D, Langs G, Alenyà M, Villanueva MI, Camara O, Fadida BS, Joskowicz L, Weibin L, Yi L, Xuesong L, Mazher M, Qayyum A, Puig D, Kebiri H, Zhang Z, Xu X, Wu D, Liao K, Wu Y, Chen J, Xu Y, Zhao L, Vasung L, Menze B, Cuadra MB, Jakab A. Fetal brain tissue annotation and segmentation challenge results. Med Image Anal 2023; 88:102833. [PMID: 37267773 DOI: 10.1016/j.media.2023.102833] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/04/2023]
Abstract
In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.
Collapse
Affiliation(s)
- Kelly Payette
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - Hongwei Bran Li
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Department of Informatics, Technical University of Munich, Munich, Germany
| | - Priscille de Dumast
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne, Switzerland
| | - Roxane Licandro
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States; Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab (CIR), Medical University of Vienna, Vienna, Austria
| | - Hui Ji
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Hao Liu
- Shanghai Jiaotong University, China
| | | | | | - Ying Peng
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Juanying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Huiquan Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Guiming Dong
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Fu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Guotai Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - ZunHyan Rieu
- Research Institute, NEUROPHET Inc., Seoul 06247, South Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul 06247, South Korea
| | - Hyun Gi Kim
- Department of Radiology, The Catholic University of Korea, Eunpyeong St. Mary's Hospital, Seoul 06247, South Korea
| | - Davood Karimi
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ali Gholipour
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Helena R Torres
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - Bruno Oliveira
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - João L Vilaça
- 2Ai - School of Technology, IPCA, Barcelos, Portugal
| | - Yang Lin
- Department of Computer Science, Hong Kong University of Science and Technology, China
| | - Netanell Avisdris
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Ori Ben-Zvi
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Dafna Ben Bashat
- Sagol School of Neuroscience, Tel Aviv University, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Lucas Fidon
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom
| | - Michael Aertsen
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom
| | - Daniel Sobotka
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Mireia Alenyà
- BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Inmaculada Villanueva
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Oscar Camara
- BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Specktor Fadida
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Leo Joskowicz
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Liao Weibin
- School of Computer Science, Beijing Institute of Technology, China
| | - Lv Yi
- School of Computer Science, Beijing Institute of Technology, China
| | - Li Xuesong
- School of Computer Science, Beijing Institute of Technology, China
| | - Moona Mazher
- Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain
| | | | - Domenec Puig
- Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain
| | - Hamza Kebiri
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne, Switzerland
| | - Zelin Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | | | - Yixuan Wu
- Zhejiang University, Hangzhou, China
| | | | - Yunzhi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Lana Vasung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Bjoern Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne, Switzerland
| | - Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; University Research Priority Project Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zürich, Zurich, Switzerland
| |
Collapse
|
13
|
Hutter J, Al-Wakeel A, Kyriakopoulou V, Matthew J, Story L, Rutherford M. Exploring the role of a time-efficient MRI assessment of the placenta and fetal brain in uncomplicated pregnancies and these complicated by placental insufficiency. Placenta 2023; 139:25-33. [PMID: 37295055 DOI: 10.1016/j.placenta.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The development of placenta and fetal brain are intricately linked. Placental insufficiency is related to poor neonatal outcomes with impacts on neurodevelopment. This study sought to investigate whether simultaneous fast assessment of placental and fetal brain oxygenation using MRI T2* relaxometry can play a complementary role to US and Doppler US. METHODS This study is a retrospective case-control study with uncomplicated pregnancies (n = 99) and cases with placental insufficiency (PI) (n = 49). Participants underwent placental and fetal brain MRI and contemporaneous ultrasound imaging, resulting in quantitative assessment including a combined MRI score called Cerebro-placental-T2*-Ratio (CPTR). This was assessed in comparison with US-derived Cerebro-Placental-Ratio (CPR), placental histopathology, assessed using the Amsterdam criteria [1], and delivery details. RESULTS Pplacental and fetal brain T2* decreased with increasing gestational age in both low and high risk pregnancies and were corrected for gestational-age alsosignificantly decreased in PI. Both CPR and CPTR score were significantly correlated with gestational age at delivery for the entire cohort. CPTR was, however, also correlated independently with gestational age at delivery in the PI cohort. It furthermore showed a correlation to birth-weight-centile in healthy controls. DISCUSSION This study indicates that MR analysis of the placenta and brain may play a complementary role in the investigation of fetal development. The additional correlation to birth-weight-centile in controls may suggest a role in the determination of placental health even in healthy controls. To our knowledge, this is the first study assessing quantitatively both placental and fetal brain development over gestation in a large cohort of low and high risk pregnancies. Future larger prospective studies will include additional cohorts.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK.
| | - Ayman Al-Wakeel
- GKT School of Medical Education, King's College London, London, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Jacqueline Matthew
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Lisa Story
- Centre for the Developing Brain, King's College London, UK; Institute for Women's and Children's Health, King's College London, UK; Fetal Medicine Unit, St Thomas' Hospital, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| |
Collapse
|
14
|
Wandel A, Weissbach T, Katorza E, Ziv-Baran T. Subarachnoid Space Measurements in Apparently Healthy Fetuses Using MR Imaging. AJNR Am J Neuroradiol 2023; 44:716-721. [PMID: 37202119 PMCID: PMC10249698 DOI: 10.3174/ajnr.a7864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND PURPOSE The fetal subarachnoid space size serves as an indicator of normal brain development. The subarachnoid space is commonly measured by an ultrasound examination. Introduction of MR imaging for fetal brain evaluation enables standardization of MR imaging-driven subarachnoid space parameters for a more accurate evaluation. This study aimed to determine the normal range of MR imaging-derived subarachnoid space size in fetuses according to gestational age. MATERIALS AND METHODS A cross-sectional study based on a retrospective assessment of randomly selected brain MR images of apparently healthy fetuses performed between 2012 and 2020 at a large tertiary medical center was performed. Demographic data were collected from the mothers' medical records. Subarachnoid space size was measured at 10 reference points using the axial and coronal planes. Only MR imaging scans obtained between weeks 28 and 37 of pregnancy were included. Scans with low-quality images, multiple pregnancy, and cases with intracranial pathologic findings were excluded. RESULTS Overall, 214 apparently healthy fetuses were included (mean maternal age, 31.2 [SD, 5.4] years). Good interobserver and intraobserver agreement was observed (intraclass correlation coefficient > 0.75 for all except 1 parameter). For each gestational week, the 3rd, 15th, 50th, 85th, and 97th percentiles of each subarachnoid space measurement were described. CONCLUSIONS MR imaging-derived subarachnoid space values at a specific gestational age provide reproducible measurements, probably due to the high resolution of MR imaging and adherence to the true radiologic planes. Normal values for brain MR imaging could provide valuable reference information for assessing brain development, thus being an important tool in the decision-making process of both clinicians and parents.
Collapse
Affiliation(s)
- A Wandel
- From the Sackler School of Medicine (A.W., T.W., E.K.)
- Department of Diagnostic Radiology (A.W.), Shamir Medical Center, Zerifin, Israel
| | - T Weissbach
- From the Sackler School of Medicine (A.W., T.W., E.K.)
- Antenatal Diagnostic Unit (T.W., E.K.)
| | - E Katorza
- From the Sackler School of Medicine (A.W., T.W., E.K.)
- Antenatal Diagnostic Unit (T.W., E.K.)
- Department of Obstetrics and Gynecology, and Gertner Institute for Epidemiology and Health Policy Research (E.K.), Sheba Medical Center, Tel HaShomer, Israel
| | - T Ziv-Baran
- School of Public Health (T.Z.-B.), Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Andescavage N, Bullen T, Liggett M, Barnett SD, Kapse A, Kapse K, Ahmadzia H, Vezina G, Quistorff J, Lopez C, duPlessis A, Limperopoulos C. Impaired in vivo feto-placental development is associated with neonatal neurobehavioral outcomes. Pediatr Res 2023; 93:1276-1284. [PMID: 36335267 PMCID: PMC10147575 DOI: 10.1038/s41390-022-02340-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Fetal growth restriction (FGR) is a risk factor for neurodevelopmental problems, yet remains poorly understood. We sought to examine the relationship between intrauterine development and neonatal neurobehavior in pregnancies diagnosed with antenatal FGR. METHODS We recruited women with singleton pregnancies diagnosed with FGR and measured placental and fetal brain volumes using MRI. NICU Network Neurobehavioral Scale (NNNS) assessments were performed at term equivalent age. Associations between intrauterine volumes and neurobehavioral outcomes were assessed using generalized estimating equation models. RESULTS We enrolled 44 women diagnosed with FGR who underwent fetal MRI and 28 infants underwent NNNS assessments. Placental volumes were associated with increased self-regulation and decreased excitability; total brain, brainstem, cortical and subcortical gray matter (SCGM) volumes were positively associated with higher self-regulation; SCGM also was positively associated with higher quality of movement; increasing cerebellar volumes were positively associated with attention, decreased lethargy, non-optimal reflexes and need for special handling; brainstem volumes also were associated with decreased lethargy and non-optimal reflexes; cerebral and cortical white matter volumes were positively associated with hypotonicity. CONCLUSION Disrupted intrauterine growth in pregnancies complicated by antenatally diagnosed FGR is associated with altered neonatal neurobehavior. Further work to determine long-term neurodevelopmental impacts is warranted. IMPACT Fetal growth restriction is a risk factor for adverse neurodevelopment, but remains difficult to accurately identify. Intrauterine brain volumes are associated with infant neurobehavior. The antenatal diagnosis of fetal growth restriction is a risk factor for abnormal infant neurobehavior.
Collapse
Affiliation(s)
- Nickie Andescavage
- Division of Neonatology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Prenatal Pediatric Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Theresa Bullen
- School of Medicine, George Washington University, Washington, DC, USA
| | - Melissa Liggett
- Division of Psychology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Scott D Barnett
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Anushree Kapse
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Homa Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA
| | - Gilbert Vezina
- Division of Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Department of Radiology, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA
| | - Jessica Quistorff
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Catherine Lopez
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Adre duPlessis
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Prenatal Pediatric Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Department of Pediatrics, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA.
- Department of Radiology, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA.
- Department of Pediatrics, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA.
| |
Collapse
|
16
|
Lovato I, Simonelli A, Visentin S, Priante E, Baraldi E, Sacchi C. Prenatal environment and developmental trajectories: the intrauterine growth restriction. Minerva Pediatr (Torino) 2023; 75:62-74. [PMID: 35708036 DOI: 10.23736/s2724-5276.22.06949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The prenatal environment is of fundamental importance for the fetus, as the fetus is particularly susceptible to environmental influences while in utero, and several prenatal adversities may constitute a risk factor for fetal growth and child development. Intrauterine growth restriction (IUGR) refers to a pregnancy complication involving the inadequate growth of the fetus in utero, with potential programming consequences on the children's brain-behavior development. In this narrative review we will discuss the most recent literature about IUGR children, including their development and their relationship with the prenatal and postnatal environment. In particular, as an attempt to an adaptive response to intrauterine changes, the brain development of IUGR fetuses follows abnormal developmental pathways, which likely has cascade effects on the future neurodevelopmental outcomes of the children. Cognitive and motor functions are in fact impaired, as well as IUGR children present, across studies, poor socio-emotional abilities and a greater risk for internalizing and externalizing behavior problems. The current work also highlights how the postnatal environment, and in particular parental care, has an important role in IUGR development, acting as a protective factor, or otherwise increasing their constitutional vulnerabilities. Overall, this narrative review has important implications for clinical practice, suggesting the need for long-term follow-up care with IUGR children and strategies supporting parent-child interactions as well.
Collapse
Affiliation(s)
- Irene Lovato
- Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy
| | - Alessandra Simonelli
- Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy
| | - Silvia Visentin
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Elena Priante
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Sacchi
- Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy -
| |
Collapse
|
17
|
He H, Shu S, Lan W, Peng C, Ma M, Li K. Three-dimensional ultrasound virtual organ computer-aided analysis to monitor fetal intracranial volume development characteristics: A multi-center study in a Chinese population. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:74-81. [PMID: 36082876 DOI: 10.1002/jcu.23333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES This study aimed to evaluate the feasibility of monitoring fetal intracranial volume using three-dimensional ultrasound virtual organ computer-aided analysis (VOCAL) technology and to analyze normal fetal brain growth. METHODS This multi-center prospective cross-sectional study included 821 pregnant women (18-40 gestational weeks) divided into 23 groups according to gestational week. We used transabdominal three-dimensional ultrasound VOCAL to monitor fetal intracranial volume; explore the correlation between intracranial volume and gestational age, biparietal diameter (BPD), and head circumference (HC); and analyze the proportion of brain weight to body weight. RESULTS The intracranial volume of normal fetuses conformed to the normal distribution, gradually increased with gestational age, and was highly correlated with gestational age (r = 0.977), BPD (r = 0.975), and HC (r = 0.953; p < 0.001). The median percentage of brain weight (BW) to estimated fetal weight (EFW) was between 13% and 21%, and the BW/EFW ratio showed a significant downward trend in the third trimester. The VOCAL technology monitored the fetal intracranial volume with good repeatability. CONCLUSIONS VOCAL technology is feasible for monitoring the fetal intracranial volume, and the intracranial volume increases more than 10-times in the second and third trimesters.
Collapse
Affiliation(s)
- HuiQin He
- Ultrasound Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shuang Shu
- Department of Ultrasound, Guangdong Maternal and Child Health Hospital, Guangzhou, China
| | - WenLi Lan
- Department of Ultrasound, Second People's Hospital of Yingde City, Yingde, China
| | - Cui Peng
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - MingXia Ma
- Ultrasound Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - KaiShu Li
- Department of Core Medical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
18
|
Roufaeil C, Razak A, Malhotra A. Cranial Ultrasound Abnormalities in Small for Gestational Age or Growth-Restricted Infants Born over 32 Weeks Gestation: A Systematic Review and Meta-Analysis. Brain Sci 2022; 12:brainsci12121713. [PMID: 36552172 PMCID: PMC9776358 DOI: 10.3390/brainsci12121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
AIM To perform a systematic review and meta-analysis of existing literature to evaluate the incidence of cranial ultrasound abnormalities (CUAs) amongst moderate to late preterm (MLPT) and term infants, affected by fetal growth restriction (FGR) or those classified as small for gestational age (SGA). METHODS A systematic review methodology was performed, and Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement was utilised. Descriptive and observational studies reporting cranial ultrasound outcomes on FGR/SGA MLPT and term infants were included. Primary outcomes reported was incidence of CUAs in MLPT and term infants affected by FGR or SGA, with secondary outcomes including brain structure development and growth, and cerebral artery Dopplers. A random-effects model meta-analysis was performed. Risk of Bias was assessed using the Newcastle-Ottawa scale for case-control and cohort studies, and Joanna Briggs Institute Critical Appraisal Checklist for studies reporting prevalence data. GRADE was used to assess for certainty of evidence. RESULTS Out of a total of 2085 studies identified through the search, seventeen were deemed to be relevant and included. Nine studies assessed CUAs in MLPT FGR/SGA infants, seven studies assessed CUAs in late preterm and term FGR/SGA infants, and one study assessed CUAs in both MLPT and term FGR/SGA infants. The incidence of CUAs in MLPT, and late preterm to term FGR/SGA infants ranged from 0.4 to 33% and 0 to 70%, respectively. A meta-analysis of 7 studies involving 168,136 infants showed an increased risk of any CUA in FGR infants compared to appropriate for gestational age (AGA) infants (RR 1.96, [95% CI 1.26-3.04], I2 = 68%). The certainty of evidence was very low due to non-randomised studies, methodological limitations, and heterogeneity. Another meta-analysis looking at 4 studies with 167,060 infants showed an increased risk of intraventricular haemorrhage in FGR/SGA infants compared to AGA infants (RR 2.40, [95% CI 2.03-2.84], I2 = 0%). This was also of low certainty. CONCLUSIONS The incidence of CUAs in MLPT and term growth-restricted infants varied widely between studies. Findings from the meta-analyses suggest the risk of CUAs and IVH may indeed be increased in these FGR/SGA infants when compared with infants not affected by FGR, however the evidence is of low to very low certainty. Further specific cohort studies are needed to fully evaluate the benefits and prognostic value of cranial ultrasonography to ascertain the need for, and timing of a cranial ultrasound screening protocol in this infant population, along with follow-up studies to ascertain the significance of CUAs identified.
Collapse
Affiliation(s)
- Charlene Roufaeil
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Abdul Razak
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Atul Malhotra
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Correspondence:
| |
Collapse
|
19
|
Misan N, Michalak S, Rzymski P, Poniedziałek B, Kapska K, Osztynowicz K, Ropacka-Lesiak M. Molecular Indicators of Blood-Brain Barrier Breakdown and Neuronal Injury in Pregnancy Complicated by Fetal Growth Restriction. Int J Mol Sci 2022; 23:ijms232213798. [PMID: 36430274 PMCID: PMC9695431 DOI: 10.3390/ijms232213798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
This study evaluated the damage to the endothelial tight junctions (TJs) in pregnancies complicated by fetal growth restriction (FGR) and investigated whether FGR is related to blood-brain barrier disintegration and, subsequently, to the appearance of proteins indicative of neuronal injury in maternal blood. The studied group included 90 pregnant women diagnosed with FGR. The control group consisted of 70 women with an uncomplicated pregnancy. The biochemical measurements included serum neuronal proteins (subunit of the N-methyl-D-aspartate receptor-NR1, nucleoside diphosphate kinase A-NME1, and S100 calcium-binding protein B-S100B), serum TJ proteins (occludin-OCLN, claudin-5-CLN5, zonula occludens-zo-1, and OCLN/zo-1 and CLN5/zo-1 ratios), and placental expression of TJ proteins (OCLN, claudin-4 CLN4, CLN5, zo-1). The significantly higher serum S100B and CLN5 levels and serum CLN5/zo-1 ratio were observed in FGR compared to healthy pregnancies. Moreover, FGR was characterized by increased placental CLN5 expression. Both serum NME1 levels and placental CLN4 expression in FGR pregnancies were significantly related to the incidence of neurological disorders in newborns. Mothers of FGR neonates who developed neurological complications and intraventricular hemorrhage (IVH) had statistically higher NME1 concentrations during pregnancy and significantly lower placental CLN4 expression than mothers of FGR neonates without neurological abnormalities. The serum NME1 levels and placental CLN4 expression were predictive markers of IVH in the FGR group. The blood-brain barrier is destabilized in pregnancies complicated by FGR. Neurological disorders, including IVH, are associated with higher serum concentrations of NME1 and the decreased placental expression of CLN4. The serum NME1 levels and placental CLN4 expression may serve as biomarkers, helpful in predicting IVH in FGR. It may allow for more precise monitoring and influence decision-making on the optimal delivery time to avoid developing neurological complications.
Collapse
Affiliation(s)
- Natalia Misan
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
- Correspondence:
| | - Sławomir Michalak
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-848 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Katarzyna Kapska
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Krystyna Osztynowicz
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Mariola Ropacka-Lesiak
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
20
|
Peretz R, Halevy T, Gafner M, Fried S, Revesz Y, Mayer A, Katorza E. Volumetric Brain MRI Study in Fetuses with Intrauterine Growth Restriction Using a Semiautomated Method. AJNR Am J Neuroradiol 2022; 43:1674-1679. [PMID: 36202548 PMCID: PMC9731260 DOI: 10.3174/ajnr.a7665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE According to the medical literature, it is known that intrauterine growth restriction is associated with abnormal fetal brain findings. The aim of this study was to assess the volume of fetal brain structures in fetuses with intrauterine growth restriction compared with the control group and to examine the effect of intrauterine growth restriction on birth weight in relation to the effect on the volumes of these structures. MATERIALS AND METHODS This historical cohort study included 26 fetuses diagnosed with intrauterine growth restriction due to placental insufficiency. The control group included 66 fetuses with MR imaging scans demonstrating normal brain structures. The volumes of the supratentorial brain, left and right hemispheres, and the cerebellum were measured using a semiautomatic method. In addition, the cerebellum and supratentorial brain ratio was calculated. The measurements of each brain structure were then converted to percentiles according to growth curves. RESULTS The absolute volumes and percentiles of all brain structures examined were smaller in the intrauterine growth restriction group. All examined brain structures showed results that were statistically significant (P < .015). There was no statistically significant difference in the cerebellum/supratentorial brain ratio (P > .39). The difference in brain volume percentiles was statistically smaller than the difference in birth weight and birth weight percentiles (Dolberg growth curves) between the groups. CONCLUSIONS Intrauterine growth restriction affects the volume of brain structures, as measured by quantitative MR imaging. Compared with healthy controls, the effect on birth weight was more prominent than the effect on brain structures, possibly due to the "brain-preserving" capability.
Collapse
Affiliation(s)
- R Peretz
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - T Halevy
- Sheba Medical Center (T.H., Y.R.), Tel-Hashomer, Israel
| | - M Gafner
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics B (M.G.), Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - S Fried
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - Y Revesz
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Sheba Medical Center (T.H., Y.R.), Tel-Hashomer, Israel
| | - A Mayer
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Radiology (A.M.), Sheba Medical Center, Tel-Hashomer, Israel
| | - E Katorza
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology (E.K.), Gertner Institute for Epidemiology
- Health Policy Research (E.K.)
| |
Collapse
|
21
|
Zheng W, Zhang X, Feng Y, Liu B, Zhu J, Zou Y, Qin J, Li B. Association of Corpus Callosum Development With Fetal Growth Restriction and Maternal Preeclampsia or Gestational Hypertension. JAMA Netw Open 2022; 5:e2226696. [PMID: 35969398 PMCID: PMC9379741 DOI: 10.1001/jamanetworkopen.2022.26696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE It remains unknown whether neurodevelopmental impairments are directly associated with the structural development of the brain in offspring with fetal growth restriction (FGR) and mothers with preeclampsia (PE) or gestational hypertension (GH). OBJECTIVES To assess whether fetal corpus callosum (CC) development differed among pregnancies with PE or GH with FGR, pregnancies with PE or GH without FGR, and normotensive pregnancies, particularly the severity of maternal disease and FGR, and to identify the association between adverse perinatal outcomes and structural development of the CC in fetuses with FGR in pregnancies with PE or GH. DESIGN, SETTING, AND PARTICIPANTS This retrospective matched case-control study was conducted between January 1, 2014, and January 31, 2021, at Women's Hospital, Zhejiang University School of Medicine in Hangzhou, China. The participant group included cases of singleton pregnancies with PE or GH with FGR; the control groups included cases with PG or GH without FGR and cases with paired normotensive pregnancy. EXPOSURES Maternal PE or GH and FGR. MAIN OUTCOMES AND MEASURES The length, thickness, total area, subdivision areas, and apparent diffusion coefficient (ADC) values of fetal CC were measured on magnetic resonance imaging (MRI) and analyzed. The association between adverse perinatal outcomes and structural development of CC was further investigated. RESULTS A total of 56 pregnant individuals with singleton pregnancies and PE or GH and fetuses with FGR were enrolled (maternal median [IQR] age, 29.0 [26.0-34.0] years; mean [SD] gestational age at MRI, 33.6 [2.5] weeks). Significant patterns of decreased median (IQR) fetal CC length (0.4284 [0.4079-0.4470] mm vs 0.4614 [0.4461-0.4944] mm, P < .001, vs 0.4591 [0.4310-0.4927] mm, P < .001) and mean (SD) CC total area (1.0779 [0.1931] mm2 vs 1.1896 [0.1803] mm2, P = .001, vs 1.1438 [0.1935] mm2, P = .02), adjusted for the cephalic index, was observed in cases of PE or GH with FGR compared with cases without FGR and cases with normotensive pregnancy. The splenium region of fetal CC also exhibited the distinct alterations in macrostructural development (with FGR: 0.3149 [0.0697] mm2 vs without FGR: 0.3727 [0.0698] mm2, P < .001, vs normotensive pregnancies: 0.3565 [0.0763] mm2, P < .001) and microstructural development (median [IQR] ADC values: 1.47 [1.38-1.57] × 10-3 mm2/s vs 1.57 [1.53-1.63] × 10-3 mm2/s, P = .009, vs 1.63 [1.50-1.70] × 10-3 mm2/s, P < .001) in all groups. Furthermore, significant associations were found between structural abnormality of the splenium region and adverse perinatal outcomes in the PE or GH with FGR group (mean [SD] ADC value: 1.40 [0.07] × 10-3 mm2/s; P = .04). CONCLUSIONS AND RELEVANCE Results of this study suggest that, in fetuses with FGR in pregnancies with PE or GH, decreased structural development of the CC, predominantly the splenium region, may be significantly associated with a higher risk of adverse perinatal outcomes and may be regarded as an MRI-based biomarker for better prenatal counseling and early management decisions.
Collapse
Affiliation(s)
- Weizeng Zheng
- Department of Radiology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodan Zhang
- Department of Radiology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Feng
- Department of Obstetrics, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingqing Liu
- Department of Women’s Health, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Zhu
- Department of Neonatology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zou
- Department of Radiology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiale Qin
- Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohua Li
- Department of Obstetrics, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Chand KK, Pannek K, Colditz PB, Wixey JA. Brain outcomes in runted piglets: a translational model of fetal growth restriction. Dev Neurosci 2022; 44:194-204. [PMID: 35263744 DOI: 10.1159/000523995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
etal growth restriction (FGR) is associated with long-term neurodevelopmental disabilities including learning and behavioural disorders, autism, and cerebral palsy. Persistent changes in brain structure and function that are associated with developmental disabilities are demonstrated in FGR neonates. However, the mechanisms underlying these changes remain to be determined. There are currently no therapeutic interventions available to protect the FGR newborn brain. With the wide range of long-term neurodevelopmental disorders associated with FGR, the use of an animal model appropriate to investigating mechanisms of injury in the FGR newborn is crucial for the development of effective and targeted therapies for babies. Piglets are ideal animals to explore how perinatal insults affect brain structure and function. FGR occurs spontaneously in the piglet, unlike other animal models that require surgical or chemical intervention, allowing brain outcomes to be studied without the confounding impacts of experimental interventions. The FGR piglet mimics many of the human pathophysiological outcomes associated with FGR including asymmetrical growth restriction with brain sparing. This review will discuss the similarities observed in brain outcomes between the human FGR and FGR piglet from a magnetic resonance imaging in the living and a histological perspective. FGR piglet studies provide the opportunity to determine and track mechanisms of brain injury in a clinically relevant animal model of FGR. Findings from these FGR piglet studies may provide critical information to rapidly translate neuroprotective interventions to clinic to improve outcomes for newborn babies.
Collapse
Affiliation(s)
- Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kerstin Pannek
- The Australian E-Health Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Sacchi C, O'Muircheartaigh J, Batalle D, Counsell SJ, Simonelli A, Cesano M, Falconer S, Chew A, Kennea N, Nongena P, Rutherford MA, Edwards AD, Nosarti C. Neurodevelopmental Outcomes following Intrauterine Growth Restriction and Very Preterm Birth. J Pediatr 2021; 238:135-144.e10. [PMID: 34245768 DOI: 10.1016/j.jpeds.2021.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To evaluate whether intrauterine growth restriction (IUGR) adds further neurodevelopmental risk to that posed by very preterm birth alone in terms of alterations in brain growth and poorer toddlerhood outcomes. STUDY DESIGN Participants were 314 infants of very preterm birth enrolled in the Evaluation of Preterm Imaging Study (e-Prime) who were subsequently followed up in toddlerhood. IUGR was identified postnatally from discharge records (n = 49) and defined according to prenatal evaluation of growth restriction confirmed by birth weight <10th percentile for gestational age and/or alterations in fetal Doppler. Appropriate for gestational age (AGA; n = 265) was defined as birth weight >10th percentile for gestational age at delivery. Infants underwent magnetic resonance imaging at term-equivalent age (median = 42 weeks); T2-weighted images were obtained for voxelwise gray matter volumes. Follow-up assessments were conducted at corrected median age of 22 months using the Bayley Scales of Infant and Toddler Development III and the Modified-Checklist for Autism in Toddlers. RESULTS Infants of very preterm birth with IUGR displayed a relative volumetric decrease in gray matter in limbic regions and a relative increase in frontoinsular, temporal-parietal, and frontal areas compared with peers of very preterm birth who were AGA. At follow-up, toddlers born very preterm with IUGR had significantly lower cognitive (effect size = 0.42) and motor (effect size = 0.41) scores and were more likely to have a positive Modified-Checklist for Autism in Toddlers screening for autism (OR = 2.12) compared with peers of very preterm birth who were AGA. CONCLUSIONS IUGR might confer a neurodevelopmental risk that is greater than that posed by very preterm alone, in terms of both alterations in brain growth and poorer toddlerhood outcomes.
Collapse
Affiliation(s)
- Chiara Sacchi
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Serena Jane Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Alessandra Simonelli
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Michela Cesano
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nigel Kennea
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Phumza Nongena
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary Ann Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
24
|
Fried S, Gafner M, Jeddah D, Gosher N, Hoffman D, Ber R, Mayer A, Katorza E. Correlation between 2D and 3D Fetal Brain MRI Biometry and Neurodevelopmental Outcomes in Fetuses with Suspected Microcephaly and Macrocephaly. AJNR Am J Neuroradiol 2021; 42:1878-1883. [PMID: 34385141 DOI: 10.3174/ajnr.a7225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/03/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Definitions of fetal microcephaly and macrocephaly are debatable. A better understanding of their long-term prognoses would help guide parental education and counseling. This study aimed to explore the correlation between 2D and 3D fetal brain MR imaging biometry results and the long-term neurodevelopmental outcomes. MATERIALS AND METHODS This analysis is a historical cohort study. Fetal brain biometry was measured on 2D and 3D MR imaging using a volumetric MR imaging semiautomated algorithm. We measured and assessed the following brain structures: the supratentorial brain volume and cerebellar volume and cerebellar volume/supratentorial brain volume ratio, in addition to commonly used 2D brain MR imaging biometric variables, including occipitofrontal diameter, biparietal diameter, and transcerebellar diameter. Microcephaly was defined as ≤ 3rd percentile; and macrocephaly, as ≥ 97th percentile, corresponding to -2 SDs and +2 SDs. The neurodevelopmental outcome of this study cohort was evaluated using the Vineland-II Adaptive Behavior Scales, and the measurements were correlated to the Vineland standard scores. RESULTS A total of 70 fetuses were included. No significant correlation was observed between the Vineland scores and either the supratentorial brain volume, cerebellar volume, or supratentorial brain volume/cerebellar volume ratio in 3D or 2D MR imaging measurements, after correction for multiple comparisons. No differences were found among fetuses with macrocephaly, normocephaly, or microcephaly regarding the median Vineland standard scores. CONCLUSIONS Provided there is normal brain structure on MR imaging, the developmental milestone achievements in early years are unrelated to 2D and 3D fetal brain MR imaging biometry, in the range of measurements depicted in this study.
Collapse
Affiliation(s)
- S Fried
- From the Sackler School of Medicine (S.F., M.G., D.J., D.H., R.B., A.M., E.K.), Tel-Aviv University, Tel-Aviv, Israel
- Department of Obstetrics and Gynecology (S.F., E.K.), Sheba Medical Center, Tel-Hashomer, Israel
| | - M Gafner
- From the Sackler School of Medicine (S.F., M.G., D.J., D.H., R.B., A.M., E.K.), Tel-Aviv University, Tel-Aviv, Israel
- Department of Pediatrics B (M.G.), Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - D Jeddah
- From the Sackler School of Medicine (S.F., M.G., D.J., D.H., R.B., A.M., E.K.), Tel-Aviv University, Tel-Aviv, Israel
| | - N Gosher
- Hadassah Medical School (N.G.), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - D Hoffman
- From the Sackler School of Medicine (S.F., M.G., D.J., D.H., R.B., A.M., E.K.), Tel-Aviv University, Tel-Aviv, Israel
| | - R Ber
- From the Sackler School of Medicine (S.F., M.G., D.J., D.H., R.B., A.M., E.K.), Tel-Aviv University, Tel-Aviv, Israel
| | - A Mayer
- From the Sackler School of Medicine (S.F., M.G., D.J., D.H., R.B., A.M., E.K.), Tel-Aviv University, Tel-Aviv, Israel
- Department of Diagnostic Radiology (A.M.), Sheba Medical Center, Tel-Hashomer, Israel
| | - E Katorza
- From the Sackler School of Medicine (S.F., M.G., D.J., D.H., R.B., A.M., E.K.), Tel-Aviv University, Tel-Aviv, Israel
- Department of Obstetrics and Gynecology (S.F., E.K.), Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
25
|
Reis Teixeira S. Editorial for "Measurement of the Brain Volume/liver Volume Ratio by Three-Dimensional Magnetic Resonance Imaging in Appropriate-for-Gestational Age Fetuses and Those With Fetal Growth Restriction". J Magn Reson Imaging 2021; 54:1802-1803. [PMID: 34355468 DOI: 10.1002/jmri.27876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sara Reis Teixeira
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Clarke GD, Li J, Kuo AH, Moody AJ, Nathanielsz PW. Cardiac magnetic resonance imaging: insights into developmental programming and its consequences for aging. J Dev Orig Health Dis 2021; 12:203-219. [PMID: 33349289 PMCID: PMC7987688 DOI: 10.1017/s2040174420001233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVD) are important consequences of adverse perinatal conditions such as fetal hypoxia and maternal malnutrition. Cardiac magnetic resonance imaging (CMR) can produce a wealth of physiological information related to the development of the heart. This review outlines the current state of CMR technologies and describes the physiological biomarkers that can be measured. These phenotypes include impaired ventricular and atrial function, maladaptive ventricular remodeling, and the proliferation of myocardial steatosis and fibrosis. The discussion outlines the applications of CMR to understanding the developmental pathways leading to impaired cardiac function. The use of CMR, both in animal models of developmental programming and in human studies, is described. Specific examples are given in a baboon model of intrauterine growth restriction (IUGR). CMR offers great potential as a tool for understanding the sequence of dysfunctional adaptations of developmental origin that can affect the human cardiovascular system.
Collapse
Affiliation(s)
- G D Clarke
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Li
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A H Kuo
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - A J Moody
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
27
|
Halevy T, Nezer M, Halevy J, Ziv-Baran T, Barzilay E, Katorza E. Twin discordance: a study of volumetric fetal brain MRI and neurodevelopmental outcome. Eur Radiol 2021; 31:6676-6685. [PMID: 33723640 DOI: 10.1007/s00330-021-07773-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study employed magnetic resonance imaging (MRI) to compare brain volumes of discordant twins and examined their neurodevelopment after birth by using a validated exam. STUDY DESIGN A prospective historical cohort study of discordant dichorionic diamniotic (DCDA) or monochorionic diamniotic (MCDA) twin fetuses, who undergone an MRI scan to evaluate growth restriction in the discordant twin (weight < 10th centile) during 6 years period, at a single tertiary center. Twenty-seven twin pairs were included in the volumetric study and 17 pairs were included in the neurodevelopmental outcome examination. The volumes of the supratentorial brain region, both hemispheres, eyes, and the cerebellum were measured by 3D MRI semi-automated volume measurements. Volumes were plotted on normal growth curves and discordance was compared between weight at birth and brain structure volumes. Neurodevelopmental outcome was evaluated using the VABS-II questionnaire at a mean age of 4.9 years. RESULTS The volume of major brain structures was significantly larger in the appropriate-for-gestational-age twins (AGA) compared to the small-for-gestational-age (SGA) co-twins (p < 0.001). The birth weight discordance was 32.3% (24.9-48.6) and was significantly greater (p < 0.001) than the discordance of the prenatal supratentorial brain (13.6% [5.6-18]), cerebellum volume (21.7% [9.5-30.8]). Further neurodevelopmental outcome evaluation found no significant difference between the AGA twin and the SGA twin. CONCLUSION In discordant twins, the smaller twin showed a "brain-preserving effect," which in our study was not associated with a worse neurodevelopmental outcome. The use of MRI in such cases may aid in decision-making and parental consultation. KEY POINTS • Weight discordance at birth was significantly greater compared to intrauterine brain volume discordance measured by 3D MRI. • Small-for-gestational-age (SGA) fetuses preserve brain development. • In highly discordant twins, there was no long-term difference in neurodevelopmental outcome at a mean age of 4.9 years.
Collapse
Affiliation(s)
- Tom Halevy
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Ramat Gan, Israel.
| | - Meirav Nezer
- Department of Obstetrics and Gynecology, Samson Assuta Ashdod University Hospital, Ashdod, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Jorden Halevy
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Ramat Gan, Israel
| | - Tomer Ziv-Baran
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Barzilay
- Department of Obstetrics and Gynecology, Samson Assuta Ashdod University Hospital, Ashdod, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eldad Katorza
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Machado-Rivas F, Afacan O, Khan S, Marami B, Rollins CK, Ortinau C, Velasco-Annis C, Warfield SK, Gholipour A, Jaimes C. Tractography of the Cerebellar Peduncles in Second- and Third-Trimester Fetuses. AJNR Am J Neuroradiol 2021; 42:194-200. [PMID: 33431505 PMCID: PMC7814802 DOI: 10.3174/ajnr.a6869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Little is known about microstructural development of cerebellar white matter in vivo. This study aimed to investigate developmental changes of the cerebellar peduncles in second- and third-trimester healthy fetuses using motion-corrected DTI and tractography. MATERIALS AND METHODS 3T data of 81 healthy fetuses were reviewed. Structural imaging consisted of multiplanar T2-single-shot sequences; DTI consisted of a series of 12-direction diffusion. A robust motion-tracked section-to-volume registration algorithm reconstructed images. ROI-based deterministic tractography was performed using anatomic landmarks described in postnatal tractography. Asymmetry was evaluated qualitatively with a perceived difference of >25% between sides. Linear regression evaluated gestational age as a predictor of tract volume, ADC, and fractional anisotropy. RESULTS Twenty-four cases were excluded due to low-quality reconstructions. Fifty-eight fetuses with a median gestational age of 30.6 weeks (interquartile range, 7 weeks) were analyzed. The superior cerebellar peduncle was identified in 39 subjects (69%), and it was symmetric in 15 (38%). The middle cerebellar peduncle was identified in all subjects and appeared symmetric; in 13 subjects (22%), two distinct subcomponents were identified. The inferior cerebellar peduncle was not found in any subject. There was a significant increase in volume for the superior cerebellar peduncle and middle cerebellar peduncle (both, P < .05), an increase in fractional anisotropy (both, P < .001), and a decrease in ADC (both, P < .001) with gestational age. The middle cerebellar peduncle had higher volume (P < .001) and fractional anisotropy (P = .002) and lower ADC (P < .001) than the superior cerebellar peduncle after controlling for gestational age. CONCLUSIONS A robust motion-tracked section-to-volume registration algorithm enabled deterministic tractography of the superior cerebellar peduncle and middle cerebellar peduncle in vivo and allowed characterization of developmental changes.
Collapse
Affiliation(s)
- F Machado-Rivas
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - O Afacan
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - S Khan
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - B Marami
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C K Rollins
- Department of Radiology, Department of Neurology (C.K.R.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C Ortinau
- Department of Pediatrics (C.O.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - C Velasco-Annis
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
| | - S K Warfield
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - A Gholipour
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C Jaimes
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center (C.J.), Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| |
Collapse
|
29
|
Kertes I, Hoffman D, Yahal O, Berknstadt M, Bar-Yosef O, Ezra O, Katorza E. The normal fetal Cavum Septum Pellucidum in MR imaging - New biometric data. Eur J Radiol 2020; 135:109470. [PMID: 33338761 DOI: 10.1016/j.ejrad.2020.109470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/30/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE The cavum septum pellucidum (CSP) is an important landmark in the evaluation of the fetal neural axis. A deviation from the ultrasonic normal values may be associated with unfavorable outcomes, and a normal CSP provides reassurance of normal central forebrain development. Today, there is biometric data regarding the normal values for the width of the CSP in fetal ultrasound, but there is no such data for fetal MRI. The aim of this study was to determine the normal values for the measurements of the fetal CSP on MRI. MATERIALS AND METHODS We retrospectively examined 307 MRI scans of fetuses between 25 and 41 weeks gestation. Data was collected from the electronic charts of patients who underwent fetal MR imaging at a single tertiary Medical Center. The width and length of the CSP were measured in the axial plane, and the width and height were measured in the coronal plane. RESULTS The width and height of the CSP in fetuses tend to decrease starting from the 27th week of gestation onwards. High levels of intraobserver and interobserver agreements were calculated. The sex of the fetus does not appear to influence the biometry of the CSP. CONCLUSION This study provides MRI reference values for the dimensions of the CSP starting from the 25th week of gestation. Knowing the normal values for MRI could provide valuable information for researchers and in the decision-making process in patient's consultations.
Collapse
Affiliation(s)
- Itay Kertes
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Dana Hoffman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orr Yahal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Sheba Medical Center, Tel HaShomer, Israel
| | - Michal Berknstadt
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel HaShomer, Israel
| | - Omer Bar-Yosef
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Sheba Medical Center, Tel HaShomer, Israel
| | - Osnat Ezra
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Antenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel
| | - Eldad Katorza
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Antenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel
| |
Collapse
|
30
|
Cai S, Zhang G, Zhang H, Wang J. Normative linear and volumetric biometric measurements of fetal brain development in magnetic resonance imaging. Childs Nerv Syst 2020; 36:2997-3005. [PMID: 32468242 DOI: 10.1007/s00381-020-04633-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To provide normative two-dimensional and three-dimensional measurements of brain development in normal fetuses during the second and third trimester by a new semi-automated method. METHODS In this retrospective study, we included 98 normal fetuses at our institution between 21 and 38 weeks of gestation. Two-dimensional measurements of the brain were including biparietal diameter, occipitofrontal diameter, head circumference, transverse cerebellar diameter, and atrial diameter. Volumetric parameters were obtained by using ITK-SNAP software, including left and right cerebral hemispheres, lateral ventricle, the cerebellum, and extracerebral cerebrospinal fluid. RESULTS All linear and volume measurements were positively correlated with gestational age except for cerebrospinal fluid. Each anatomical region of the fetal brain showed a different relative growth rate. There was some volume asymmetry between the left and right lateral ventricles, and the left side was larger. The inter-observer and intra-observer agreement was excellent for all measures. CONCLUSION We established the 5th, 50th, and 95th percentile values of fetal brain volume measurements in magnetic resonance, and this may be helpful to understand the damage of fetal brain development.
Collapse
Affiliation(s)
- Shulei Cai
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guofu Zhang
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.
| | - He Zhang
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jing Wang
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Gafner M, Fried S, Gosher N, Jeddah D, Sade EK, Barzilay E, Mayer A, Katorza E. Fetal Brain Biometry: Is there an Agreement among Ultrasound, MRI and the Measurements at Birth? Eur J Radiol 2020; 133:109369. [PMID: 33126174 DOI: 10.1016/j.ejrad.2020.109369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Measurement of the fetal brain can be achieved by different modalities, we aimed to assess the agreement between these methods and the head circumference at birth. METHODS A retrospective study conducted between 2011-2018 at a tertiary referral medical center. Sonographic head circumference (HC), 2D MRI bi-parietal diameter (BPD) and occipito-frontal diameter (OFD), 3D MRI supra-tentorial volume (STV), and head circumference (HC) at birth were measured and converted into centiles according to gestational age. Spearman's rank correlation coefficient was used to assess the correlation between the modalities. RESULTS A total of 88 fetuses were included. Mean gestational age at the time of fetal US and brain MRI acquisition were 34.4 ± 2.8 and 34.6 ± 2.6 weeks, respectively. A correlation was found between prenatal sonographic HC and the 3D MRI STV centiles (Rs = 0.859, p < 0.001), the BPD in 2D MRI (Rs = 0.813, p < 0.001), and the OFD in 2D MRI (Rs = 0.840, p < 0.001). Sonographic HC, OFD on 2D MRI, and STV on 3D MRI were all found to be correlated with the HC at birth (Rs = 0.865, p < 0.001; Rs 0.816, p < 0.001; Rs = 0.825, p < 0.001, respectively). CONCLUSIONS There is a statistically significant agreement among the different prenatal clinically used modalities for measuring fetal brain and the head circumference at birth, however, this correlation is not perfect. Further study is needed to investigate the long-term prognosis of these fetuses.
Collapse
Affiliation(s)
- Michal Gafner
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Shalev Fried
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Noa Gosher
- Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danielle Jeddah
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eliel Kedar Sade
- Department of Obstetrics and Gynecology, Samson Assuta Ashdod Hospital, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Eran Barzilay
- Department of Obstetrics and Gynecology, Samson Assuta Ashdod Hospital, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Arnaldo Mayer
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Diagnostic Radiology, Sheba Medical Center, Ramat-Gan, Israel
| | - Eldad Katorza
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Diagnostic Radiology, Sheba Medical Center, Ramat-Gan, Israel; Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
32
|
Apparent diffusion coefficient of different areas of brain in foetuses with intrauterine growth restriction. Pol J Radiol 2020; 85:e301-e308. [PMID: 32685065 PMCID: PMC7361370 DOI: 10.5114/pjr.2020.96950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aimed to compare the apparent diffusion coefficient (ADC) values of different brain areas between two groups of intrauterine growth restricted (IUGR) foetuses and control cases. Material and methods A total of 38 foetuses with IUGR and 18 normal control foetuses with similar gestational age were compared using a 3T magnetic resonance scanner. IUGR cases included 23 foetuses with clinical severity signs (group A) and 15 foetuses without clinical severity signs (group B). ADC values were measured in different brain regions and compared among groups. Foetuses with structural brain abnormalities were excluded from the study. Results All foetuses had normal foetal structural brain anatomy. Head circumference (HC) < 5% was more common in IUGR group A compared to IUGR group B (56.5% vs. 13.3%, p < 0.0001). In comparison to the normal group, the ADC values in IUGR foetuses were significantly lower in cerebellar hemispheres (CH) (1.239 vs. 1.280.5 × 10-3 mm2/s, p = 0.045), thalami (1.205 vs. 1.285 × 10-3 mm2/s, p = 0.031) and caudate nucleus (CN) (1.319 vs. 1.394 × 10-3 mm2/s, p = 0.04). However, there were no significant differences in ADC values between IUGR subtypes. Among all brain regions, pons had the lowest ADC values. Conclusions ADC values of thalami, CN, and CH were significantly lower in IUGR than control foetuses, while there was no significant difference among IUGR groups. Further studies are needed to evaluate the prognostic value of ADC changes in IUGR foetuses.
Collapse
|
33
|
Malhotra A, Sepehrizadeh T, Dhollander T, Wright D, Castillo-Melendez M, Sutherland AE, Pham Y, Ditchfield M, Polglase GR, de Veer M, Jenkin G, Pannek K, Shishegar R, Miller SL. Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. NEUROIMAGE-CLINICAL 2019; 24:101991. [PMID: 31473545 PMCID: PMC6728876 DOI: 10.1016/j.nicl.2019.101991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Background Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased risk of adverse neurodevelopment and neuromorbidity. Current imaging techniques, including conventional magnetic resonance imaging (MRI), are not sensitive enough to detect subtle structural abnormalities in the FGR brain. We examined whether advanced MRI analysis techniques have the capacity to detect brain injury (particularly white matter injury) caused by chronic hypoxia-induced fetal growth restriction in newborn preterm lambs. Methods Surgery was undertaken in twin bearing pregnant ewes at 88–90 days gestation (term = 150 days) to induce FGR in one fetus. At 127 days gestation (~32 weeks human brain development), FGR and control (appropriate for gestational age, AGA) lambs were delivered by caesarean section, intubated and ventilated. Conventional and advanced brain imaging was conducted within the first two hours of life using a 3T MRI scanner. T1-weighted (T1w) and T2-weighted (T2w) structural imaging, magnetic resonance spectroscopy (MRS), and diffusion MRI (dMRI) data were acquired. Diffusion tensor imaging (DTI) modelling and analysis of dMRI data included the following regions of interest (ROIs): subcortical white matter, periventricular white matter, cerebellum, hippocampus, corpus callosum and thalamus. Fixel-based analysis of 3-tissue constrained spherical deconvolution (CSD) of the dMRI data was performed and compared between FGR and AGA lambs. Lambs were euthanised immediately after the scans and brain histology performed in the regions of interest to correlate with imaging. Results FGR and AGA lamb (body weight, mean (SD): 2.2(0.5) vs. 3.3(0.3) kg, p = .002) MRI brain scans were analysed. There were no statistically significant differences observed between the groups in conventional T1w, T2w or MRS brain data. Mean, axial and radial diffusivity, and fractional anisotropy indices obtained from DTI modelling also did not show any statistically significant differences between groups in the ROIs. Fixel-based analysis of 3-tissue CSD, however, did reveal a decrease in fibre cross-section (FC, p < .05) but not in fibre density (FD) or combined fibre density and cross-section (FDC) in FGR vs. AGA lamb brains. The specific tracts that showed a decrease in FC were in the regions of the periventricular white matter, hippocampus and cerebellar white matter, and were supported by histological evidence of white matter hypomyelination and disorganisation in corresponding FGR lamb brain regions. Conclusions The neuropathology associated with FGR in neonatal preterm lambs is subtle and imaging detection may require advanced MRI and tract-based analysis techniques. Fixel-based analysis of 3-tissue CSD demonstrates that the preterm neonatal FGR brain shows evidence of macrostructural (cross-sectional) deficits in white matter subsequent to altered antenatal development. These findings can inform analysis of similar brain pathology in neonatal infants. FGR brain injury can be subtle, and not easily detected on conventional imaging. Fixel-based analysis showed differences in fibre content of FGR lamb brain tracts. Histological stain confirmed myelination deficits in corresponding brain regions.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.
| | | | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - David Wright
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | | | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Kerstin Pannek
- Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | - Rosita Shishegar
- Monash Biomedical Imaging, Monash University, Melbourne, Australia; The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; CSIRO Health and Biosecurity, Parkville, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| |
Collapse
|
34
|
Grinberg A, Katorza E, Hoffman D, Ber R, Mayer A, Lipitz S. Volumetric MRI Study of the Brain in Fetuses with Intrauterine Cytomegalovirus Infection and Its Correlation to Neurodevelopmental Outcome. AJNR Am J Neuroradiol 2019; 40:353-358. [PMID: 30760462 DOI: 10.3174/ajnr.a5948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/01/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE In recent years, effort has been made to study 3D biometry as a method for fetal brain assessment. In this study, we aimed to compare brain volumes of fetuses with cytomegalovirus infection and noninfected controls. Also, we wanted to assess whether there is a correlation to their neurodevelopmental outcome as observed after several years. MATERIALS AND METHODS A retrospective cohort study examined MR imaging brain scans of 42 fetuses (at 30-34 weeks' gestational age) that were diagnosed with intrauterine cytomegalovirus infection. Volumetric measurements of 6 structures were assessed using a semiautomated designated program and were compared with a control group of 50 fetuses. Data collected included prenatal history and MR imaging and sonographic and neurodevelopmental follow-up. RESULTS We found that all brain volumes measured were smaller in the cytomegalovirus-infected group and that there was a correlation between smaller cerebellar volume and lower Vineland II Adaptive Behavior Scales questionnaire scores, especially in the fields of daily living and communication skills. CONCLUSIONS In this study, we found that brain volumes are affected by intrauterine cytomegalovirus infection and that it has a developmental prognostic meaning. Such information, which should be supported by further research, may help clinicians further analyze imaging data to treat and make a better assessment of these fetuses.
Collapse
Affiliation(s)
- A Grinberg
- From the Antenatal Diagnostic Unit (A.G., E.K., D.H., R.B., S.L.), Department of Obstetrics and Gynecology
- Sackler School of Medicine (A.G., E.K., D.H., R.B., A.M., S.L.), Tel Aviv University, Tel Aviv, Israel
| | - E Katorza
- From the Antenatal Diagnostic Unit (A.G., E.K., D.H., R.B., S.L.), Department of Obstetrics and Gynecology
- Sackler School of Medicine (A.G., E.K., D.H., R.B., A.M., S.L.), Tel Aviv University, Tel Aviv, Israel
| | - D Hoffman
- From the Antenatal Diagnostic Unit (A.G., E.K., D.H., R.B., S.L.), Department of Obstetrics and Gynecology
- Sackler School of Medicine (A.G., E.K., D.H., R.B., A.M., S.L.), Tel Aviv University, Tel Aviv, Israel
| | - R Ber
- From the Antenatal Diagnostic Unit (A.G., E.K., D.H., R.B., S.L.), Department of Obstetrics and Gynecology
- Sackler School of Medicine (A.G., E.K., D.H., R.B., A.M., S.L.), Tel Aviv University, Tel Aviv, Israel
| | - A Mayer
- Department of Diagnostic Radiology (A.M.), Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Sackler School of Medicine (A.G., E.K., D.H., R.B., A.M., S.L.), Tel Aviv University, Tel Aviv, Israel
| | - S Lipitz
- From the Antenatal Diagnostic Unit (A.G., E.K., D.H., R.B., S.L.), Department of Obstetrics and Gynecology
- Sackler School of Medicine (A.G., E.K., D.H., R.B., A.M., S.L.), Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Scher MS. Fetal neurology: Principles and practice with a life-course perspective. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:1-29. [PMID: 31324306 DOI: 10.1016/b978-0-444-64029-1.00001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical service, educational, and research components of a fetal/neonatal neurology program are anchored by the disciplines of developmental origins of health and disease and life-course science as programmatic principles. Prenatal participation provides perspectives on maternal, fetal, and placental contributions to health or disease for fetal and subsequent neonatal neurology consultations. This program also provides an early-life diagnostic perspective for neurologic specialties concerned with brain health and disease throughout childhood and adulthood. Animal models and birth cohort studies have demonstrated how the science of epigenetics helps to understand gene-environment interactions to better predict brain health or disease. Fetal neurology consultations provide important diagnostic contributions during critical or sensitive periods of brain development when future neurotherapeutic interventions will maximize adaptive neuroplasticity. Age-specific normative neuroinformatics databases that employ computer-based strategies to integrate clinical/demographic, neuroimaging, neurophysiologic, and genetic datasets will more accurately identify either symptomatic patients or those at risk for brain disorders who would benefit from preventive, rescue, or reparative treatment choices throughout the life span.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
36
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
37
|
Olshaker H, Ber R, Hoffman D, Derazne E, Achiron R, Katorza E. Volumetric Brain MRI Study in Fetuses with Congenital Heart Disease. AJNR Am J Neuroradiol 2018; 39:1164-1169. [PMID: 29674414 DOI: 10.3174/ajnr.a5628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/14/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE It is well-established that a high prevalence of infants with congenital heart defects surviving to childhood have neurodevelopmental abnormalities. The etiology is not clear. In this study, we aimed to find prenatal neuroanatomic changes in fetuses with congenital heart disease to better understand the pathophysiology behind these sequelae. MATERIALS AND METHODS A retrospective study of 46 fetal brain MR imaging scans was performed at a tertiary medical center during a 4-year period. Clinical data were collected from electronic medical charts. Volumes of the supratentorial brain, right hemisphere, left hemisphere, and cerebellum were measured using a semiautomated method and were compared with the normal growth percentiles. RESULTS We found that cerebellar volume and the cerebellar-supratentorial volume ratio were significantly lower among fetuses with congenital heart disease. Supratentorial and hemisphere volumes showed no difference between groups. This difference was not observed in fetuses with septation defects. CONCLUSIONS Fetuses with congenital heart disease have smaller cerebellar volumes than healthy fetuses. Additional research is needed to assess this finding as a radiologic marker for long-term outcome.
Collapse
Affiliation(s)
- H Olshaker
- From the Antenatal Diagnostic Unit (H.O., R.B., D.H., R.A., E.K.), Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel .,Sackler School of Medicine (H.O., R.B., D.H., E.D., R.A., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - R Ber
- From the Antenatal Diagnostic Unit (H.O., R.B., D.H., R.A., E.K.), Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel.,Sackler School of Medicine (H.O., R.B., D.H., E.D., R.A., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - D Hoffman
- From the Antenatal Diagnostic Unit (H.O., R.B., D.H., R.A., E.K.), Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel.,Sackler School of Medicine (H.O., R.B., D.H., E.D., R.A., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - E Derazne
- Sackler School of Medicine (H.O., R.B., D.H., E.D., R.A., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - R Achiron
- From the Antenatal Diagnostic Unit (H.O., R.B., D.H., R.A., E.K.), Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel.,Sackler School of Medicine (H.O., R.B., D.H., E.D., R.A., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - E Katorza
- From the Antenatal Diagnostic Unit (H.O., R.B., D.H., R.A., E.K.), Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel.,Sackler School of Medicine (H.O., R.B., D.H., E.D., R.A., E.K.), Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Carlin A, Kadji C, De Angelis R, Cannie MM, Jani JC. Prenatal prediction of small-for-gestational age neonates using MR imaging: comparison with conventional 2D ultrasound. J Matern Fetal Neonatal Med 2017; 32:1673-1681. [DOI: 10.1080/14767058.2017.1414797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrew Carlin
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Brussels, Belgium
| | - Caroline Kadji
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Brussels, Belgium
| | | | - Mieke M. Cannie
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium
- Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacques C. Jani
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Brussels, Belgium
| |
Collapse
|
39
|
Ber R, Hoffman D, Hoffman C, Polat A, Derazne E, Mayer A, Katorza E. Volume of Structures in the Fetal Brain Measured with a New Semiautomated Method. AJNR Am J Neuroradiol 2017; 38:2193-2198. [PMID: 28838909 DOI: 10.3174/ajnr.a5349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/12/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Measuring the volume of fetal brain structures is challenging due to fetal motion, low resolution, and artifacts caused by maternal tissue. Our aim was to introduce a new, simple, Matlab-based semiautomated method to measure the volume of structures in the fetal brain and present normal volumetric curves of the structures measured. MATERIALS AND METHODS The volume of the supratentorial brain, left and right hemispheres, cerebellum, and left and right eyeballs was measured retrospectively by the new semiautomated method in MR imaging examinations of 94 healthy fetuses. Four volume ratios were calculated. Interobserver agreement was calculated with the intraclass correlation coefficient, and a Bland-Altman plot was drawn for comparison of manual and semiautomated method measurements of the supratentorial brain. RESULTS We present normal volumetric curves and normal percentile values of the structures measured according to gestational age and of the ratios between the cerebellum and the supratentorial brain volume and the total eyeball and the supratentorial brain volume. Interobserver agreement was good or excellent for all structures measured. The Bland-Altman plot between manual and semiautomated measurements showed a maximal relative difference of 7.84%. CONCLUSIONS We present a technologically simple, reproducible method that can be applied prospectively and retrospectively on any MR imaging protocol, and we present normal volumetric curves measured. The method shows results like manual measurements while being less time-consuming and user-dependent. By applying this method on different cranial and extracranial structures, anatomic and pathologic, we believe that fetal volumetry can turn from a research tool into a practical clinical one.
Collapse
Affiliation(s)
- R Ber
- From the Departments of Obstetrics and Gynecology (R.B., D.H., A.P., E.K.)
| | - D Hoffman
- From the Departments of Obstetrics and Gynecology (R.B., D.H., A.P., E.K.)
| | - C Hoffman
- Diagnostic Imaging (C.H., A.M.), Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sackler Faculty of Medicine (C.H., E.D.), Tel-Aviv University, Tel-Aviv, Israel
| | - A Polat
- From the Departments of Obstetrics and Gynecology (R.B., D.H., A.P., E.K.)
| | - E Derazne
- Sackler Faculty of Medicine (C.H., E.D.), Tel-Aviv University, Tel-Aviv, Israel
| | - A Mayer
- Diagnostic Imaging (C.H., A.M.), Chaim Sheba Medical Center, Tel Hashomer, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - E Katorza
- From the Departments of Obstetrics and Gynecology (R.B., D.H., A.P., E.K.)
| |
Collapse
|