1
|
Hao H, Tong J, Xu S, Wang J, Ding N, Liu Z, Zhao W, Huang X, Li Y, Jin C, Yang J. Does the deep learning-based iterative reconstruction affect the measuring accuracy of bone mineral density in low-dose chest CT? Br J Radiol 2025; 98:974-980. [PMID: 40127198 DOI: 10.1093/bjr/tqaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVES To investigate the impacts of a deep learning-based iterative reconstruction algorithm on image quality and measuring accuracy of bone mineral density (BMD) in low-dose chest CT. METHODS Phantom and patient studies were separately conducted in this study. The same low-dose protocol was used for phantoms and patients. All images were reconstructed with filtered back projection, hybrid iterative reconstruction (HIR) (KARL®, level of 3,5,7), and deep learning-based iterative reconstruction (artificial intelligence iterative reconstruction [AIIR], low, medium, and high strength). The noise power spectrum (NPS) and the task-based transfer function (TTF) were evaluated using phantom. The accuracy and the relative error (RE) of BMD were evaluated using a European spine phantom. The subjective evaluation was performed by 2 experienced radiologists. BMD was measured using quantitative CT (QCT). Image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), BMD values, and subjective scores were compared with Wilcoxon signed-rank test. The Cohen's kappa test was used to evaluate the inter-reader and inter-group agreement. RESULTS AIIR reduced noise and improved resolution on phantom images significantly. There were no significant differences among BMD values in all groups of images (all P > 0.05). RE of BMD measured using AIIR images was smaller. In objective evaluation, all strengths of AIIR achieved less image noise and higher SNR and CNR (all P < 0.05). AIIR-H showed the lowest noise and highest SNR and CNR (P < 0.05). The increase in AIIR algorithm strengths did not affect BMD values significantly (all P > 0.05). CONCLUSION The deep learning-based iterative reconstruction did not affect the accuracy of BMD measurement in low-dose chest CT while reducing image noise and improving spatial resolution. ADVANCES IN KNOWLEDGE The BMD values could be measured accurately in low-dose chest CT with deep learning-based iterative reconstruction while reducing image noise and improving spatial resolution.
Collapse
Affiliation(s)
- Hui Hao
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, P.R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, 710061, P.R. China
| | - Jiayin Tong
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, P.R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, 710061, P.R. China
| | - Shijie Xu
- Collaborative Innovation Department, United Imaging Healthcare, Shanghai 201800, P.R. China
| | - Jingyi Wang
- Collaborative Innovation Department, United Imaging Healthcare, Shanghai 201800, P.R. China
| | - Ningning Ding
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, P.R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, 710061, P.R. China
| | - Zhe Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, P.R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, 710061, P.R. China
| | - Wenzhe Zhao
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, P.R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, 710061, P.R. China
| | - Xin Huang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, P.R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, 710061, P.R. China
| | - Yanshou Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, P.R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, 710061, P.R. China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, P.R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, 710061, P.R. China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, P.R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, 710061, P.R. China
| |
Collapse
|
2
|
Sollmann N, Mei K, Löffler MT, Rühling S, Beer M, Zimmer C, Kirschke JS, Noël PB, Baum T, Carballido-Gamio J. Simulated low-dose multi-detector computed tomography: spatial effects on surrogate parameters of bone strength at the proximal femur. Osteoporos Int 2025; 36:917-928. [PMID: 40186637 PMCID: PMC12089198 DOI: 10.1007/s00198-025-07467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
This study investigated simulated tube current reduction and sparse sampling for low-dose computed tomography (CT) regarding volumetric bone mineral density (vBMD) and cortical bone thickness (Ct.Th) of the proximal femur. Sparse sampling with dose reductions of up to 90% may still allow extraction of bone strength parameters with clinically acceptable accuracy. INTRODUCTION We aimed to investigate effects of CT with simulated lowered tube current and sparse sampling on trabecular and cortical vBMD as well as Ct.Th of the entire proximal femur, its subregions, and with detailed spatial assessments. METHODS Clinical routine multi-detector CT (MDCT) scans covering the hips from 40 patients were used for simulations of low-dose imaging with 50% and 10% of the original tube current (D50, D10) or projections (P50, P10) combined with statistical iterative reconstruction (SIR), which were then compared against original data with full dose (D100 P100) regarding trabecular vBMD, cortical vBMD, and Ct.Th. An automated framework for multi-parametric assessments was used. Relative errors by comparing measures from original data and simulated low-dose data, regression analyses, Bland-Altman analyses, and statistical parametric mapping (SPM, to assess the spatial distribution of accuracy) were computed. RESULTS Sparse sampling enabled drastic reductions of radiation exposure (down to 10% of original imaging) while still producing determinants of bone strength with clinically acceptable relative changes. Lower biases according to Bland-Altman analyses were observed for sparse sampling compared to imaging with virtually lowered tube currents (D10 P100 versus D100 P10) regarding trabecular vBMD, cortical vBMD, as well as Ct.Th. Better accuracy across the whole proximal femur for D100 P50 than for D50 P100 and for D100 P10 than for D10 P100 was observed. CONCLUSIONS Sparse sampling with SIR may enable drastic reductions of radiation exposure (up to 90% of original doses) for opportunistically measuring image-based surrogate parameters of bone strength.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany.
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- TUM-Neuroimaging Center, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Kai Mei
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic and Interventional Radiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Sebastian Rühling
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julio Carballido-Gamio
- Department of Radiology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Yang TJ, Wen PP, Ye X, Wu XF, Zhang C, Sun SY, Wu ZX, Zhang GY, Sun YF, Ye R, Zhou CK, He HJ. CT Hounsfield units in assessing bone and soft tissue quality in the proximal femur: A systematic review focusing on osteonecrosis and total hip arthroplasty. PLoS One 2025; 20:e0319907. [PMID: 40138288 PMCID: PMC11940759 DOI: 10.1371/journal.pone.0319907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Computed tomography (CT) Hounsfield Units (HU) offer valuable insights into the changes in bone and soft tissue densities, playing a crucial role in the diagnosis and management of various proximal femur conditions. This systematic review aims to consolidate the application of HU in assessing tissue quality in the proximal femur, with a special focus on osteonecrosis of the femoral head (ONFH) and implications for total hip arthroplasty (THA), thereby addressing unresolved issues in these areas. METHODS We conducted a comprehensive literature search on MEDLINE/PubMed, EMBASE, Google Scholar, SpringerLink, Scops, Web of Science, and Bentham Science Publishers from inception to January 2024, following the PRISMA guidelines, to retrieve all studies relevant to the application of HU in assessing both bone and soft tissue quality of the proximal femur, particularly in the context of ONFH and THA. We systematically evaluated the key findings extracted from the included articles. RESULTS This systematic review included a total of 58 studies, involving 15,668 patients. The sample sizes ranged from 50 to 685, with the CT slice thickness varying from 0.5 mm to 10 mm. The results mainly focused on three areas: (1) the relationship between HU and the density of proximal femoral tissues (n = 33); (2) the assessment of HU in predicting the risk of femoral head collapse (n = 10); (3) the application of HU during the perioperative period of THA (n = 15). CONCLUSION (1) HU can effectively contribute to the evaluation of bone and soft tissue densities in the proximal femur, and reflect local stress changes. (2) In ONFH patients, bone density does not decrease in the necrotic area of the femoral head before collapse. However, abnormally elevated HU at the outer boundary of the necrotic lesion are significant in assessing collapse risk. (3) HU can be used to preoperatively assess hip bone quality for THA, guide surgical approaches, predict intraoperative fractures, monitor postoperative bone ingrowth or absorption, identify and quantitatively evaluate periprosthetic loosening, and guide postoperative rehabilitation.
Collapse
Affiliation(s)
- Tong-jie Yang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Chaoyang District, Beijing, China
| | - Peng-peng Wen
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xin Ye
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiao-feng Wu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Cheng Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Chaoyang District, Beijing, China
| | - Shi-yi Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Chaoyang District, Beijing, China
| | - Zi-xuan Wu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Chaoyang District, Beijing, China
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Guang-yi Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Chaoyang District, Beijing, China
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Yi-fei Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Chaoyang District, Beijing, China
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Ren Ye
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Cheng-kun Zhou
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Chaoyang District, Beijing, China
| | - Hai-jun He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
4
|
Zhu Y, Yip R, Jirapatnakul AC, Huang M, Cai Q, Dayan E, Liu L, Reeves AP, Henschke CI, Yankelevitz DF. Visual scoring of osteoporosis on low-dose CT in lung cancer screening population. Clin Imaging 2024; 109:110115. [PMID: 38547669 DOI: 10.1016/j.clinimag.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVES The risk factors for lung cancer screening eligibility, age as well as smoking history, are also present for osteoporosis. This study aims to develop a visual scoring system to identify osteoporosis that can be applied to low-dose CT scans obtained for lung cancer screening. MATERIALS AND METHODS We retrospectively reviewed 1000 prospectively enrolled participants in the lung cancer screening program at the Mount Sinai Hospital. Optimal window width and level settings for the visual assessment were chosen based on a previously described approach. Visual scoring of osteoporosis and automated measurement using dedicated software were compared. Inter-reader agreement was conducted using six readers with different levels of experience who independently visually assessed 30 CT scans. RESULTS Based on previously validated formulas for choosing window and level settings, we chose osteoporosis settings of Width = 230 and Level = 80. Of the 1000 participants, automated measurement was successfully performed on 774 (77.4 %). Among these, 138 (17.8 %) had osteoporosis. There was a significant correlation between the automated measurement and the visual score categories for osteoporosis (Kendall's Tau = -0.64, p < 0.0001; Spearman's rho = -0.77, p < 0.0001). We also found substantial to excellent inter-reader agreement on the osteoporosis classification among the 6 radiologists (Fleiss κ = 0.91). CONCLUSIONS Our study shows that a simple approach of applying specific window width and level settings to already reconstructed sagittal images obtained in the context of low-dose CT screening for lung cancer is highly feasible and useful in identifying osteoporosis.
Collapse
Affiliation(s)
- Yeqing Zhu
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy L. Place, New York, NY 10029, United States of America
| | - Rowena Yip
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy L. Place, New York, NY 10029, United States of America
| | - Artit C Jirapatnakul
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy L. Place, New York, NY 10029, United States of America
| | - Mingqian Huang
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy L. Place, New York, NY 10029, United States of America
| | - Qiang Cai
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy L. Place, New York, NY 10029, United States of America; Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Etan Dayan
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy L. Place, New York, NY 10029, United States of America
| | - Li Liu
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Anthony P Reeves
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, United States of America
| | - Claudia I Henschke
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy L. Place, New York, NY 10029, United States of America
| | - David F Yankelevitz
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy L. Place, New York, NY 10029, United States of America.
| |
Collapse
|
5
|
Mei K, Pasyar P, Geagan M, Liu LP, Shapira N, Gang GJ, Stayman JW, Noël PB. Design and fabrication of 3D-printed patient-specific soft tissue and bone phantoms for CT imaging. Sci Rep 2023; 13:17495. [PMID: 37840044 PMCID: PMC10577126 DOI: 10.1038/s41598-023-44602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023] Open
Abstract
The objective of this study is to create patient-specific phantoms for computed tomography (CT) that possess accurate densities and exhibit visually realistic image textures. These qualities are crucial for evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized calcium-doped filament to increase the Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility, and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in visual texture and contrast. Micro-CT analysis revealed minimal variations between prints, with an overall deviation of ± 0.8% in filament line spacing and ± 0.022 mm in line width. Measured differences between patient and phantom were less than 12 HU for soft tissue and 15 HU for bone marrow, and 514 HU for cortical bone. The calcium-doped filament accurately represented bony tissue structures across different X-ray energies in spectral CT (RMSE ranging from ± 3 to ± 28 HU, compared to 400 mg/ml hydroxyapatite). In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.
Collapse
Affiliation(s)
- Kai Mei
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Pouyan Pasyar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Geagan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leening P Liu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nadav Shapira
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grace J Gang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
6
|
Mei K, Pasyar P, Geagan M, Liu LP, Shapira N, Gang GJ, Stayman JW, Noël PB. Design and fabrication of 3D-printed patient-specific soft tissue and bone phantoms for CT imaging. RESEARCH SQUARE 2023:rs.3.rs-2828218. [PMID: 37162901 PMCID: PMC10168445 DOI: 10.21203/rs.3.rs-2828218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.
Collapse
|
7
|
Mei K, Pasyar P, Geagan M, Liu LP, Shapira N, Gang GJ, Stayman JW, Noël PB. Design and fabrication of 3D-printed patient-specific soft tissue and bone phantoms for CT imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.17.23288689. [PMID: 37162973 PMCID: PMC10168421 DOI: 10.1101/2023.04.17.23288689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.
Collapse
Affiliation(s)
- Kai Mei
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pouyan Pasyar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Geagan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leening P. Liu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nadav Shapira
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grace J. Gang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J. Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter B. Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany
| |
Collapse
|
8
|
Paprottka KJ, Kupfer K, Schultz V, Beer M, Zimmer C, Baum T, Kirschke JS, Sollmann N. Impact of radiation dose reduction and iterative image reconstruction on CT-guided spine biopsies. Sci Rep 2023; 13:5054. [PMID: 36977710 PMCID: PMC10050004 DOI: 10.1038/s41598-023-32102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
This study aimed to systematically evaluate the impact of dose reduction on image quality and confidence for intervention planning and guidance regarding computed tomography (CT)-based intervertebral disc and vertebral body biopsies. We retrospectively analyzed 96 patients who underwent multi-detector CT (MDCT) acquired for the purpose of biopsies, which were either derived from scanning with standard dose (SD) or low dose (LD; using tube current reduction). The SD cases were matched to LD cases considering sex, age, level of biopsy, presence of spinal instrumentation, and body diameter. All images for planning (reconstruction: "IMR1") and periprocedural guidance (reconstruction: "iDose4") were evaluated by two readers (R1 and R2) using Likert scales. Image noise was measured using attenuation values of paraspinal muscle tissue. The dose length product (DLP) was statistically significantly lower for LD scans regarding the planning scans (SD: 13.8 ± 8.2 mGy*cm, LD: 8.1 ± 4.4 mGy*cm, p < 0.01) and the interventional guidance scans (SD: 43.0 ± 48.8 mGy*cm, LD: 18.4 ± 7.3 mGy*cm, p < 0.01). Image quality, contrast, determination of the target structure, and confidence for planning or intervention guidance were rated good to perfect for SD and LD scans, showing no statistically significant differences between SD and LD scans (p > 0.05). Image noise was similar between SD and LD scans performed for planning of the interventional procedures (SD: 14.62 ± 2.83 HU vs. LD: 15.45 ± 3.22 HU, p = 0.24). Use of a LD protocol for MDCT-guided biopsies along the spine is a practical alternative, maintaining overall image quality and confidence. Increasing availability of model-based iterative reconstruction in clinical routine may facilitate further radiation dose reductions.
Collapse
Affiliation(s)
- Karolin J Paprottka
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Karina Kupfer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Vivian Schultz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
9
|
Computed Tomography of the Spine. Clin Neuroradiol 2022; 33:271-291. [DOI: 10.1007/s00062-022-01227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
AbstractThe introduction of the first whole-body CT scanner in 1974 marked the beginning of cross-sectional spine imaging. In the last decades, the technological advancement, increasing availability and clinical success of CT led to a rapidly growing number of CT examinations, also of the spine. After initially being primarily used for trauma evaluation, new indications continued to emerge, such as assessment of vertebral fractures or degenerative spine disease, preoperative and postoperative evaluation, or CT-guided interventions at the spine; however, improvements in patient management and clinical outcomes come along with higher radiation exposure, which increases the risk for secondary malignancies. Therefore, technical developments in CT acquisition and reconstruction must always include efforts to reduce the radiation dose. But how exactly can the dose be reduced? What amount of dose reduction can be achieved without compromising the clinical value of spinal CT examinations and what can be expected from the rising stars in CT technology: artificial intelligence and photon counting CT? In this article, we try to answer these questions by systematically reviewing dose reduction techniques with respect to the major clinical indications of spinal CT. Furthermore, we take a concise look on the dose reduction potential of future developments in CT hardware and software.
Collapse
|
10
|
Leuliet T, Maxim V, Peyrin F, Sixou B. Impact of the training loss in deep learning based CT reconstruction of bone microarchitecture. Med Phys 2022; 49:2952-2964. [PMID: 35218039 DOI: 10.1002/mp.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Computed tomography (CT) is a technique of choice to image bone structure at different scales. Methods to enhance the quality of degraded reconstructions obtained from low-dose CT data have shown impressive results recently, especially in the realm of supervised deep learning. As the choice of the loss function affects the reconstruction quality, it is necessary to focus on the way neural networks evaluate the correspondence between predicted and target images during the training stage. This is even more true in the case of bone microarchitecture imaging at high spatial resolution where both the quantitative analysis of Bone Mineral Density (BMD) and bone microstructure are essential for assessing diseases such as osteoporosis. Our aim is thus to evaluate the quality of reconstruction on key metrics for diagnosis depending on the loss function that has been used for training the neural network. METHODS We compare and analyze volumes that are reconstructed with neural networks trained with pixelwise, structural and adversarial loss functions or with a combination of them. We perform realistic simulations of various low-dose acquisitions of bone microarchitecture. Our comparative study is performed with metrics that have an interest regarding the diagnosis of bone diseases. We therefore focus on bone-specific metrics such as BV/TV, resolution, connectivity assessed with the Euler number and quantitative analysis of BMD to evaluate the quality of reconstruction obtained with networks trained with the different loss functions. RESULTS We find that using L1 norm as the pixelwise loss is the best choice compared to L2 or no pixelwise loss since it improves resolution without deteriorating other metrics. VGG perceptual loss, especially when combined with an adversarial loss, allows to better retrieve topological and morphological parameters of bone microarchitecture compared to SSIM. This however leads to a decreased resolution performance. The adversarial loss enchances the reconstruction performance in terms of BMD distribution accuracy. CONCLUSIONS In order to retrieve the quantitative and structural characteristics of bone microarchitecture that are essential for post-reconstruction diagnosis, our results suggest to use L1 norm as part of the loss function. Then, trade-offs should be made depending on the application: VGG perceptual loss improves accuracy in terms of connectivity at the cost of a deteriorated resolution, and adversarial losses help better retrieve BMD distribution while significantly increasing the training time. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Théo Leuliet
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Voichiţa Maxim
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Françoise Peyrin
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Bruno Sixou
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| |
Collapse
|
11
|
Qureshi SA, Rehman AU, Mir AA, Rafique M, Muhammad W. Simulated Annealing-Based Image Reconstruction for Patients With COVID-19 as a Model for Ultralow-Dose Computed Tomography. Front Physiol 2022; 12:737233. [PMID: 35095544 PMCID: PMC8795832 DOI: 10.3389/fphys.2021.737233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
The proposed algorithm of inverse problem of computed tomography (CT), using limited views, is based on stochastic techniques, namely simulated annealing (SA). The selection of an optimal cost function for SA-based image reconstruction is of prime importance. It can reduce annealing time, and also X-ray dose rate accompanying better image quality. In this paper, effectiveness of various cost functions, namely universal image quality index (UIQI), root-mean-squared error (RMSE), structural similarity index measure (SSIM), mean absolute error (MAE), relative squared error (RSE), relative absolute error (RAE), and root-mean-squared logarithmic error (RMSLE), has been critically analyzed and evaluated for ultralow-dose X-ray CT of patients with COVID-19. For sensitivity analysis of this ill-posed problem, the stochastically estimated images of lung phantom have been reconstructed. The cost function analysis in terms of computational and spatial complexity has been performed using image quality measures, namely peak signal-to-noise ratio (PSNR), Euclidean error (EuE), and weighted peak signal-to-noise ratio (WPSNR). It has been generalized for cost functions that RMSLE exhibits WPSNR of 64.33 ± 3.98 dB and 63.41 ± 2.88 dB for 8 × 8 and 16 × 16 lung phantoms, respectively, and it has been applied for actual CT-based image reconstruction of patients with COVID-19. We successfully reconstructed chest CT images of patients with COVID-19 using RMSLE with eighteen projections, a 10-fold reduction in radiation dose exposure. This approach will be suitable for accurate diagnosis of patients with COVID-19 having less immunity and sensitive to radiation dose.
Collapse
Affiliation(s)
- Shahzad Ahmad Qureshi
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Aziz Ul Rehman
- Agri & Biophotonics Division, National Institute of Lasers and Optronics College, PIEAS, Islamabad, Pakistan
| | - Adil Aslam Mir
- Department of Computer Engineering, Ankara Yıldırım Beyazıt University, Ankara, Turkey
- Department of Computer Science and Information Technology, King Abdullah Campus Chatter Kalas, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Rafique
- Department of Physics, King Abdullah Campus Chatter Kalas, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Wazir Muhammad
- Department of Physics, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
12
|
Dieckmeyer M, Löffler MT, El Husseini M, Sekuboyina A, Menze B, Sollmann N, Wostrack M, Zimmer C, Baum T, Kirschke JS. Level-Specific Volumetric BMD Threshold Values for the Prediction of Incident Vertebral Fractures Using Opportunistic QCT: A Case-Control Study. Front Endocrinol (Lausanne) 2022; 13:882163. [PMID: 35669688 PMCID: PMC9165054 DOI: 10.3389/fendo.2022.882163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To establish and evaluate the diagnostic accuracy of volumetric bone mineral density (vBMD) threshold values at different spinal levels, derived from opportunistic quantitative computed tomography (QCT), for the prediction of incident vertebral fractures (VF). MATERIALS AND METHODS In this case-control study, 35 incident VF cases (23 women, 12 men; mean age: 67 years) and 70 sex- and age-matched controls were included, based on routine multi detector CT (MDCT) scans of the thoracolumbar spine. Trabecular vBMD was measured from routine baseline CT scans of the thoracolumbar spine using an automated pipeline including vertebral segmentation, asynchronous calibration for HU-to-vBMD conversion, and correction of intravenous contrast medium (https://anduin.bonescreen.de). Threshold values at T1-L5 were calculated for the optimal operating point according to the Youden index and for fixed sensitivities (60 - 85%) in receiver operating characteristic (ROC) curves. RESULTS vBMD at each single level of the thoracolumbar spine was significantly associated with incident VFs (odds ratio per SD decrease [OR], 95% confidence interval [CI] at T1-T4: 3.28, 1.66-6.49; at T5-T8: 3.28, 1.72-6.26; at T9-T12: 3.37, 1.78-6.36; and at L1-L4: 3.98, 1.97-8.06), independent of adjustment for age, sex, and prevalent VF. AUC showed no significant difference between vertebral levels and was highest at the thoracolumbar junction (AUC = 0.75, 95%-CI = 0.63 - 0.85 for T11-L2). Optimal threshold values increased from lumbar (L1-L4: 52.0 mg/cm³) to upper thoracic spine (T1-T4: 69.3 mg/cm³). At T11-L2, T12-L3 and L1-L4, a threshold of 80.0 mg/cm³ showed sensitivities of 85 - 88%, and specificities of 41 - 49%. To achieve comparable sensitivity (85%) at more superior spinal levels, resulting thresholds were higher: 114.1 mg/cm³ (T1-T4), 92.0 mg/cm³ (T5-T8), 88.2 mg/cm³ (T9-T12). CONCLUSIONS At all levels of the thoracolumbar spine, lower vBMD was associated with incident VFs in an elderly, predominantly oncologic patient population. Automated opportunistic osteoporosis screening of vBMD along the entire thoracolumbar spine allows for risk assessment of imminent VFs. We propose level-specific vBMD threshold at the thoracolumbar spine to identify individuals at high fracture risk.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Michael Dieckmeyer,
| | - Maximilian Thomas Löffler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Malek El Husseini
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anjany Sekuboyina
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bjoern Menze
- Image-Based Biomedical Modeling, Department of Computer Science, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Maria Wostrack
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Stefan Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
13
|
Cao W, Shapira N, Maidment A, Daerr H, Noël PB. Hepatic dual-contrast CT imaging: slow triple kVp switching CT with CNN-based sinogram completion and material decomposition. J Med Imaging (Bellingham) 2022; 9:014003. [PMID: 35127967 PMCID: PMC8802083 DOI: 10.1117/1.jmi.9.1.014003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/03/2022] [Indexed: 02/02/2023] Open
Abstract
Purpose: Dual-contrast protocols are a promising clinical multienergy computed tomography (CT) application for focal liver lesion detection and characterization. One avenue to enable multienergy CT is the introduction of photon-counting detectors (PCD). Although clinical translation is highly desired because of the diagnostic benefits of PCDs, it will still be a decade or more before they are broadly available. In our work, we investigated an alternative solution that can be implemented on widely used conventional CT systems (single source and integrating detector) to perform multimaterial spectral decomposition for dual-contrast imaging. Approach: We propose to slowly alternate the x-ray tube voltage between 3 kVp levels so each kVp level covers a few degrees of gantry rotation. This leads to the challenge of sparsely sampled projection data in each energy level. Performing the material decomposition (MD) in the sinogram domain is not directly possible as the projection images of the three energy levels are not angularly aligned. In order to overcome this challenge, we developed a convolutional neural network (CNN) framework for sparse sinogram completion (SC) and MD. To evaluate the feasibility of the slow kVp switching scheme, simulation studies of an abdominal phantom, which included liver lesions, were conducted. Results: The line-integral SC network yielded sinograms with a pixel-wise RMSE < 0.05 of the line-integrals compared to the ground truth. This provided acceptable image quality up to a switching angle of 9 deg per kVp. The MD network we developed allowed us to differentiate iodine and gadolinium in the sinogram domain. The average relative quantification errors for iodine and gadolinium were below 10%. Conclusions: We developed a slow triple kVp switching data acquisition scheme and a CNN-based data processing pipeline. Results from a digital phantom validation illustrate the potential for future applications of dual-contrast agent protocols on practically available single-energy CT systems.
Collapse
Affiliation(s)
- Wenchao Cao
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Nadav Shapira
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Andrew Maidment
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Philadelphia, Pennsylvania, United States
| | | | - Peter B. Noël
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Philadelphia, Pennsylvania, United States,Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, München, Germany,Address all correspondencce to Peter B. Noël,
| |
Collapse
|
14
|
Prevost S. Beware! Some crucial information is left unattended on our myocardial perfusion scans! J Nucl Cardiol 2021; 28:2642-2643. [PMID: 31286421 DOI: 10.1007/s12350-019-01803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sylvain Prevost
- Nuclear Medicine and Radiobiology, CHUS, Université de Sherbrooke, 3001, 12e Ave Nord, Sherbrooke, J1H 5H3, Canada.
| |
Collapse
|
15
|
Meurer F, Kopp F, Renz M, Harder FN, Leonhardt Y, Bippus R, Noël PB, Makowski MR, Sauter AP. Sparse-sampling computed tomography for detection of endoleak after endovascular aortic repair (EVAR). Eur J Radiol 2021; 142:109843. [PMID: 34274842 DOI: 10.1016/j.ejrad.2021.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate sparse sampling computed tomography (SpSCT) for detection of endoleak after endovascular aortic repair (EVAR) at different dose levels in terms of subjective image criteria and diagnostic accuracy. METHODS Twenty clinically indicated computed tomography aortic angiography (CTA) scans were used to obtain simulated low-dose scans with 100%, 50%, 25%, 12.5% and 6.25% of the applicated clinical dose, resulting in five dose levels (DL). From full sampling (FS) data sets, every second (2-SpSCT) or fourth (4-SpSCT) projection was used to generate simulated sparse sampling scans. All examinations were evaluated by four blinded radiologists regarding subjective image criteria and diagnostic performance. RESULTS Sensitivity was higher than 93% in 4-SpSCT at the 25% DL which is the same as with FS at full dose (100% DL). High accuracies and relative high AUC-values were obtained for 2- and 4-SpSCT down to the 12.5% DL, while for FS similar values were shown down to 25% DL only. Subjective image quality was significantly higher for 4-SpSCT compared to FS at each dose level. More than 90% of all cases were rated with a high or medium confidence for FS and 2-SpSCT at the 50% DL and for 4-SpSCT at the 25% DL. At DL 25% and 12.5%, more cases showed a high confidence using 2- and 4-SpSCT compared with FS. CONCLUSIONS Via SpSCT, a dose reduction down to a 25% dose level (mean effective dose of 1.49 mSv in the current study) for CTA is possible while maintaining high image quality and full diagnostic confidence.
Collapse
Affiliation(s)
- Felix Meurer
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany.
| | - Felix Kopp
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Martin Renz
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Felix N Harder
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Yannik Leonhardt
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Rolf Bippus
- Philips Technologie GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Markus R Makowski
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Andreas P Sauter
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| |
Collapse
|
16
|
Dieckmeyer M, Rayudu NM, Yeung LY, Löffler M, Sekuboyina A, Burian E, Sollmann N, Kirschke JS, Baum T, Subburaj K. Prediction of incident vertebral fractures in routine MDCT: Comparison of global texture features, 3D finite element parameters and volumetric BMD. Eur J Radiol 2021; 141:109827. [PMID: 34225250 DOI: 10.1016/j.ejrad.2021.109827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE In this case-control study, we evaluated different quantitative parameters derived from routine multi-detector computed tomography (MDCT) scans with respect to their ability to predict incident osteoporotic vertebral fractures of the thoracolumbar spine. METHODS 16 patients who received baseline and follow-up contrast-enhanced MDCT and were diagnosed with an incident osteoporotic vertebral fracture at follow-up, and 16 age-, sex-, and follow-up-time-matched controls were included in the study. Vertebrae were labelled and segmented using a fully automated pipeline. Volumetric bone mineral density (vBMD), finite element analysis (FEA)-based failure load (FL) and failure displacement (FD), as well as 24 texture features were extracted from L1 - L3 and averaged. Odds ratios (OR) with 95% confidence intervals (CI), expressed per standard deviation decrease, receiver operating characteristic (ROC) area under the curve (AUC), as well as logistic regression models, including all analyzed parameters as independent variables, were used to assess the prediction of incident vertebral fractures. RESULTS The texture feature Correlation (AUC = 0.754, p = 0.014; OR = 2.76, CI = 1.16-6.58) and vBMD (AUC = 0.750, p = 0.016; OR = 2.67, CI = 1.12-6.37) classified incident vertebral fractures best, while the best FEA-based parameter FL showed an AUC = 0.719 (p = 0.035). Correlation was the only significant predictor of incident fractures in the logistic regression analysis of all parameters (p = 0.022). CONCLUSION MDCT-derived FEA parameters and texture features, averaged from L1 - L3, showed only a moderate, but no statistically significant improvement of incident vertebral fracture prediction beyond BMD, supporting the hypothesis that vertebral-specific parameters may be superior for fracture risk assessment.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Nithin Manohar Rayudu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Long Yu Yeung
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Maximilian Löffler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Radiology, University Medical Center, Albert-Ludwigs-University Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | - Anjany Sekuboyina
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Karupppasamy Subburaj
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore.
| |
Collapse
|
17
|
Liu Z, Zhang Y, Liu Z, Kong J, Huang D, Zhang X, Jiang Y. Dual-Energy Computed Tomography Virtual Noncalcium Technique in Diagnosing Osteoporosis: Correlation With Quantitative Computed Tomography. J Comput Assist Tomogr 2021; 45:452-457. [PMID: 34297514 PMCID: PMC8132909 DOI: 10.1097/rct.0000000000001168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/13/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate dual-energy computed tomography (CT) virtual noncalcium (VNCa) technique as a means of quantifying osteoporosis. METHODS Dual-energy CT scans were obtained prospectively, targeting lumbar regions of 55 patients with chronic low back pain. A standard quantitative CT (QCT) phantom was positioned at the waist during each procedure, using proprietary software (QCT Pro; Mindways, Tex) to measure bone mineral density (BMD) in each vertebral body. Vendor dual-energy analytic software was altered with a specially modified configuration file to produce a "Virtual Non Calcium" or "VNCa" output, as such output variables were remapped to produce the following calcium values rather than iodine, yielding the following QCT parameters: CT value of calcium (originally "contrast media" [CM]), CT value of mixed energy imaging (regular CT value [rCT]), calcium density (originally "contrast agent density" [CaD]), and fat fraction (FF). Pearson test served to assess correlations between BMD and these parameters. Multiple linear regression analysis was applied to construct an equation for generating regressive BMD (rBMD) values. In gauging diagnostic accuracies, the criterion-standard BMD cutoff point (<80 mg/cm3) was adopted for QCT, whereas the rBMD threshold was defined by receiver operating characteristic curve. RESULTS Contrast media, rCT, CaD, and FF values (reflecting CT value of calcium, regular CT value, calcium density, and fat fraction, respectively) significantly correlated with BMD (r values: 0.885, 0.947, 0.877, and 0.492, respectively; all P < 0.01). Contrast media, CaD, and FF showed independent associations with BMD; the regressive equation was formulated as follows: rBMD = 54.82 - 0.19 × CM + 20.03 × CaD - 1.24 × FF. The area under the curve of rBMD in diagnosing osteoporosis was 0.966 ± 0.009 (P < 0.01). At an rBMD threshold of less than 81.94 mg/cm3, sensitivity and specificity were 90.0% and 92.0%, respectively. CONCLUSIONS Dual-energy CT VNCa technique may constitute a valid alternative method for quantifying the mineral content and marrow fat composition of bone in diagnostic assessments of osteoporosis.
Collapse
Affiliation(s)
- Zhenghua Liu
- From the Department of Radiology, Xi'an Jiaotong University Affiliated Honghui Hospital
| | - Yuting Zhang
- From the Department of Radiology, Xi'an Jiaotong University Affiliated Honghui Hospital
| | - Zhou Liu
- Department of Radiology, Xi'an International Medical Center Hospital
| | - Jiangtao Kong
- From the Department of Radiology, Xi'an Jiaotong University Affiliated Honghui Hospital
| | - Dageng Huang
- Department of Spinal Surgery, Xi'an Jiaotong University Affiliated Honghui Hospital
| | | | - Yonghong Jiang
- From the Department of Radiology, Xi'an Jiaotong University Affiliated Honghui Hospital
| |
Collapse
|
18
|
Low-Dose MDCT of Patients With Spinal Instrumentation Using Sparse Sampling: Impact on Metal Artifacts. AJR Am J Roentgenol 2021; 216:1308-1317. [PMID: 33703925 DOI: 10.2214/ajr.20.23083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE. The purpose of our study was to evaluate simulated sparse-sampled MDCT combined with statistical iterative reconstruction (SIR) for low-dose imaging of patients with spinal instrumentation. MATERIALS AND METHODS. Thirty-eight patients with implanted hardware after spinal instrumentation (24 patients with short- or long-term instrumentation-related complications [i.e., adjacent segment disease, screw loosening or implant failure, or postoperative hematoma or seroma] and 14 control subjects with no complications) underwent MDCT. Scans were simulated as if they were performed with 50% (P50), 25% (P25), 10% (P10), and 5% (P5) of the projections of the original acquisition using an in-house-developed SIR algorithm for advanced image reconstructions. Two readers performed qualitative image evaluations of overall image quality and artifacts, image contrast, inspection of the spinal canal, and diagnostic confidence (1 = high, 2 = medium, and 3 = low confidence). RESULTS. Although overall image quality decreased and artifacts increased with reductions in the number of projections, all complications were detected by both readers when 100% of the projections of the original acquisition (P100), P50, and P25 imaging data were used. For P25 data, diagnostic confidence was still high (mean score ± SD: reader 1, 1.2 ± 0.4; reader 2, 1.3 ± 0.5), and interreader agreement was substantial to almost perfect (weighted Cohen κ = 0.787-0.855). The mean volumetric CT dose index was 3.2 mGy for P25 data in comparison with 12.6 mGy for the original acquisition (P100 data). CONCLUSION. The use of sparse sampling and SIR for low-dose MDCT in patients with spinal instrumentation facilitated considerable reductions in radiation exposure. The use of P25 data with SIR resulted in no missed complications related to spinal instrumentation and allowed high diagnostic confidence, so using only 25% of the projections is probably enough for accurate and confident diagnostic detection of major instrumentation-related complications.
Collapse
|
19
|
Yeung LY, Rayudu NM, Löffler M, Sekuboyina A, Burian E, Sollmann N, Dieckmeyer M, Greve T, Kirschke JS, Subburaj K, Baum T. Prediction of Incidental Osteoporotic Fractures at Vertebral-Specific Level Using 3D Non-Linear Finite Element Parameters Derived from Routine Abdominal MDCT. Diagnostics (Basel) 2021; 11:208. [PMID: 33573295 PMCID: PMC7911185 DOI: 10.3390/diagnostics11020208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
To investigate whether finite element (FE) analysis of the spine in routine thoracic/abdominal multi-detector computed tomography (MDCT) can predict incidental osteoporotic fractures at vertebral-specific level; Baseline routine thoracic/abdominal MDCT scans of 16 subjects (8(m), mean age: 66.1 ± 8.2 years and 8(f), mean age: 64.3 ± 9.5 years) who sustained incidental osteoporotic vertebral fractures as confirmed in follow-up MDCTs were included in the current study. Thoracic and lumbar vertebrae (T5-L5) were automatically segmented, and bone mineral density (BMD), finite element (FE)-based failure-load, and failure-displacement were determined. These values of individual vertebrae were normalized globally (g), by dividing the absolute value with the average of L1-3 and locally by dividing the absolute value with the average of T5-12 and L1-5 for thoracic and lumbar vertebrae, respectively. Mean-BMD of L1-3 was determined as reference. Receiver operating characteristics (ROC) and area under the curve (AUC) were calculated for different normalized FE (Kload, Kdisplacement,K(load)g, and K(displacement)g) and BMD (KBMD, and K(BMD)g) ratio parameter combinations for identifying incidental fractures. Kload, K(load)g, KBMD, and K(BMD)g showed significantly higher discriminative power compared to standard mean BMD of L1-3 (BMDStandard) (AUC = 0.67 for Kload; 0.64 for K(load)g; 0.64 for KBMD; 0.61 for K(BMD)g vs. 0.54 for BMDStandard). The combination of Kload, Kdisplacement, and KBMD increased the AUC further up to 0.77 (p < 0.001). The combination of FE with BMD measurements derived from routine thoracic/abdominal MDCT allowed an improved prediction of incidental fractures at vertebral-specific level.
Collapse
Affiliation(s)
- Long Yu Yeung
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore; (L.Y.Y.); (N.M.R.)
| | - Nithin Manohar Rayudu
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore; (L.Y.Y.); (N.M.R.)
| | - Maximilian Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany; (M.L.); (A.S.); (E.B.); (N.S.); (M.D.); (T.G.); (J.S.K.); (T.B.)
| | - Anjany Sekuboyina
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany; (M.L.); (A.S.); (E.B.); (N.S.); (M.D.); (T.G.); (J.S.K.); (T.B.)
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany; (M.L.); (A.S.); (E.B.); (N.S.); (M.D.); (T.G.); (J.S.K.); (T.B.)
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany; (M.L.); (A.S.); (E.B.); (N.S.); (M.D.); (T.G.); (J.S.K.); (T.B.)
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany; (M.L.); (A.S.); (E.B.); (N.S.); (M.D.); (T.G.); (J.S.K.); (T.B.)
| | - Tobias Greve
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany; (M.L.); (A.S.); (E.B.); (N.S.); (M.D.); (T.G.); (J.S.K.); (T.B.)
- Department of Neurosurgery, Ludwig-Maximilians-University, Marchioninistraße 15, 81377 Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany; (M.L.); (A.S.); (E.B.); (N.S.); (M.D.); (T.G.); (J.S.K.); (T.B.)
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Karupppasamy Subburaj
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore; (L.Y.Y.); (N.M.R.)
- Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany; (M.L.); (A.S.); (E.B.); (N.S.); (M.D.); (T.G.); (J.S.K.); (T.B.)
| |
Collapse
|
20
|
Almashraqi AA, Barngkgei I, Halboub ES, Al-Maweri SA, Al-Wesabi MA, Al-Kamel A, Alhammadi MS, Alamir AH. Cone beam computed tomography findings in the temporomandibular joints of chronic qat chewers: Radiographic bone density and trabecular microstructural analyses. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 132:465-474. [PMID: 33478931 DOI: 10.1016/j.oooo.2020.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/05/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES This cross-sectional comparative study investigated the effects of qat chewing habit on the radiographic bone density (RBD) and trabecular microstructure of temporomandibular joint condyles using cone beam computed tomography (CBCT). STUDY DESIGN In total, 85 systemically healthy Yemeni males were included and divided into qat chewers (QCs; n = 41); and non-qat chewers (NQCs; n = 44). The participants responded to a structured questionnaire and underwent standardized clinical examination and CBCT scanning of the temporomandibular joint. Measurements of RBD and trabecular microstructure (trabecular thickness, trabecular separation, bone volume fraction, and fractal dimension) were performed. Statistical significance was established at P ≤ .05. RESULTS No statistically significant differences were found between QCs and NQCs in RBD or trabecular microstructure. The mean standard deviations and maximum values of trabecular separation on the nonchewing side for QCs were significantly lower compared to the corresponding values for NQCs (0.60 and 2.68 for QCs vs 0.72 and 3.05 for NQCs; P = .025 and .05, respectively). A comparison between chewing and nonchewing sides in QCs revealed no significant differences. CONCLUSIONS Qat chewing habit induces insignificant changes in condylar RBD and trabecular microstructure as detected by CBCT. Further studies using advanced radiographic techniques are warranted.
Collapse
Affiliation(s)
- Abeer A Almashraqi
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia; Department of Oral Radiology, Faculty of Dentistry, Ibb University, Ibb, Yemen.
| | - Imad Barngkgei
- Department of Oral Medicine, Faculty of Dentistry, Al-Wataniya Private University, Hama, Syria
| | - Esam S Halboub
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia; Department of Oral Medicine, Oral Pathology and Oral Radiology, Faculty of Dentistry, Sana'a University, Yemen.
| | - Sadeq A Al-Maweri
- Department of Oral Medicine and Diagnostic Sciences, AlFarabi Colleges for Dentistry and Nursing, Riyadh, Saudi Arabia; Department of Oral Medicine, Oral Pathology and Oral Radiology, Faculty of Dentistry, Sana'a University, Yemen
| | - Mohammed A Al-Wesabi
- Department of Preventive and Biomedical Science, Faculty of Dentistry, University of Science and Technology, Sana'a,Yemen
| | - Ahlam Al-Kamel
- Department of Preventive and Biomedical Science, Faculty of Dentistry, University of Science and Technology, Sana'a,Yemen
| | - Maged S Alhammadi
- Department of Preventive Dental Sciences, Division of Orthodontics and Dentofacial Orthopedics, College of Dentistry, Jazan University, Jazan, Saudi Arabia; Department of Orthodontics and Dentofacial Orthopedics, Faculty of Dentistry, Ibb University, Ibb, Yemen
| | - Abdulwahab H Alamir
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
21
|
Auger JD, Frings N, Wu Y, Marty AG, Morgan EF. Trabecular Architecture and Mechanical Heterogeneity Effects on Vertebral Body Strength. Curr Osteoporos Rep 2020; 18:716-726. [PMID: 33215364 PMCID: PMC7891914 DOI: 10.1007/s11914-020-00640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW We aimed to synthesize the recent work on the intra-vertebral heterogeneity in density, trabecular architecture and mechanical properties, its implications for fracture risk, its association with degeneration of the intervertebral discs, and its implications for implant design. RECENT FINDINGS As compared to the peripheral regions of the centrum, the central region of the vertebral body exhibits lower density and more sparse microstructure. As compared to the anterior region, the posterior region shows higher density. These variations are more pronounced in vertebrae from older persons and in those adjacent to degenerated discs. Mixed results have been reported in regard to variation along the superior-inferior axis and to relationships between the heterogeneity in density and vertebral strength and fracture risk. These discrepancies highlight that, first, despite the large amount of study of the intra-vertebral heterogeneity in microstructure, direct study of that in mechanical properties has lagged, and second, more measurements of vertebral loading are needed to understand how the heterogeneity affects distributions of stress and strain in the vertebra. These future areas of study are relevant not only to the question of spine fractures but also to the design and selection of implants for spine fusion and disc replacement. The intra-vertebral heterogeneity in microstructure and mechanical properties may be a product of mechanical adaptation as well as a key determinant of the ability of the vertebral body to withstand a given type of loading.
Collapse
Affiliation(s)
- Joshua D Auger
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Neilesh Frings
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Yuanqiao Wu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Andre Gutierrez Marty
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Hamard A, Greffier J, Bastide S, Larbi A, Addala T, Sadate A, Beregi JP, Frandon J. Ultra-low-dose CT versus radiographs for minor spine and pelvis trauma: a Bayesian analysis of accuracy. Eur Radiol 2020; 31:2621-2633. [PMID: 33034747 DOI: 10.1007/s00330-020-07304-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 08/08/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To compare diagnosis performance and effective dose of ultra-low-dose CT (ULD CT) versus radiographs in suspected spinal or pelvic ring or hip fracture for minor trauma. METHODS ULD CT, in addition to radiography, was prospectively performed in consecutive patients admitted to the emergency department for minor traumas, during working hours over 2 months. Presence of a recent fracture was assessed by two blind radiologists independently. Sensitivities and specificities were estimated using the best valuable comparator (BVC) as a reference and using a latent class model in Bayesian inference (BLCM). Dosimetric indicators were recorded and effective doses (E) were calculated using conversion coefficient. RESULTS Eighty areas were analyzed in 69 patients, including 22 dorsal spine, 28 lumbar spine, and 30 pelvic ring/hip. Thirty-six fractures (45%) were observed. Applying the BVC method, depending on location, ULD CT sensitivity was 80 to 100% for reader 1 and 85 to 100% for reader 2, whereas radiographic sensitivity was 60 to 85% for reader 1 and 50 to 92% for reader 2. With BLCM approach for reader 2, ULD CT sensitivity for all locations/dorsal spine/lumbar spine and pelvic ring-hip was 87.1/75.9/84.2/76.9% respectively. Corresponding radiograph sensitivity was 73.8, 54.8, 80.4, and 68.7%. Effective doses of ULD CT were similar to radiographs for dorsal and hip locations whereas for lumbar spine, ULD CT effective dose was 1.83 ± 0.59 mSv compared with 0.96 ± 0.59 mSv (p < 0.001). CONCLUSION Sensitivity for fracture detection was higher for ULD CT compared with radiographs with an effective dose comparable to radiographs. KEY POINTS • Ultra-low-dose spine and pelvis CT demonstrates better fracture detection when compared with radiographs. • The effective dose of ultra-low-dose spine and pelvis CT scan and radiographs is comparable. • Replacement of radiographs by ULD CT in daily practice for trauma patients is an option to consider and should be evaluated by a randomized trial.
Collapse
Affiliation(s)
- Aymeric Hamard
- Medical Imaging Group, CHU Nimes, Univ Montpellier, Montpellier, France.
| | - Joel Greffier
- Medical Imaging Group, CHU Nimes, Univ Montpellier, Montpellier, France
| | - Sophie Bastide
- Department of Biostatistics, Epidemiology, Public Health and Innovation in Methodology (BESPIM), CHU Nimes, Univ Montpellier, Montpellier, France
| | - Ahmed Larbi
- Medical Imaging Group, CHU Nimes, Univ Montpellier, Montpellier, France
| | - Takieddine Addala
- Medical Imaging Group, CHU Nimes, Univ Montpellier, Montpellier, France
| | - Alexandre Sadate
- Medical Imaging Group, CHU Nimes, Univ Montpellier, Montpellier, France
| | - Jean-Paul Beregi
- Medical Imaging Group, CHU Nimes, Univ Montpellier, Montpellier, France
| | - Julien Frandon
- Medical Imaging Group, CHU Nimes, Univ Montpellier, Montpellier, France
| |
Collapse
|
23
|
Low-dose MDCT: evaluation of the impact of systematic tube current reduction and sparse sampling on the detection of degenerative spine diseases. Eur Radiol 2020; 31:2590-2600. [PMID: 32945965 PMCID: PMC7979597 DOI: 10.1007/s00330-020-07278-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/29/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To investigate potential radiation dose reduction for multi-detector computed tomography (MDCT) exams of the spine by using sparse sampling and virtually lowered tube currents combined with statistical iterative reconstruction (SIR). METHODS MDCT data of 26 patients (68.9 ± 11.7 years, 42.3% males) were retrospectively simulated as if the scans were acquired at 50%, 10%, 5%, and 3% of the original X-ray tube current or number of projections, using SIR for image reconstructions. Two readers performed qualitative image evaluation considering overall image quality, artifacts, and contrast and determined the number and type of degenerative changes. Scoring was compared between readers and virtual low-dose and sparse-sampled MDCT, respectively. RESULTS Image quality and contrast decreased with virtual lowering of tube current and sparse sampling, but all degenerative changes were correctly detected in MDCT with 50% of tube current as well as MDCT with 50% of projections. Sparse-sampled MDCT with only 10% of initial projections still enabled correct identification of all degenerative changes, in contrast to MDCT with virtual tube current reduction by 90% where non-calcified disc herniations were frequently missed (R1: 23.1%, R2: 21.2% non-diagnosed herniations). The average volumetric CT dose index (CTDIvol) was 1.4 mGy for MDCT with 10% of initial projections, compared with 13.8 mGy for standard-dose imaging. CONCLUSIONS MDCT with 50% of original tube current or projections using SIR still allowed for accurate diagnosis of degenerative changes. Sparse sampling may be more promising for further radiation dose reductions since no degenerative changes were missed with 10% of initial projections. KEY POINTS • Most common degenerative changes of the spine can be diagnosed in multi-detector CT with 50% of tube current or number of projections. • Sparse-sampled multi-detector CT with only 10% of initial projections still enables correct identification of degenerative changes, in contrast to imaging with 10% of original tube current. • Sparse sampling may be a promising option for distinct lowering of radiation dose, reducing the CTDIvol from 13.8 to 1.4 mGy in the study cohort.
Collapse
|
24
|
Establishment of Submillisievert Abdominal CT Protocols With an In Vivo Swine Model and an Anthropomorphic Phantom. AJR Am J Roentgenol 2020; 215:685-694. [DOI: 10.2214/ajr.19.22053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Accuracy, agreement, and reliability of DECT-derived vBMD measurements: an initial ex vivo study. Eur Radiol 2020; 31:191-199. [PMID: 32757052 DOI: 10.1007/s00330-020-07118-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To assess the agreement and reliability of DECT (dual-energy CT)-derived vBMD (volumetric bone mineral density) measurements from excised human femoral heads and to compare DECT-derived BMD with that measured by DXA (dual-energy X-ray absorptiometry) and QCT (quantitative CT) to determine its accuracy. METHODS Twenty patients that underwent total hip arthroplasty were enrolled to this study. Femoral heads were excised to rectangles without cortical bones for scanning. A dual-source DECT scanner generated images under 80/Sn140 kVp and 100/Sn140 kVp scanning conditions. Specimens were subsequently scanned by QCT and DXA to produce QCT-derived vBMD (mg/cm3) and DXA-derived BMM (bone mineral mass, g). DECT images were loaded to a post-processing workstation to calculate DECT-derived vBMD and BMM. RESULTS Higher DECT-derived vBMD and BMM were found under 80/Sn140 and 100/Sn140 kVp compared with those for QCT and DXA (p = 0.005). DECT-derived vBMD was highly correlated with QCT-derived vBMD (r = 0.961 ~ 0.993, p < 0.05). Similarly, DECT-derived BMM was strongly correlated with DXA-derived BMM (r = 0.927 ~ 0.943, p < 0.05). Agreement of the inter- and intra-observation of DECT-derived vBMD was excellent. Linear regression was carried out to calibrate DECT-derived vBMD of 80/Sn140 kVp (14 + 0.7 × DECT-derived vBMD) and 100/Sn140 kVp (74 + 0.4 × DECT-derived vBMD) with the reference of QCT-derived vBMD. After calibration, excellent agreement was found for vBMD and BMM within various imaging modalities. CONCLUSIONS Our study showed that DECT-derived vBMD exhibited high agreement and reliability features, and after calibration, it also displayed a high degree of accuracy. However, in vivo studies are needed to extend its potential utility in clinical settings. KEY POINTS • Measurements of DECT-derived vBMD had high intra- and inter-observer agreement and reliability. • Measurements of DECT-derived vBMD and BMM had a high correlation with those derived from QCT and DXA. • DECT-derived vBMD and BMM were accurate after calibration compared with QCT and DXA.
Collapse
|
26
|
Cornacchia S, La Tegola L, Maldera A, Pierpaoli E, Tupputi U, Ricatti G, Eusebi L, Salerno S, Guglielmi G. Radiation protection in non-ionizing and ionizing body composition assessment procedures. Quant Imaging Med Surg 2020; 10:1723-1738. [PMID: 32742963 PMCID: PMC7378088 DOI: 10.21037/qims-19-1035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/08/2020] [Indexed: 01/06/2023]
Abstract
Body composition assessment (BCA) represents a valid instrument to evaluate nutritional status through the quantification of lean and fat tissue, in healthy subjects and sick patients. According to the clinical indication, body composition (BC) can be assessed by different modalities. To better analyze radiation risks for patients involved, BCA procedures can be divided into two main groups: the first based on the use of ionizing radiation (IR), involving dual energy X-ray absorptiometry (DXA) and computed tomography (CT), and others based on non-ionizing radiation (NIR) [magnetic resonance imaging (MRI)]. Ultrasound (US) techniques using mechanical waves represent a separate group. The purpose of our study was to analyze publications about IR and NIR effects in order to make physicians aware about the risks for patients undergoing medical procedures to assess BCA providing to guide them towards choosing the most suitable method. To this end we reported the biological effects of IR and NIR and their associated risks, with a special regard to the excess risk of death from radio-induced cancer. Furthermore, we reported and compared doses obtained from different IR techniques, giving practical indications on the optimization process. We also summarized current recommendations and limits for techniques employing NIR and US. The authors conclude that IR imaging procedures carry relatively small individual risks that are usually justified by the medical need of patients, especially when the optimization principle is applied. As regards NIR imaging procedures, a few studies have been conducted on interactions between electromagnetic fields involved in MR exam and biological tissue. To date, no clear link exists between MRI or associated magnetic and pulsed radio frequency (RF) fields and subsequent health risks, whereas acute effects such as tissue burns and phosphenes are well-known; as regards the DNA damage and the capability of NIR to break chemical bonds, they are not yet robustly demonstrated. MRI is thus considered to be very safe for BCA as well US procedures.
Collapse
Affiliation(s)
- Samantha Cornacchia
- Medical Physics Unit, Dimiccoli Hospital Barletta, Barletta, ASL Barletta-Andria-Trani, Italy
| | - Luciana La Tegola
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Arcangela Maldera
- Medical Physics Unit, Dimiccoli Hospital Barletta, Barletta, ASL Barletta-Andria-Trani, Italy
| | | | - Umberto Tupputi
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Giovanni Ricatti
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | | | - Sergio Salerno
- Department of Radiology, University of Palermo, Palermo, Italy
| | - Giuseppe Guglielmi
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
- “Dimiccoli” Hospital, University Campus of Barletta, Barletta, Italy
| |
Collapse
|
27
|
Radiation dose reduction for CT-guided intrathecal nusinersen administration in adult patients with spinal muscular atrophy. Sci Rep 2020; 10:3406. [PMID: 32099042 PMCID: PMC7042284 DOI: 10.1038/s41598-020-60240-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Intrathecal administration of nusinersen in adult spinal muscular atrophy (SMA) patients with scoliosis and spondylodesis requires image guidance, which is preferably achieved with multi-detector computed tomography (MDCT). As long-term treatment is necessary and patients are young, radiation doses should be reduced to a minimum whilst a sufficient image quality for precise interventional performance should be kept. We compared 44 MDCT standard-dose scans (133.0–200.0 mA) with a hybrid iterative reconstruction (iDose4) to 20 low-dose scans (20.0–67.0 mA) with iterative model reconstruction (IMR), which were performed for procedure planning of intrathecal nusinersen administration in 13 adult patients with SMA and complex spinal conditions. Qualitative image evaluation, including confidence for intervention planning, was performed by two neuroradiologists for standard- and low-dose scans. All 64 MDCT-guided intrathecal administrations of nusinersen were successful. The dose length product (DLP) was significantly lower when using low-dose scanning with IMR (median DLP of standard-dose scans: 92.0 mGy•cm vs. low-dose scans: 34.5 mGy•cm; p < 0.0001). Image quality was significantly reduced for low-dose compared to standard-dose scanning. However, bone/soft tissue contrast and confidence for intervention planning were not significantly impaired in low-dose MDCT according to both readers, showing good inter-reader agreement. Thus, we hereby demonstrate a low-dose MDCT protocol combined with advanced image reconstruction for scanning during procedure planning as a viable option for image guidance in intrathecal nusinersen treatment of adult SMA patients with complex spinal conditions.
Collapse
|
28
|
Rayudu NM, Anitha DP, Mei K, Zoffl F, Kopp FK, Sollmann N, Löffler MT, Kirschke JS, Noël PB, Subburaj K, Baum T. Low-dose and sparse sampling MDCT-based femoral bone strength prediction using finite element analysis. Arch Osteoporos 2020; 15:17. [PMID: 32088769 DOI: 10.1007/s11657-020-0708-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED This study aims to evaluate the impact of dose reduction through tube current and sparse sampling on multi-detector computed tomography (MDCT)-based femoral bone strength prediction using finite element (FE) analysis. FE-predicted femoral failure load obtained from MDCT scan data was not significantly affected by 50% dose reductions through sparse sampling. Further decrease in dose through sparse sampling (25% of original projections) and virtually reduced tube current (50% and 25% of the original dose) showed significant effects on the FE-predicted failure load results. PURPOSE To investigate the effect of virtually reduced tube current and sparse sampling on multi-detector computed tomography (MDCT)-based femoral bone strength prediction using finite element (FE) analysis. METHODS Routine MDCT data covering the proximal femur of 21 subjects (17 males; 4 females; mean age, 71.0 ± 8.8 years) without any bone diseases aside from osteoporosis were included in this study. Fifty percent and 75% dose reductions were achieved by virtually reducing tube current and by applying a sparse sampling strategy from the raw image data. Images were then reconstructed with a statistically iterative reconstruction algorithm. FE analysis was performed on all reconstructed images and the failure load was calculated. The root mean square coefficient of variation (RMSCV) and coefficient of correlation (R2) were calculated to determine the variation in the FE-predicted failure load data for dose reductions, using original-dose MDCT scan as the standard of reference. RESULTS Fifty percent dose reduction through sparse sampling showed lower RMSCV and higher correlations when compared with virtually reduced tube current method (RMSCV = 5.70%, R2 = 0.96 vs. RMSCV = 20.78%, R2 = 0.79). Seventy-five percent dose reduction achieved through both methods (RMSCV = 22.38%, R2 = 0.80 for sparse sampling; RMSCV = 24.58%, R2 = 0.73 for reduced tube current) could not predict the failure load accurately. CONCLUSION Our simulations indicate that up to 50% reduction in radiation dose through sparse sampling can be used for FE-based prediction of femoral failure load. Sparse-sampled MDCT may allow fracture risk prediction and treatment monitoring in osteoporosis with less radiation exposure in the future.
Collapse
Affiliation(s)
- Nithin Manohar Rayudu
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487372, Singapore
| | - D Praveen Anitha
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487372, Singapore
| | - Kai Mei
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Florian Zoffl
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Felix K Kopp
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karupppasamy Subburaj
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487372, Singapore.
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
29
|
Löffler MT, Sollmann N, Mei K, Valentinitsch A, Noël PB, Kirschke JS, Baum T. X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int 2020; 31:233-250. [PMID: 31728606 DOI: 10.1007/s00198-019-05212-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a metabolic bone disease with a high prevalence that affects the population worldwide, particularly the elderly. It is often due to fractures associated with bone fragility that the diagnosis of osteoporosis becomes clinically evident. However, early diagnosis would be necessary to initiate therapy and to prevent occurrence of further fractures, thus reducing morbidity and mortality. X-ray-based imaging plays a key role for fracture risk assessment and monitoring of osteoporosis. Whereas over decades dual-energy X-ray absorptiometry (DXA) has been the main method used and still reflects the reference standard, another modality reemerges with quantitative computed tomography (QCT) because of its three-dimensional advantages and the opportunistic exploitation of routine CT scans. Against this background, this article intends to review and evaluate recent advances in the field of X-ray-based quantitative imaging of osteoporosis at the spine. First, standard DXA with the recent addition of trabecular bone score (TBS) is presented. Secondly, standard QCT, dual-energy BMD quantification, and opportunistic BMD screening in non-dedicated CT exams are discussed. Lastly, finite element analysis and microstructural parameter analysis are reviewed.
Collapse
Affiliation(s)
- M T Löffler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - N Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - K Mei
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A Valentinitsch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - P B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - T Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
30
|
Rayudu NM, Subburaj K, Mei K, Dieckmeyer M, Kirschke JS, Noël PB, Baum T. Finite Element Analysis-Based Vertebral Bone Strength Prediction Using MDCT Data: How Low Can We Go? Front Endocrinol (Lausanne) 2020; 11:442. [PMID: 32849260 PMCID: PMC7399039 DOI: 10.3389/fendo.2020.00442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: To study the impact of dose reduction in MDCT images through tube current reduction or sparse sampling on the vertebral bone strength prediction using finite element (FE) analysis for fracture risk assessment. Methods: Routine MDCT data covering lumbar vertebrae of 12 subjects (six male; six female; 74.70 ± 9.13 years old) were included in this study. Sparsely sampled and virtually reduced tube current-based MDCT images were computed using statistical iterative reconstruction (SIR) with reduced dose levels at 50, 25, and 10% of the tube current and original projections, respectively. Subject-specific static non-linear FE analyses were performed on vertebra models (L1, L2, and L3) 3-D-reconstructed from those dose-reduced MDCT images to predict bone strength. Coefficient of correlation (R2), Bland-Altman plots, and root mean square coefficient of variation (RMSCV) were calculated to find the variation in the FE-predicted strength at different dose levels, using high-intensity dose-based strength as the reference. Results: FE-predicted failure loads were not significantly affected by up to 90% dose reduction through sparse sampling (R2 = 0.93, RMSCV = 8.6% for 50%; R2 = 0.89, RMSCV = 11.90% for 75%; R2 = 0.86, RMSCV = 11.30% for 90%) and up to 50% dose reduction through tube current reduction method (R2 = 0.96, RMSCV = 12.06%). However, further reduction in dose with the tube current reduction method affected the ability to predict the failure load accurately (R2 = 0.88, RMSCV = 22.04% for 75%; R2 = 0.43, RMSCV = 54.18% for 90%). Conclusion: Results from this study suggest that a 50% radiation dose reduction through reduced tube current and a 90% radiation dose reduction through sparse sampling can be used to predict vertebral bone strength. Our findings suggest that the sparse sampling-based method performs better than the tube current-reduction method in generating images required for FE-based bone strength prediction models.
Collapse
Affiliation(s)
- Nithin Manohar Rayudu
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore, Singapore
| | - Karupppasamy Subburaj
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore, Singapore
| | - Kai Mei
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter B. Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- *Correspondence: Thomas Baum
| |
Collapse
|
31
|
Systematic Evaluation of Low-dose MDCT for Planning Purposes of Lumbosacral Periradicular Infiltrations. Clin Neuroradiol 2019; 30:749-759. [DOI: 10.1007/s00062-019-00844-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
|
32
|
Tube Current Reduction in CT Angiography: How Low Can We Go in Imaging of Patients With Suspected Acute Stroke? AJR Am J Roentgenol 2019; 213:410-416. [DOI: 10.2214/ajr.18.20954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Sauter AP, Kopp FK, Bippus R, Dangelmaier J, Deniffel D, Fingerle AA, Meurer F, Pfeiffer D, Proksa R, Rummeny EJ, Noël PB. Sparse sampling computed tomography (SpSCT) for detection of pulmonary embolism: a feasibility study. Eur Radiol 2019; 29:5950-5960. [DOI: 10.1007/s00330-019-06217-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/01/2019] [Accepted: 04/02/2019] [Indexed: 02/02/2023]
|
34
|
Sollmann N, Mei K, Hedderich DM, Maegerlein C, Kopp FK, Löffler MT, Zimmer C, Rummeny EJ, Kirschke JS, Baum T, Noël PB. Multi-detector CT imaging: impact of virtual tube current reduction and sparse sampling on detection of vertebral fractures. Eur Radiol 2019; 29:3606-3616. [PMID: 30903337 PMCID: PMC6554251 DOI: 10.1007/s00330-019-06090-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To systematically evaluate the effects of virtual tube current reduction and sparse sampling on image quality and vertebral fracture diagnostics in multi-detector computed tomography (MDCT). MATERIALS AND METHODS In routine MDCT scans of 35 patients (80.0% females, 70.6 ± 14.2 years, 65.7% showing vertebral fractures), reduced radiation doses were retrospectively simulated by virtually lowering tube currents and applying sparse sampling, considering 50%, 25%, and 10% of the original tube current and projections, respectively. Two readers evaluated items of image quality and presence of vertebral fractures. Readout between the evaluations in the original images and those with virtually lowered tube currents or sparse sampling were compared. RESULTS A significant difference was revealed between the evaluations of image quality between MDCT with virtually lowered tube current and sparse-sampled MDCT (p < 0.001). Sparse-sampled data with only 25% of original projections still showed good to very good overall image quality and contrast of vertebrae as well as minimal artifacts. There were no missed fractures in sparse-sampled MDCT with 50% reduction of projections, and clinically acceptable determination of fracture age was possible in MDCT with 75% reduction of projections, in contrast to MDCT with 50% or 75% virtual tube current reduction, respectively. CONCLUSION Sparse-sampled MDCT provides adequate image quality and diagnostic accuracy for vertebral fracture detection with 50% of original projections in contrast to corresponding MDCT with lowered tube current. Thus, sparse sampling is a promising technique for dose reductions in MDCT that could be introduced in future generations of scanners. KEY POINTS • MDCT with a reduction of projection numbers of 50% still showed high diagnostic accuracy without any missed vertebral fractures. • Clinically acceptable determination of vertebral fracture age was possible in MDCT with a reduction of projection numbers of 75%. • With sparse sampling, higher reductions in radiation exposure can be achieved without compromised image or diagnostic quality in routine MDCT of the spine as compared to MDCT with reduced tube currents.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Kai Mei
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christian Maegerlein
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Felix K Kopp
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Peter B Noël
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, One Silverstein, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Sollmann N, Mei K, Schwaiger B, Gersing A, Kopp F, Bippus R, Maegerlein C, Zimmer C, Rummeny E, Kirschke J, Noël P, Baum T. Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements. Osteoporos Int 2018; 29:2685-2692. [PMID: 30143850 PMCID: PMC6267136 DOI: 10.1007/s00198-018-4675-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/14/2018] [Indexed: 01/14/2023]
Abstract
UNLABELLED This study investigates the impact of tube current reduction and sparse sampling on femoral bone mineral density (BMD) measurements derived from multi-detector computed tomography (MDCT). The application of sparse sampling led to robust and clinically acceptable BMD measurements. In contrast, BMD measurements derived from MDCT with virtually reduced tube currents showed a considerable increase when compared to original data. INTRODUCTION The study aims to evaluate the effects of radiation dose reduction by using virtual reduction of tube current or sparse sampling combined with standard filtered back projection (FBP) and statistical iterative reconstruction (SIR) on femoral bone mineral density (BMD) measurements derived from multi-detector computed tomography (MDCT). METHODS In routine MDCT scans of 41 subjects (65.9% men; age 69.3 ± 10.1 years), reduced radiation doses were simulated by lowering tube currents and applying sparse sampling (50, 25, and 10% of the original tube current and projections, respectively). Images were reconstructed using FBP and SIR. BMD values were assessed in the femoral neck and compared between the different dose levels, numbers of projections, and image reconstruction approaches. RESULTS Compared to full-dose MDCT, virtual lowering of the tube current by applying our simulation algorithm resulted in increases in BMD values for both FBP (up to a relative change of 32.5%) and SIR (up to a relative change of 32.3%). In contrast, the application of sparse sampling with a reduction down to 10% of projections showed robust BMD values, with clinically acceptable relative changes of up to 0.5% (FBP) and 0.7% (SIR). CONCLUSIONS Our simulations, which still require clinical validation, indicate that reductions down to ultra-low tube currents have a significant impact on MDCT-based femoral BMD measurements. In contrast, the application of sparse-sampled MDCT seems a promising future clinical option that may enable a significant reduction of the radiation dose without considerable changes of BMD values.
Collapse
Affiliation(s)
- N. Sollmann
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
- 0000000123222966grid.6936.aTUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - K. Mei
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - B.J. Schwaiger
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - A.S. Gersing
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - F.K. Kopp
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - R. Bippus
- 0000 0004 0373 4886grid.418621.8Philips GmbH Innovative Technologies, Research Laboratories, Röntgenstr. 24-26, 22335 Hamburg, Germany
| | - C. Maegerlein
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - C. Zimmer
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - E.J. Rummeny
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - J.S. Kirschke
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - P.B. Noël
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - T. Baum
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
36
|
Willemink MJ, Noël PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol 2018; 29:2185-2195. [PMID: 30377791 PMCID: PMC6443602 DOI: 10.1007/s00330-018-5810-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
Abstract The first CT scanners in the early 1970s already used iterative reconstruction algorithms; however, lack of computational power prevented their clinical use. In fact, it took until 2009 for the first iterative reconstruction algorithms to come commercially available and replace conventional filtered back projection. Since then, this technique has caused a true hype in the field of radiology. Within a few years, all major CT vendors introduced iterative reconstruction algorithms for clinical routine, which evolved rapidly into increasingly advanced reconstruction algorithms. The complexity of algorithms ranges from hybrid-, model-based to fully iterative algorithms. As a result, the number of scientific publications on this topic has skyrocketed over the last decade. But what exactly has this technology brought us so far? And what can we expect from future hardware as well as software developments, such as photon-counting CT and artificial intelligence? This paper will try answer those questions by taking a concise look at the overall evolution of CT image reconstruction and its clinical implementations. Subsequently, we will give a prospect towards future developments in this domain. Key Points • Advanced CT reconstruction methods are indispensable in the current clinical setting. • IR is essential for photon-counting CT, phase-contrast CT, and dark-field CT. • Artificial intelligence will potentially further increase the performance of reconstruction methods.
Collapse
Affiliation(s)
- Martin J Willemink
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Room M-039, Stanford, CA, 94305-5105, USA. .,Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| |
Collapse
|
37
|
Mann C, Ziegeler K, Mews J, Plaschke M, Issever AS. Bone mineral density assessment using iterative reconstruction compared with quantitative computed tomography as the standard of reference. Sci Rep 2018; 8:15095. [PMID: 30305658 PMCID: PMC6179993 DOI: 10.1038/s41598-018-33444-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
This study examines the influence of iterative reconstruction on bone mineral density (BMD) measurement by comparison with standard quantitative computed tomography (QCT; reference) and two other protocols based on filtered back projection. Ten human cadaver specimens of the lumbar spine with a hydroxyapatite calibration phantom underneath, were scanned with 4 protocols: 1. standard QCT, 2. volume scan with FBP, 3. helical scan with FBP, and 4. helical scan with IR (Adaptive Iterative Dose Reduction 3D (AIDR3D)). Radiation doses were recorded as CT dose index (CTDIvol) and BMD, signal-to-noise and contrast-to-noise ratio were calculated. Mean hydroxyapatite concentration (HOA) did not differ significantly between protocols, ranging from 98.58 ± 31.09 mg cm3 (protocol 4) to 100.47 ± 30.82 mg cm3 (protocol 2). Paired sample correlations of HOA values for protocol 4 and protocols 1, 2 and 3 were nearly perfect with coefficients of 0.980, 0.979 and 0.982, respectively (p < 0.004). CTDIvol were 7.50, 5.00, 6.82 (±2.03) and 1.72 (±0.50) mGy for protocols 1, 2, 3 and 4 respectively. Objective image quality was highest for protocol 4. The use of IR for BMD assessment significantly lowers radiation exposure compared to standard QCT and protocols with FBP while not degrading BMD measurement.
Collapse
Affiliation(s)
- Constanze Mann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Katharina Ziegeler
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Mews
- Canon Medical Systems Europe BV, Zoetermeer, Netherlands
| | - Martina Plaschke
- Department of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ahi Sema Issever
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Comparison of the diagnostic performance of CT Hounsfield unit histogram analysis and dual-energy X-ray absorptiometry in predicting osteoporosis of the femur. Eur Radiol 2018; 29:1831-1840. [PMID: 30255256 DOI: 10.1007/s00330-018-5728-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE To evaluate the diagnostic performance of Hounsfield unit histogram analysis (HUHA) of precontrast abdominal-pelvic CT scans for predicting osteoporosis. MATERIALS AND METHODS The study included 271 patients who had undergone dual X-ray absorptiometry (DXA) and abdominal-pelvic CT within 1 month. HUHA was measured using commercial 3D analysis software (Aquarius iNtuition v4.4.12Ⓡ, TeraRecon) and expressed as a percentage of seven HU range categories related to the ROI: A < 0, 0 ≤ B < 25, 25 ≤ C < 50, 50 ≤ D < 75, 75 ≤ E < 100, 100 ≤ F < 130, and 130 ≤ G. A coronal reformatted precontrast CT image containing the largest Ward's triangle was selected and then the ROI was drawn over the femoral neck. Correlation (r) and ROC curve analyses were used to assess diagnostic performance in predicting osteoporosis using the femur T-score as the reference standard. RESULTS When the femur T-score was used as the reference, the rs of HUHA-A and HUHA-G were 0.74 and -0.57, respectively. Other HUHA values had moderate to weak correlations (r = -0.33 to 0.27). The correlation of HUHA-A was significantly higher than that of HUHA-G (p = 0.03). The area under the curve (0.95) of HUHA-A differed significantly from that of HUHA-G (0.90; p < 0.01). A HUHA-A threshold ≥ 27.7% was shown to predict osteoporosis based on a sensitivity and specificity of 95.6% and 81.7%, respectively. CONCLUSION The HUHA-A value of the femoral neck is closely related to osteoporosis and may help predict osteoporosis. KEY POINTS • HUHA correlated strongly with the DXA femur T-score (HUHA-A, r = 0.74). • The diagnostic performance of HUHA for predicting osteoporosis (AUC = 0.95) was better than that of the average CT HU value (AUC = 0.91; p < 0.05). • HUHA may help predict osteoporosis and enable semi-quantitative measurement of changes in bone mineral density.
Collapse
|
39
|
MDCT-based Finite Element Analysis of Vertebral Fracture Risk: What Dose is Needed? Clin Neuroradiol 2018; 29:645-651. [PMID: 30132090 DOI: 10.1007/s00062-018-0722-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE The aim of this study was to compare vertebral failure loads, predicted from finite element (FE) analysis of patients with and without osteoporotic vertebral fractures (OVF) at virtually reduced dose levels, compared to standard-dose exposure from multidetector computed tomography (MDCT) imaging and evaluate whether ultra-low dose derived FE analysis can still differentiate patient groups. MATERIALS AND METHODS An institutional review board (IRB) approval was obtained for this retrospective study. A total of 16 patients were evaluated at standard-dose MDCT; eight with and eight without OVF. Images were reconstructed at virtually reduced dose levels (i. e. half, quarter and tenth of the standard dose). Failure load was determined at L1-3 from FE analysis and compared between standard, half, quarter, and tenth doses and used to differentiate between fracture and control groups. RESULTS Failure load derived at standard dose (3254 ± 909 N and 3794 ± 984 N) did not significantly differ from half (3390 ± 890 N and 3860 ± 1063 N) and quarter dose (3375 ± 915 N and 3925 ± 990 N) but was significantly higher for one tenth dose (4513 ± 1762 N and 4766 ± 1628 N) for fracture and control groups, respectively. Failure load differed significantly between the two groups at standard, half and quarter doses, but not at tenth dose. Receiver operating characteristic (ROC) curve analysis also demonstrated that standard, half, and quarter doses can significantly differentiate the fracture from the control group. CONCLUSION The use of MDCT enables a dose reduction of at least 75% compared to standard-dose for an adequate prediction of vertebral failure load based on non-invasive FE analysis.
Collapse
|
40
|
Areeckal AS, Kocher M, S SD. Current and Emerging Diagnostic Imaging-Based Techniques for Assessment of Osteoporosis and Fracture Risk. IEEE Rev Biomed Eng 2018; 12:254-268. [PMID: 29994405 DOI: 10.1109/rbme.2018.2852620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteoporosis is a metabolic bone disorder characterized by low bone mass, degradation of bone microarchitecture, and susceptibility to fracture. It is a growing major health concern across the world, especially in the elderly population. Osteoporosis can cause hip or spinal fractures that may lead to high morbidity and socio-economic burden. Therefore, there is a need for early diagnosis of osteoporosis and prediction of fragility fracture risk. In this review, state of the art and recent advances in imaging techniques for diagnosis of osteoporosis and fracture risk assessment have been explored. Segmentation methods used to segment the regions of interest and texture analysis methods used for classification of healthy and osteoporotic subjects are also presented. Furthermore, challenges posed by the current diagnostic tools have been studied and feasible solutions to circumvent the limitations are discussed. Early diagnosis of osteoporosis and prediction of fracture risk require the development of highly precise and accurate low-cost diagnostic techniques that would help the elderly population in low economies.
Collapse
|
41
|
Dose reduction in abdominal CT: The road to submillisievert imaging. Eur Radiol 2018; 28:2743-2744. [DOI: 10.1007/s00330-018-5397-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
|
42
|
Mookiah MRK, Rohrmeier A, Dieckmeyer M, Mei K, Kopp FK, Noel PB, Kirschke JS, Baum T, Subburaj K. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis. Osteoporos Int 2018; 29:825-835. [PMID: 29322221 DOI: 10.1007/s00198-017-4342-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
UNLABELLED This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%. INTRODUCTION This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. METHODS We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM). RESULTS The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%. CONCLUSIONS Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.
Collapse
Affiliation(s)
- M R K Mookiah
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - A Rohrmeier
- Department of Radiology, Klinikum Landshut Achdorf, Landshut, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - M Dieckmeyer
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - K Mei
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - F K Kopp
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - P B Noel
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - J S Kirschke
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - T Baum
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - K Subburaj
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore.
| |
Collapse
|
43
|
Mei K, Schwaiger BJ, Kopp FK, Ehn S, Gersing AS, Kirschke JS, Muenzel D, Fingerle AA, Rummeny EJ, Pfeiffer F, Baum T, Noël PB. Bone mineral density measurements in vertebral specimens and phantoms using dual-layer spectral computed tomography. Sci Rep 2017; 7:17519. [PMID: 29235542 PMCID: PMC5727524 DOI: 10.1038/s41598-017-17855-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
To assess whether phantomless calcium-hydroxyapatite (HA) specific bone mineral density (BMD) measurements with dual-layer spectral computed tomography are accurate in phantoms and vertebral specimens. Ex-vivo human vertebrae (n = 13) and a phantom containing different known HA concentrations were placed in a semi-anthropomorphic abdomen phantom with different extension rings simulating different degrees of obesity. Phantomless dual-layer spectral CT was performed at different tube current settings (500, 250, 125 and 50 mAs). HA-specific BMD was derived from spectral-based virtual monoenergetic images at 50 keV and 200 keV. Values were compared to the HA concentrations of the phantoms and conventional qCT measurements using a reference phantom, respectively. Above 125 mAs, errors for phantom measurements ranged between -1.3% to 4.8%, based on spectral information. In vertebral specimens, high correlations were found between BMD values assessed with spectral CT and conventional qCT (r ranging between 0.96 and 0.99; p < 0.001 for all) with different extension rings, and a high agreement was found in Bland Altman plots. Different degrees of obesity did not have a significant influence on measurements (P > 0.05 for all). These results suggest a high validity of HA-specific BMD measurements based on dual-layer spectral CT examinations in setups simulating different degrees of obesity without the need for a reference phantom, thus demonstrating their feasibility in clinical routine.
Collapse
Affiliation(s)
- Kai Mei
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt J Schwaiger
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Felix K Kopp
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sebastian Ehn
- Physics Department & Munich School of BioEngineering, Technical University of Munich, Munich, Germany
| | - Alexandra S Gersing
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniela Muenzel
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexander A Fingerle
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ernst J Rummeny
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Physics Department & Munich School of BioEngineering, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter B Noël
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Physics Department & Munich School of BioEngineering, Technical University of Munich, Munich, Germany
| |
Collapse
|
44
|
Park JH, Jeon JJ, Lee SS, Dhanantwari AC, Sim JY, Kim HY, Lee KH. Can We Perform CT of the Appendix with Less Than 1 mSv? A De-escalating Dose-simulation Study. Eur Radiol 2017; 28:1826-1834. [DOI: 10.1007/s00330-017-5159-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 12/19/2022]
|