1
|
Schreck J, Niehoff JH, Saeed S, Kroeger JR, Lennartz S, Laukamp KR, Borggrefe J, Michael AE. Dental implant artifacts: Evaluation of photon counting CT-derived virtual monoenergetic images in combination with iterative metal artifact reduction algorithms. Eur J Radiol 2025; 187:112117. [PMID: 40252281 DOI: 10.1016/j.ejrad.2025.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVES To examine photon counting-CT (PCCT)-derived virtual monoenergetic images (VMI) in combination with iterative metal artifacts reduction algorithms (iMAR) for artifact reduction in patients with dental implants (DI). METHODS 49 patients with DI were retrospectively included in the study. Polyenergetic CT images (CI), VMIs with different energy levels (70-190 keV) without and the same images with iMAR were examined. ROI-based measurements of hypo- and hyperdense artifacts in different tissues (soft tissues, bones, vessels) were performed. Qualitative assessment of the extent of artifacts, surrounding bone and soft tissue was performed by two radiologists using a Likert scale. RESULTS iMAR effectively reduced hypo- and hyperdense artifacts by solitary application and in combination with VMI. In contrast, solitary application of VMI did not yield sufficient artifact reduction. Optimal quantitative reduction was achieved in VMIiMAR 100 keV for hypodense artifacts and 70 keV for hyperdense artifacts. VMIiMAR 190 keV provided optimal artifact reduction in bones and vessels. In the qualitative evaluation, the extent of artifact reduction received significantly higher ratings on VMIiMAR than CI. VMIiMAR 190 keV was rated best for evaluation of artifact-affected soft tissue and bone, VMI did not yield significant improvements. CONCLUSIONS iMAR as a standalone approach and the combination of iMAR and VMI significantly reduce artifacts by DI and improve the assessability of adjacent tissue. Combination of iMAR and VMI worked best at keV levels higher than 100 keV. CLINICAL RELEVANCE STATEMENT Combination of iMAR and PCCT-derived VMI is a useful approach for enhancing the diagnostic assessability of the maxillofacial area in patients with dental implants.
Collapse
Affiliation(s)
- Julian Schreck
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Julius Henning Niehoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Saher Saeed
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne 50923 Cologne, Germany
| | - Kai Roman Laukamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne 50923 Cologne, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Arwed Elias Michael
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Li Y, Ma C, Li Z, Wang Z, Han J, Shan H, Liu J. Semi-supervised spatial-frequency transformer for metal artifact reduction in maxillofacial CT and evaluation with intraoral scan. Eur J Radiol 2025; 187:112087. [PMID: 40273758 DOI: 10.1016/j.ejrad.2025.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE To develop a semi-supervised domain adaptation technique for metal artifact reduction with a spatial-frequency transformer (SFTrans) model (Semi-SFTrans), and to quantitatively compare its performance with supervised models (Sup-SFTrans and ResUNet) and traditional linear interpolation MAR method (LI) in oral and maxillofacial CT. METHODS Supervised models, including Sup-SFTrans and a state-of-the-art model termed ResUNet, were trained with paired simulated CT images, while semi-supervised model, Semi-SFTrans, was trained with both paired simulated and unpaired clinical CT images. For evaluation on the simulated data, we calculated Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) on the images corrected by four methods: LI, ResUNet, Sup-SFTrans, and Semi-SFTrans. For evaluation on the clinical data, we collected twenty-two clinical cases with real metal artifacts, and the corresponding intraoral scan data. Three radiologists visually assessed the severity of artifacts using Likert scales on the original, Sup-SFTrans-corrected, and Semi-SFTrans-corrected images. Quantitative MAR evaluation was conducted by measuring Mean Hounsfield Unit (HU) values, standard deviations, and Signal-to-Noise Ratios (SNRs) across Regions of Interest (ROIs) such as the tongue, bilateral buccal, lips, and bilateral masseter muscles, using paired t-tests and Wilcoxon signed-rank tests. Further, teeth integrity in the corrected images was assessed by comparing teeth segmentation results from the corrected images against the ground-truth segmentation derived from registered intraoral scan data, using Dice Score and Hausdorff Distance. RESULTS Sup-SFTrans outperformed LI, ResUNet and Semi-SFTrans on the simulated dataset. Visual assessments from the radiologists showed that average scores were (2.02 ± 0.91) for original CT, (4.46 ± 0.51) for Semi-SFTrans CT, and (3.64 ± 0.90) for Sup-SFTrans CT, with intra correlation coefficients (ICCs)>0.8 of all groups and p < 0.001 between groups. On soft tissue, both Semi-SFTrans and Sup-SFTrans significantly reduced metal artifacts in tongue (p < 0.001), lips, bilateral buccal regions, and masseter muscle areas (p < 0.05). Semi-SFTrans achieved superior metal artifact reduction than Sup-SFTrans in all ROIs (p < 0.001). SNR results indicated significant differences between Semi-SFTrans and Sup-SFTrans in tongue (p = 0.0391), bilateral buccal (p = 0.0067), lips (p = 0.0208), and bilateral masseter muscle areas (p = 0.0031). Notably, Semi-SFTrans demonstrated better teeth integrity preservation than Sup-SFTrans (Dice Score: p < 0.001; Hausdorff Distance: p = 0.0022). CONCLUSION The semi-supervised MAR model, Semi-SFTrans, demonstrated superior metal artifact reduction performance over supervised counterparts in real dental CT images.
Collapse
Affiliation(s)
- Yuanlin Li
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Chenglong Ma
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Zilong Li
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Zhen Wang
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jing Han
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Hongming Shan
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 200433, China.
| | - Jiannan Liu
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
3
|
Bette S, Risch F, Becker J, Popp D, Decker JA, Kaufmann D, Friedrich L, Scheurig-Münkler C, Schwarz F, Kröncke TJ. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. ROFO-FORTSCHR RONTG 2025; 197:34-43. [PMID: 38788741 DOI: 10.1055/a-2312-6914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The introduction of photon-counting detector CT (PCD-CT) marks a remarkable leap in innovation in CT imaging. The new detector technology allows X-rays to be converted directly into an electrical signal without an intermediate step via a scintillation layer and allows the energy of individual photons to be measured. Initial data show high spatial resolution, complete elimination of electronic noise, and steady availability of spectral image data sets. In particular, the new technology shows promise with respect to the imaging of osseous structures. Recently, PCD-CT was implemented in the clinical routine. The aim of this review was to summarize recent studies and to show our first experiences with photon-counting detector technology in the field of musculoskeletal radiology.We performed a literature search using Medline and included a total of 90 articles and reviews that covered recent experimental and clinical experiences with the new technology.In this review, we focus on (1) spatial resolution and delineation of fine anatomic structures, (2) reduction of radiation dose, (3) electronic noise, (4) techniques for metal artifact reduction, and (5) possibilities of spectral imaging. This article provides insight into our first experiences with photon-counting detector technology and shows results and images from experimental and clinical studies. · This review summarizes recent experimental and clinical studies in the field of photon-counting detector CT and musculoskeletal radiology.. · The potential of photon-counting detector technology in the field of musculoskeletal radiology includes improved spatial resolution, reduction in radiation dose, metal artifact reduction, and spectral imaging.. · PCD-CT enables imaging at lower radiation doses while maintaining or even enhancing spatial resolution, crucial for reducing patient exposure, especially in repeated or prolonged imaging scenarios.. · It offers promising results in reducing metal artifacts commonly encountered in orthopedic or dental implants, enhancing the interpretability of adjacent structures in postoperative and follow-up imaging.. · With its ability to routinely acquire spectral data, PCD-CT scans allow for material classification, such as detecting urate crystals in suspected gout or visualizing bone marrow edema, potentially reducing reliance on MRI in certain cases.. Bette S, Risch F, Becker J et al. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. Fortschr Röntgenstr 2024; DOI 10.1055/a-2312-6914.
Collapse
Affiliation(s)
- Stefanie Bette
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Judith Becker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Daniel Popp
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - David Kaufmann
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Lena Friedrich
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Christian Scheurig-Münkler
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Florian Schwarz
- Institute of Conventional and Interventional Radiology, Donauisar Hospital Deggendorf, Deggendorf, Germany
| | - Thomas J Kröncke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany
| |
Collapse
|
4
|
Bicci E, Di Finizio A, Calamandrei L, Treballi F, Mungai F, Tamburrini S, Sica G, Nardi C, Bonasera L, Miele V. Head and Neck Squamous Cell Carcinoma: Insights from Dual-Energy Computed Tomography (DECT). Tomography 2024; 10:1780-1797. [PMID: 39590940 PMCID: PMC11598236 DOI: 10.3390/tomography10110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Head and neck cancer represents the seventh most common neoplasm worldwide, with squamous cell carcinoma being the most represented histologic variant. The rising incidence of the neoplastic pathology of this district, coupled with the drastic changes in its epidemiology over the past decades, have posed significant challenges to physicians worldwide in terms of diagnosis, prognosis, and treatment. In order to meet these challenges, a considerable amount of effort has been spent by the authors of the recent literature to explore new technologies and their possible employment for the better diagnostic and prognostic definition of head and neck squamous cell carcinoma (HNSCC). Among these technologies, a growing interest has been gathering around the possible applications of dual-energy computed tomography (DECT) in head and neck pathology. Dual-energy computed tomography (DECT) utilizes two distinct X-ray energy spectra to obtain two datasets in a single scan, allowing for material differentiation based on unique attenuation profiles. DECT offers key benefits such as enhanced contrast resolution, reduced beam-hardening artifacts, and precise iodine quantification through monochromatic reconstructions. It also creates material decomposition images, like iodine maps, aiding in tumor characterization and therapy assessment. This paper aims to summarize recent findings on the use of DECT in HNSCC, providing a comprehensive overview to aid further research and exploration in the field.
Collapse
Affiliation(s)
- Eleonora Bicci
- Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (F.M.); (C.N.); (L.B.); (V.M.)
| | - Antonio Di Finizio
- Department of Radiology, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (A.D.F.); (L.C.); (F.T.)
| | - Leonardo Calamandrei
- Department of Radiology, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (A.D.F.); (L.C.); (F.T.)
| | - Francesca Treballi
- Department of Radiology, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (A.D.F.); (L.C.); (F.T.)
| | - Francesco Mungai
- Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (F.M.); (C.N.); (L.B.); (V.M.)
| | - Stefania Tamburrini
- Department of Radiology, Ospedale del Mare, ASL NA1 Centro, 80147 Naples, Italy;
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, 80131 Naples, Italy;
| | - Cosimo Nardi
- Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (F.M.); (C.N.); (L.B.); (V.M.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Luigi Bonasera
- Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (F.M.); (C.N.); (L.B.); (V.M.)
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (F.M.); (C.N.); (L.B.); (V.M.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|
5
|
Haag F, Hokamp NG, Overhoff D, Dasegowda G, Kuru M, Nörenberg D, Schoenberg SO, Kalra MK, Froelich MF. Potential of photon counting computed tomography derived spectral reconstructions to reduce beam-hardening artifacts in chest CT. Eur J Radiol 2024; 175:111448. [PMID: 38574510 DOI: 10.1016/j.ejrad.2024.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Aim of the recent study is to point out a method to optimize quality of CT scans in oncological patients with port systems. This study investigates the potential of photon counting computed tomography (PCCT) for reduction of beam hardening artifacts caused by port-implants in chest imaging by means of spectral reconstructions. METHOD In this retrospective single-center study, 8 ROIs for 19 spectral reconstructions (polyenergetic imaging, monoenergetic reconstructions from 40 to 190 keV as well as iodine maps and virtual non contrast (VNC)) of 49 patients with pectoral port systems undergoing PCCT of the chest for staging of oncologic disease were measured. Mean values and standard deviation (SD) Hounsfield unit measurements of port-chamber associated hypo- and hyperdense artifacts, bilateral muscles and vessels has been carried out. Also, a structured assessment of artifacts and imaging findings was performed by two radiologists. RESULTS A significant association of keV with iodine contrast as well as artifact intensity was noted (all p < 0.001). In qualitative assessment, utilization of 120 keV monoenergetic reconstructions could reduce severe and pronounced artifacts completely, as compared to lower keV reconstructions (p < 0.001). Regarding imaging findings, no significant difference between monoenergetic reconstructions was noted (all p > 0.05). In cases with very high iodine concentrations in the subclavian vein, image distortions were noted at 40 keV images (p < 0.01). CONCLUSIONS The present study demonstrates that PCCT derived spectral reconstructions can be used in oncological imaging of the thorax to reduce port-derived beam-hardening artefacts. When evaluating image data sets within a staging, it can be particularly helpful to consider the 120 keV VMIs, in which the artefacts are comparatively low.
Collapse
Affiliation(s)
- Florian Haag
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Bundeswehrzentralkrankenhaus, Koblenz, Germany
| | - Giridhar Dasegowda
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Kuru
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Dominik Nörenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stefan O Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Dillinger D, Overhoff D, Froelich MF, Kaatsch HL, Booz C, Hagen A, Vogl TJ, Schönberg SO, Waldeck S. Photon-Counting Detector CT Virtual Monoenergetic Images in Cervical Trauma Imaging-Optimization of Dental Metal Artifacts and Image Quality. Diagnostics (Basel) 2024; 14:626. [PMID: 38535045 PMCID: PMC10968735 DOI: 10.3390/diagnostics14060626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES The aim of this study was to analyze the extent of dental metal artifacts in virtual monoenergetic (VME) images, as they often compromise image quality by obscuring soft tissue affecting vascular attenuation reducing sensitivity in the detection of dissections. METHODS Neck photon-counting CT datasets of 50 patients undergoing contrast-enhanced trauma CT were analyzed. Hyperattenuation and hypoattenuation artifacts, muscle with and without artifacts and vessels with and without artifacts were measured at energy levels from 40 keV to 190 keV. The corrected artifact burden, corrected image noise and artifact index were calculated. We also assessed subjective image quality on a Likert-scale. RESULTS Our study showed a lower artifact burden and less noise in artifact-affected areas above the energy levels of 70 keV for hyperattenuation artifacts (conventional polychromatic CT images 1123 ± 625 HU vs. 70 keV VME 1089 ± 733 HU, p = 0.125) and above of 80 keV for hypoattenuation artifacts (conventional CT images -1166 ± 779 HU vs. 80 keV VME -1170 ± 851 HU, p = 0.927). Vascular structures were less hampered by metal artifacts than muscles (e.g., corrected artifact burden at 40 keV muscle 158 ± 125 HU vs. vessels -63 ± 158 HU p < 0.001), which was also reflected in the subjective image assessment, which showed better ratings at higher keV values and overall better ratings for vascular structures than for the overall artifact burden. CONCLUSIONS Our research suggests 70 keV might be the best compromise for reducing metal artifacts affecting vascular structures and preventing vascular contrast if solely using VME reconstructions. VME imaging shows only significant effects on the general artifact burden. Vascular structures generally experience fewer metal artifacts than soft tissue due to their greater distance from the teeth, which are a common source of such artifacts.
Collapse
Affiliation(s)
- Daniel Dillinger
- Department of Vascular Surgery and Endovascular Surgery, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Daniel Overhoff
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Hanns L. Kaatsch
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Christian Booz
- Institute for Diagnostic and Interventional Radiology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Achim Hagen
- Department of Vascular Surgery and Endovascular Surgery, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Thomas J. Vogl
- Institute for Diagnostic and Interventional Radiology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stefan O. Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
7
|
Layer YC, Mesropyan N, Kupczyk PA, Luetkens JA, Isaak A, Dell T, Ernst BP, Attenberger UI, Kuetting D. Use of virtual monoenergetic images for reduction of extensive dental implant associated artifacts in photon-counting detector CT. Sci Rep 2024; 14:497. [PMID: 38177651 PMCID: PMC10766624 DOI: 10.1038/s41598-023-50926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
Aim of this study was to assess the impact of virtual monoenergetic images (VMI) on dental implant artifacts in photon-counting detector computed tomography (PCD-CT) compared to standard reconstructed polychromatic images (PI). 30 scans with extensive (≥ 5 dental implants) dental implant-associated artifacts were retrospectively analyzed. Scans were acquired during clinical routine on a PCD-CT. VMI were reconstructed for 100-190 keV (10 keV steps) and compared to PI. Artifact extent and assessment of adjacent soft tissue were rated using a 5-point Likert grading scale for qualitative assessment. Quantitative assessment was performed using ROIs in most pronounced hypodense and hyperdense artifacts, artifact-impaired soft tissue, artifact-free fat and muscle tissue. A corrected attenuation was calculated as difference between artifact-impaired tissue and tissue without artifacts. Qualitative assessment of soft palate and cheeks improved for all VMI compared to PI (Median PI: 1 (Range: 1-3) and 1 (1-3); e.g. VMI130 keV 2 (1-5); p < 0.0001 and 2 (1-4); p < 0.0001). In quantitative assessment, VMI130 keV showed best results with a corrected attenuation closest to 0 (PI: 30.48 ± 98.16; VMI130 keV: - 0.55 ± 73.38; p = 0.0026). Overall, photon-counting deducted VMI reduce the extent of dental implant-associated artifacts. VMI of 130 keV showed best results and are recommended to support head and neck CT scans.
Collapse
Affiliation(s)
- Yannik C Layer
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Patrick A Kupczyk
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tatjana Dell
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Benjamin P Ernst
- Department of Otorhinolaryngology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
8
|
Selles M, van Osch JAC, Maas M, Boomsma MF, Wellenberg RHH. Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques. Eur J Radiol 2024; 170:111276. [PMID: 38142571 DOI: 10.1016/j.ejrad.2023.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Metal artifacts degrade CT image quality, hampering clinical assessment. Numerous metal artifact reduction methods are available to improve the image quality of CT images with metal implants. In this review, an overview of traditional methods is provided including the modification of acquisition and reconstruction parameters, projection-based metal artifact reduction techniques (MAR), dual energy CT (DECT) and the combination of these techniques. Furthermore, the additional value and challenges of novel metal artifact reduction techniques that have been introduced over the past years are discussed such as photon counting CT (PCCT) and deep learning based metal artifact reduction techniques.
Collapse
Affiliation(s)
- Mark Selles
- Department of Radiology, Isala, 8025 AB Zwolle, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, the Netherlands; Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands.
| | | | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, the Netherlands; Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | | | - Ruud H H Wellenberg
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, the Netherlands; Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| |
Collapse
|
9
|
Bayerl N, May MS, Wuest W, Roth JP, Kramer M, Hofmann C, Schmidt B, Uder M, Ellmann S. Iterative Metal Artifact Reduction in Head and Neck CT Facilitates Tumor Visualization of Oral and Oropharyngeal Cancer Obscured by Artifacts From Dental Hardware. Acad Radiol 2023; 30:2962-2972. [PMID: 37179206 DOI: 10.1016/j.acra.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study was to evaluate the diagnostic utility of iterative metal artifact reduction (iMAR) in computed tomography (CT)-imaging of oral and oropharyngeal cancers when obscured by dental hardware artifacts and to determine the most appropriate iMAR settings for this purpose. MATERIALS AND METHODS The study retrospectively enrolled 27 patients (8 female, 19 male; mean age 64±12.7years) with histologically confirmed oral or oropharyngeal cancer obscured by dental artifacts in contrast-enhanced CT. Raw CT data were reconstructed with ascending iMAR strengths (levels 1/2/3/4/5) and one reconstruction without iMAR (level 0). For subjective analysis, two blinded radiologists rated tumor visualization and artifact severity on a five-point Likert scale. For objective analysis, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and artifact index (AI) were determined. RESULTS iMAR reconstructions improved the subjective image quality of tumor edge and contrast, and the objective parameters of tumor SNR and CNR, reaching their optimum at iMAR levels 4 and 5 (P<.001). AI decreased with iMAR reconstructions reaching its minimum at iMAR level 5 (P<.001). Tumor detection rates increased 2.4-fold with iMAR 5, 2.1-fold with iMAR 4, and 1.9-fold with iMAR 3 compared to reconstructions without iMAR. Disadvantages such as algorithm-induced artifacts increased significantly with higher iMAR strengths (P<.05), reaching a maximum with iMAR 5. CONCLUSION iMAR significantly improves CT imaging of oral and oropharyngeal cancers, as confirmed by both subjective and objective measures, with best results at highest iMAR strengths.
Collapse
Affiliation(s)
- Nadine Bayerl
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany (N.B., M.S.M., J.-P.R., M.U., S.E.).
| | - Matthias Stefan May
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany (N.B., M.S.M., J.-P.R., M.U., S.E.)
| | - Wolfgang Wuest
- Institute of Radiology, Martha-Maria Hospital Nürnberg, Nürnberg, Germany (W.W.)
| | - Jan-Peter Roth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany (N.B., M.S.M., J.-P.R., M.U., S.E.)
| | - Manuel Kramer
- RNZ - Radiologisch-Nuklearmedizinisches Zentrum, Lauf a.d. Pegnitz, Germany (M.K.)
| | - Christian Hofmann
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany (C.H., B.S.)
| | - Bernhard Schmidt
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany (C.H., B.S.)
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany (N.B., M.S.M., J.-P.R., M.U., S.E.)
| | - Stephan Ellmann
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany (N.B., M.S.M., J.-P.R., M.U., S.E.)
| |
Collapse
|
10
|
Patzer TS, Kunz AS, Huflage H, Gruschwitz P, Pannenbecker P, Afat S, Herrmann J, Petritsch B, Bley TA, Grunz JP. Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants. Eur Radiol 2023; 33:7818-7829. [PMID: 37284870 PMCID: PMC10598126 DOI: 10.1007/s00330-023-09790-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVES While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants. MATERIAL AND METHODS In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3DiMAR, and VMIiMAR were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed. RESULTS iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/-1418.4 versus T3DiMAR 103.2/-46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets (p ≤ 0.001). VMIiMAR ≥ 110 keV subjectively enhanced artifact reduction over T3DiMAR (p ≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction (p ≥ 0.186) and facilitated no significant denoising over T3D (p ≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment (p ≤ 0.009). VMIiMAR ≥ 110 keV resulted in less overcorrection than T3DiMAR (p ≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804). CONCLUSION While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts. CLINICAL RELEVANCE Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality. KEY POINTS • Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants. • Virtual monoenergetic images presented only minimal metal artifact reduction potential. • The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.
Collapse
Affiliation(s)
- Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany.
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str 3, 72076, Tübingen, Germany
| | - Judith Herrmann
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str 3, 72076, Tübingen, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| |
Collapse
|
11
|
Grandoch A, Oeser J, Zöller JE, Große Hokamp N, Lichtenstein T, Neugebauer J. Morphological Studies to Identify the Nasopalatine and Inferior Alveolar Nerve Using a Special Head and Neck MRI Coil. J Craniofac Surg 2023; 34:1351-1356. [PMID: 36879392 DOI: 10.1097/scs.0000000000009219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 10/18/2022] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES Procedures in oral and maxillofacial surgery bear a high risk of nerve damage. Three-dimensional imaging techniques can optimize surgical planning and help to spare nerves. The aim of this study was to investigate the diagnostic value of a 1.5 T magnetic resonance imaging (MRI) scanner with a dedicated dental signal amplification coil for the assessment of nerves in the oral cavity as compared with cone beam computed tomography (CBCT). METHODS Based on 6 predefined criteria, the assessability of the inferior alveolar and nasopalatine nerves in CBCT and MRI with a dedicated 4-channel dental coil were compared in 24 patients. RESULTS Compared with CBCT, MRI with the dental coil showed significantly better evaluability of the inferior alveolar nerve in the sagittal and axial plane and the nasopalatine nerve in the axial plane. In the sagittal plane; however, the assessability of the nasopalatine nerve was significantly better in CBCT as compared with MRI. Yet, pertaining to overall assessability, no significant differences between modalities were found. CONCLUSIONS In this pilot study, it can be reported that 1.5- T MRI with a dedicated dental coil is at least equivalent, if not superior, to CBCT in imaging nerve structures of the stomatognathic system. CLINICAL RELEVANCE Preoperative, 3-dimensional images are known to simplify and refine the planning and execution of operations in maxillofacial surgery. In contrast to computed tomography and CBCT, MRI does not cause radiation exposure while enabling visualization of all relevant hard and soft tissues and, therefore, holds an advantage over well-established techniques.
Collapse
Affiliation(s)
- Andrea Grandoch
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University of Cologne
| | - Julia Oeser
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University of Cologne
| | - Joachim E Zöller
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University of Cologne
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Cologne
| | - Thorsten Lichtenstein
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Cologne
| | - Jörg Neugebauer
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University of Cologne
- Dr Bayer and Colleagues Group office for dentistry, Landsberg am Lech, Germany
| |
Collapse
|
12
|
Metal implants on abdominal CT: does split-filter dual-energy CT provide additional value over iterative metal artifact reduction? Abdom Radiol (NY) 2023; 48:424-435. [PMID: 36180598 PMCID: PMC9849167 DOI: 10.1007/s00261-022-03682-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE To assess image quality and metal artifact reduction in split-filter dual-energy CT (sfDECT) of the abdomen with hip or spinal implants using virtual monoenergetic images (VMI) and iterative metal artifact reduction algorithm (iMAR). METHODS 102 portal-venous abdominal sfDECTs of patients with hip (n = 71) or spinal implants (n = 31) were included in this study. Images were reconstructed as 120kVp-equivalent images (Mixed) and VMI (40-190 keV), with and without iMAR. Quantitative artifact and image noise was measured using 12 different ROIs. Subjective image quality was rated by two readers using a five-point Likert-scale in six categories, including overall image quality and vascular contrast. RESULTS Lowest quantitative artifact in both hip and spinal implants was measured in VMI190keV-iMAR. However, it was not significantly lower than in MixediMAR (for all ROIs, p = 1.00), which were rated best for overall image quality (hip: 1.00 [IQR: 1.00-2.00], spine: 3.00 [IQR:2.00-3.00]). VMI50keV-iMAR was rated best for vascular contrast (hip: 1.00 [IQR: 1.00-2.00], spine: 2.00 [IQR: 1.00-2.00]), which was significantly better than Mixed (both, p < 0.001). VMI50keV-iMAR provided superior overall image quality compared to Mixed for hip (1.00 vs 2.00, p < 0.001) and similar diagnostic image quality for spinal implants (2.00 vs 2.00, p = 0.51). CONCLUSION For abdominal sfDECT with hip or spinal implants MixediMAR images should be used. High keV VMI do not further improve image quality. IMAR allows the use of low keV images (VMI50keV) to improve vascular contrast, compared to Mixed images.
Collapse
|
13
|
Cao Z, Gao X, Chang Y, Liu G, Pei Y. A novel approach for eliminating metal artifacts based on MVCBCT and CycleGAN. Front Oncol 2022; 12:1024160. [PMID: 36439465 PMCID: PMC9686009 DOI: 10.3389/fonc.2022.1024160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/27/2022] [Indexed: 08/15/2023] Open
Abstract
Purpose To develop a metal artifact reduction (MAR) algorithm and eliminate the adverse effects of metal artifacts on imaging diagnosis and radiotherapy dose calculations. Methods Cycle-consistent adversarial network (CycleGAN) was used to generate synthetic CT (sCT) images from megavoltage cone beam CT (MVCBCT) images. In this study, there were 140 head cases with paired CT and MVCBCT images, from which 97 metal-free cases were used for training. Based on the trained model, metal-free sCT (sCT_MF) images and metal-containing sCT (sCT_M) images were generated from the MVCBCT images of 29 metal-free cases and 14 metal cases, respectively. Then, the sCT_MF and sCT_M images were quantitatively evaluated for imaging and dosimetry accuracy. Results The structural similarity (SSIM) index of the sCT_MF and metal-free CT (CT_MF) images were 0.9484, and the peak signal-to-noise ratio (PSNR) was 31.4 dB. Compared with the CT images, the sCT_MF images had similar relative electron density (RED) and dose distribution, and their gamma pass rate (1 mm/1%) reached 97.99% ± 1.14%. The sCT_M images had high tissue resolution with no metal artifacts, and the RED distribution accuracy in the range of 1.003 to 1.056 was improved significantly. The RED and dose corrections were most significant for the planning target volume (PTV), mandible and oral cavity. The maximum correction of Dmean and D50 for the oral cavity reached 90 cGy. Conclusions Accurate sCT_M images were generated from MVCBCT images based on CycleGAN, which eliminated the metal artifacts in clinical images completely and corrected the RED and dose distributions accurately for clinical application.
Collapse
Affiliation(s)
- Zheng Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
- Hematology and Oncology Department, Hefei First People’s Hospital, Hefei, China
| | - Xiang Gao
- Hematology and Oncology Department, Hefei First People’s Hospital, Hefei, China
| | - Yankui Chang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Gongfa Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Yuanji Pei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Huflage H, Grunz JP, Hackenbroch C, Halt D, Luetkens KS, Alfred Schmidt AM, Patzer TS, Ergün S, Bley TA, Kunz AS. Metal artefact reduction in low-dose computed tomography: Benefits of tin prefiltration versus postprocessing of dual-energy datasets over conventional CT imaging. Radiography (Lond) 2022; 28:690-696. [PMID: 35728278 DOI: 10.1016/j.radi.2022.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The purpose of this study was to determine the potential for metal artefact reduction in low-dose multidetector CT as these pose a frequent challenge in clinical routine. Investigations focused on whether spectral shaping via tin prefiltration, virtual monoenergetic imaging or virtual blend imaging (VBI) offers superior image quality in comparison with conventional CT imaging. METHODS Using a third-generation dual-source CT scanner, two cadaveric specimens with different metal implants (dental, cervical spine, hip, knee) were examined with acquisition protocols matched for radiation dose with regards to tube voltage and current. In order to allow for precise comparison, and due to the relatively short scan lengths, automatic tube current modulation was disabled. Specifically, the following scan protocals were examined: conventional CT protocols (100/120 kVp), tin prefiltration (Sn 100/Sn 150 kVp), VBI and virtual monoenergetic imaging (VME 100/120/150 keV). Mean attenuation and image noise were measured in hyperdense and hypodense artefacts, in artefact-impaired and artefact-free soft tissue. Subjective image quality was rated independently by three radiologists. RESULTS Objectively, Sn 150 kVp allowed for the best reduction of hyperdense streak artefacts (p < 0.001), while VME 150 keV and Sn 150 kVp protocols facilitated equally good reduction of hypodense artefacts (p = 0.173). Artefact-impaired soft tissue attenuation was lowest in Sn 150 kVp protocols (p ≤ 0.011), whereas all VME showed significantly less image noise compared to conventional or tin-filtered protocols (p ≤ 0.001). Subjective assessment favoured Sn 150 kVp regarding hyperdense streak artefacts and delineation of cortical bone (p ≤ 0.005). The intraclass correlation coefficient was 0.776 (95% confidence interval: 0.712-0.831; p < 0.001) indicating good interrater reliability. CONCLUSION In the presence of metal implants in our cadaveric study, tin prefiltration with 150 kVp offers superior artefact reduction for low-dose CT imaging of osseous tissue compared with virtual monoenergetic images of dual-energy datasets. The delineation of cortical boundaries seems to benefit particularly from spectral shaping. IMPLICATIONS FOR PRACTICE Low-dose CT imaging of osseous tissue in combination with tin prefiltration allows for superior metal artefact reduction when compared to virtual monoenergetic images of dual-energy datasets. Employing this technique ought to be considered in daily routine when metal implants are present within the scan volume as findings suggest it allows for radiation dose reduction and facilitates diagnosis relevant to further treatment.
Collapse
Affiliation(s)
- H Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - J-P Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - C Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - D Halt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany.
| | - K S Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - A M Alfred Schmidt
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - T S Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - S Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany.
| | - T A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - A S Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
15
|
Imaging of the Left Atrial Appendage Before Occluder Device Placement: Evaluation of Virtual Monoenergetic Images in a Single-Bolus Dual-Phase Protocol. J Comput Assist Tomogr 2022; 46:735-741. [PMID: 35723620 DOI: 10.1097/rct.0000000000001330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Preimplantation cardiac computed tomography (CT) for assessment of the left atrial appendage (LAA) enables correct sizing of the device and the detection of contraindications, such as thrombi. In the arterial phase, distinction between false filling defects and true thrombi can be hampered by insufficient contrast medium distribution. A delayed scan can be used to further differentiate both conditions, but contrast in these acquisitions is relatively lower. In this study, we investigated whether virtual monoenergetic images (VMI) from dual-energy spectral detector CT (SDCT) can be used to enhance contrast and visualization in the delayed phase. MATERIALS AND METHODS Forty-nine patients receiving SDCT imaging of the LAA were retrospectively enrolled. The imaging protocol comprised dual-phase acquisitions with single-bolus contrast injection. Conventional images (CI) from both phases and 40-keV VMI from the delayed phase were reconstructed. Attenuation, signal-, and contrast-to-noise ratios (SNR/CNR) were calculated by placing regions-of-interest in the LAA, left atrium, and muscular portion of interventricular septum. Two radiologists subjectively evaluated conspicuity and homogeneity of contrast distribution within the LAA. RESULTS Contrast of the LAA decreased significantly in the delayed phase but was significantly improved by VMI, showing comparable attenuation, SNR, and CNR to CI from the arterial phase (attenuation/SNR/CNR, CI arterial phase: 266.0 ± 117.0 HU/14.2 ± 7.2/6.6 ± 3.9; CI-delayed phase: 107.6 ± 35.0 HU/5.9 ± 3.0/1.0 ± 1.0; VMI delayed phase: 260.3 ± 108.6 HU/18.2 ± 10.6/4.8 ± 3.4). The subjective reading confirmed the objective findings showing improved conspicuity and homogeneity in the delayed phase. CONCLUSIONS The investigated single-bolus dual-phase acquisition protocol provided improved visualization of the LAA. Homogeneity of contrast media was higher in the delayed phase, while VMI maintained high contrast.
Collapse
|
16
|
Grosu S, Wang ZJ, Obmann MM, Sugi MD, Sun Y, Yeh BM. Reduction of Peristalsis-Related Streak Artifacts on the Liver with Dual-Layer Spectral CT. Diagnostics (Basel) 2022; 12:782. [PMID: 35453830 PMCID: PMC9028529 DOI: 10.3390/diagnostics12040782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Peristalsis-related streak artifacts on the liver compromise image quality and diagnostic accuracy. Purpose: To assess dual-layer spectral-detector computed tomography (CT) image reconstructions for reducing intestinal peristalsis-related streak artifacts on the liver. Methods: We retrospectively evaluated 220 contrast-enhanced abdominal dual-energy CT scans in 131 consecutive patients (mean age: 68 ± 10 years, 120 men) who underwent routine clinical dual-layer spectral-detector CT imaging (120 kVp, 40 keV, 200 keV, virtual non-contrast (VNC), iodine images). Two independent readers evaluated bowel peristalsis streak artifacts on the liver qualitatively on a five-point Likert scale (1 = none to 5 = severe) and quantitatively by depth of streak artifact extension into the liver and measurements of Hounsfield Unit and iodine concentration differences from normal liver. Artifact severity between image reconstructions were compared by Wilcoxon signed-rank and paired t-tests. Results: 12 scans were excluded due to missing spectral data, artifacts on the liver originating from metallic foreign materials, or oral contrast material. Streak artifacts on the liver were seen in 51/208 (25%) scans and involved the left lobe only in 49/51 (96%), the right lobe only in 0/51 (0%), and both lobes in 2/51 (4%) scans. Artifact frequency was lower in iodine than in 120 kVp images (scans 18/208 vs. 51/208, p < 0.001). Artifact severity was less in iodine than in 120 kVp images (median score 1 vs. 3, p < 0.001). Streak artifact extension into the liver was shorter in iodine than 120 kVp images (mean length 2 ± 4 vs. 12 ± 5 mm, p < 0.001). Hounsfield Unit and iodine concentration differed significantly between bright streak artifacts and normal liver in 120 kVp, 40 keV, 200 keV, and VNC images (p < 0.001, each), but not in iodine images (p = 0.23). Conclusion: Intestinal peristalsis-related streak artifacts commonly affect the left liver lobe at CT and can be substantially reduced by viewing iodine dual-energy CT image reconstructions.
Collapse
Affiliation(s)
- Sergio Grosu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA; (Z.J.W.); (M.M.O.); (M.D.S.); (Y.S.)
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377 Munich, Germany
| | - Zhen J. Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA; (Z.J.W.); (M.M.O.); (M.D.S.); (Y.S.)
| | - Markus M. Obmann
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA; (Z.J.W.); (M.M.O.); (M.D.S.); (Y.S.)
- Department of Radiology and Nuclear Imaging, University Hospital Basel, Petersgraben 4, 4051 Basel, Switzerland
| | - Mark D. Sugi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA; (Z.J.W.); (M.M.O.); (M.D.S.); (Y.S.)
| | - Yuxin Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA; (Z.J.W.); (M.M.O.); (M.D.S.); (Y.S.)
| | - Benjamin M. Yeh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA; (Z.J.W.); (M.M.O.); (M.D.S.); (Y.S.)
| |
Collapse
|
17
|
Editorial Comment: Tapping the Potential of Split-Filter Dual-Energy CT to Reduce Dental Artifacts in Patients Undergoing Head and Neck CT. AJR Am J Roentgenol 2021; 218:727. [PMID: 34786960 DOI: 10.2214/ajr.21.27091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Combination of Iterative Metal Artifact Reduction and Virtual Monoenergetic Reconstruction Using Split-Filter Dual-Energy CT in Patients With Dental Artifact on Head and Neck CT. AJR Am J Roentgenol 2021; 218:716-727. [PMID: 34755521 DOI: 10.2214/ajr.21.26772] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Head and neck CT may be limited by dental hardware artifact. Both post-processing based iterative metal artifact reduction (iMAR) and virtual monoenergetic reconstruction (VMR) from dual-energy CT (DECT) can reduce metal artifact. Their combination is poorly described for single-source DECT systems. Objective: To compare metal artifact reduction between VMR, iMAR, and their combination, using split-filter single-source DECT in patients with severe dental hardware artifact. Methods: This retrospective study included 44 patients (9 female, 35 male; mean age 66.0±10.4 years) who underwent head and neck CT exhibiting severe dental hardware artifact. Standard images, VMR, iMAR, and VMRi-MAR were reconstructed; VMR and VMRiMAR used 40, 70, 100, 120, 150, and 190 keV. ROIs were placed to measure corrected attenuation in pronounced hyperattenuating and hypoattenuating artifacts and artifact-impaired soft tissue, as well as corrected artifact-impaired soft tissue noise. Two radiologists independently assessed soft tissue interpretability (1-5 scale); pooled ratings were analyzed. Readers selected the preferred reconstruction for each patient. Results: Mean hyperattenuating artifact corrected attenuation was 521.0 for standard, 496.4-892.2 for VMR, 48.2 for iMAR, and 32.8-91.0 for VMRiMAR. Mean hypoattenuating artifact corrected attenuation was -455.1 for standard, -408.5 to -679.9 for VMR, -37.3 for iMAR, and -17.8 to -36.9 for VMRiMAR. Mean artifact-impaired soft tissue corrected attenuation was 10.8 for standard, -0.6 to 24.9 for VMR, 4.3 for iMAR, and -2.0 to 7.8 for VMRiMAR. Mean artifact-impaired soft tissue corrected noise was 58.7 for standard, 38.2-129.7 for VMR, 11.0 for iMAR, and 5.8-45.6 for VMRiMAR. Median soft tissue interpretability was 1.2 for standard, 1.1-1.2 for VMR, 3.7 for iMAR, and 2.0-3.8 for VMRiMAR. Artifact-impaired soft tissue corrected attenuation and soft tissue interpretability were significantly improved (p<.05) for VMRiMAR versus iMAR only at 100 keV. Readers preferred VMRiMAR at 100 keV in 56.8% and 59.1% of examinations. Conclusion: For reducing severe dental material artifact, iMAR has greater impact than VMR. Though iMAR and VMRiMAR were overall similar, VMRiMAR exhibited small benefit at 100 keV. Clinical Impact: VMR and iMAR techniques, using split-filter DECT, may be combined for clinical head and neck imaging to reduce artifact from dental hardware and improve image quality.
Collapse
|
19
|
Hiyama T, Kuno H, Sekiya K, Tsushima S, Oda S, Kobayashi T. Subtraction iodine imaging with area detector CT to improve tumor delineation and measurability of tumor size and depth of invasion in tongue squamous cell carcinoma. Jpn J Radiol 2021; 40:167-176. [PMID: 34529215 PMCID: PMC8803757 DOI: 10.1007/s11604-021-01196-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/04/2021] [Indexed: 12/24/2022]
Abstract
Purpose Tumor size and depth of invasion (DOI) are mandatory assessments for tumor classification in tongue cancer but are often non-assessable on CT due to dental artifacts. This study investigated whether subtraction iodine imaging (SII) would improve tumor delineation and measurability. Materials and methods Fifty-seven consecutive patients with tongue cancer, who underwent scanning with a 320-row area detector CT with contrast administration and were treated with surgical resection, were retrospectively evaluated. CT was reconstructed with single-energy projection-based metallic artifact reduction (sCT). SII was generated by subtracting the pre-contrast volume scans from the post-contrast volume scans using a high-resolution deformable registration algorithm. MRI scans were also evaluated for comparing the ability of measurements. Two radiologists visually graded the tumor delineation using a 5-point scale. Tumor size and DOI were measured wherever possible. The tumor delineation score was compared using the Wilcoxon signed-rank method. Spearman’s correlations between imaging and pathological measurements were calculated. Intraclass correlation coefficients of measurements between readers were estimated. Results The tumor delineation score was greater on sCT-plus-SII than on sCT alone (medians: 3 and 1, respectively; p < 0.001), with higher number of detectable cases observed with sCT-plus-SII (36/57 [63.2%]) than sCT alone (21/57 [36.8%]). Tumor size and DOI measurability were higher with sCT-plus-SII (29/57 [50.9%]) than with sCT alone (17/57 [29.8%]). MRI had the highest detectability (52/57 [91.2%]) and measurability (46/57 [80.7%]). Correlation coefficients between radiological and pathological tumor size and DOI were similar for sCT (0.83–0.88), sCT-plus-SII (0.78–0.84), and MRI (0.78–0.90). Intraclass correlation coefficients were higher than 0.95 for each modality. Conclusions SII improves detectability and measurability of tumor size and DOI in patients with oral tongue squamous cell carcinoma, thus increasing the diagnostic potential. SII may also be beneficial for cases unevaluable on MRI due to artifacts or for patients with contraindications to MRI.
Collapse
Affiliation(s)
- Takashi Hiyama
- Department of Diagnostic Radiology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Hirofumi Kuno
- Department of Diagnostic Radiology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Kotaro Sekiya
- Department of Diagnostic Radiology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - So Tsushima
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Shioto Oda
- Department of Diagnostic Radiology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Tatsushi Kobayashi
- Department of Diagnostic Radiology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
20
|
Choo HJ, Lee SJ, Kim DW, Lee YJ, Baek JW, Han JY, Heo YJ. Comparison of the Quality of Various Polychromatic and Monochromatic Dual-Energy CT Images with or without a Metal Artifact Reduction Algorithm to Evaluate Total Knee Arthroplasty. Korean J Radiol 2021; 22:1341-1351. [PMID: 34132074 PMCID: PMC8316773 DOI: 10.3348/kjr.2020.0548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/28/2022] Open
Abstract
Objective To compare the quality of various polychromatic and monochromatic images with or without using an iterative metal artifact reduction algorithm (iMAR) obtained from a dual-energy computed tomography (CT) to evaluate total knee arthroplasty. Materials and Methods We included 58 patients (28 male and 30 female; mean age [range], 71.4 [61–83] years) who underwent 74 knee examinations after total knee arthroplasty using dual-energy CT. CT image sets consisted of polychromatic image sets that linearly blended 80 kVp and tin-filtered 140 kVp using weighting factors of 0.4, 0, and −0.3, and monochromatic images at 130, 150, 170, and 190 keV. These image sets were obtained with and without applying iMAR, creating a total of 14 image sets. Two readers qualitatively ranked the image quality (1 [lowest quality] through 14 [highest quality]). Volumes of high- and low-density artifacts and contrast-to-noise ratios (CNRs) between the bone and fat tissue were quantitatively measured in a subset of 25 knees unaffected by metal artifacts. Results iMAR-applied, polychromatic images using weighting factors of −0.3 and 0.0 (P−0.3i and P0.0i, respectively) showed the highest image-quality rank scores (median of 14 for both by one reader and 13 and 14, respectively, by the other reader; p < 0.001). All iMAR-applied image series showed higher rank scores than the iMAR-unapplied ones. The smallest volumes of low-density artifacts were found in P−0.3i, P0.0i, and iMAR-applied monochromatic images at 130 keV. The smallest volumes of high-density artifacts were noted in P−0.3i. The CNRs were best in polychromatic images using a weighting factor of 0.4 with or without iMAR application, followed by polychromatic images using a weighting factor of 0.0 with or without iMAR application. Conclusion Polychromatic images combined with iMAR application, P−0.3i and P0.0i, provided better image qualities and substantial metal artifact reduction compared with other image sets.
Collapse
Affiliation(s)
- Hye Jung Choo
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea.
| | - Sun Joo Lee
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - Dong Wook Kim
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - Yoo Jin Lee
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - Jin Wook Baek
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - Ji Yeon Han
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| | - Young Jin Heo
- Department of Radiology, Inje University Busan Paik Hospital, Busan, Korea
| |
Collapse
|
21
|
Wang G, Gao Q, Wang Z, Lu X, Yu S, Jin Z. Reduction of microwave ablation needle related metallic artifacts using virtual monoenergetic images from dual-layer detector spectral CT in a rabbit model with VX2 tumor. Sci Rep 2021; 11:9295. [PMID: 33927327 PMCID: PMC8085209 DOI: 10.1038/s41598-021-88853-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/16/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of the study was to investigate the application of virtual monoenergetic images (VMIs) in reducing metal artifacts in rabbit VX2 liver cancer models treated with microwave ablation (MWA) therapy. A total of 31 VX2 liver cancer models that accepted CT-guided percutaneous microwave ablation were analyzed. Conventional images (CIs) with the most severe metallic artifacts and their corresponding energy levels from 40 to 200 keV with 10 keV increment of VMIs were reconstructed for further analysis. Objective image analysis was assessed by recording the attenuation (HU) and standard deviation of the most severe hyper/hypodense artifacts as well as artifact-impaired liver parenchyma tissue. Two radiologists visually evaluated the extent of artifact reduction, assessed data obtained by a diagnostic evaluation of liver tissues, and appraised the appearance of new artifacts according to the grade score. Statistical analysis was performed to compare the difference between CIs and each energy level of VMIs. For subjective assessment, reductions in hyperdense and hypodense artifacts were observed at 170–200 keV and 160–200 keV, respectively. The outcomes of the diagnostic evaluation of adjacent liver tissue were statistically higher at 140–200 keV for VMIs than for CIs. In terms of objective evaluation results, VMIs at 90–200 keV reduced the corrected attenuation of hyperdense and of artifact-impaired liver parenchyma compared with CIs (P < 0.001). When VMIs at 80–200 keV decreased the hypodense artifacts (P < 0.001). Therefore, we concluded that VMIs at 170–200 keV can obviously decrease the microwave ablation needle-related metal artifacts objectively and subjectively in rabbit VX2 liver cancer models.
Collapse
Affiliation(s)
- Guorong Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qinzong Gao
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Xiaomei Lu
- CT Clinical Science, Philips Healthcare, Shenyang, 110016, China
| | - Shenghui Yu
- CT Clinical Science, Philips Healthcare, Beijing, 100600, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
22
|
Reduction of CT artifacts from cardiac implantable electronic devices using a combination of virtual monoenergetic images and post-processing algorithms. Eur Radiol 2021; 31:7151-7161. [PMID: 33630164 PMCID: PMC8379133 DOI: 10.1007/s00330-021-07746-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To evaluate the reduction of artifacts from cardiac implantable electronic devices (CIEDs) by virtual monoenergetic images (VMI), metal artifact reduction (MAR) algorithms, and their combination (VMIMAR) derived from spectral detector CT (SDCT) of the chest compared to conventional CT images (CI). METHODS In this retrospective study, we included 34 patients (mean age 74.6 ± 8.6 years), who underwent a SDCT of the chest and had a CIED in place. CI, MAR, VMI, and VMIMAR (10 keV increment, range: 100-200 keV) were reconstructed. Mean and standard deviation of attenuation (HU) among hypo- and hyperdense artifacts adjacent to CIED generator and leads were determined using ROIs. Two radiologists qualitatively evaluated artifact reduction and diagnostic assessment of adjacent tissue. RESULTS Compared to CI, MAR and VMIMAR ≥ 100 keV significantly increased attenuation in hypodense and significantly decreased attenuation in hyperdense artifacts at CIED generator and leads (p < 0.05). VMI ≥ 100 keV alone only significantly decreased hyperdense artifacts at the generator (p < 0.05). Qualitatively, VMI ≥ 100 keV, MAR, and VMIMAR ≥ 100 keV provided significant reduction of hyper- and hypodense artifacts resulting from the generator and improved diagnostic assessment of surrounding structures (p < 0.05). Diagnostic assessment of structures adjoining to the leads was only improved by MAR and VMIMAR 100 keV (p < 0.05), whereas keV values ≥ 140 with and without MAR significantly worsened diagnostic assessment (p < 0.05). CONCLUSIONS The combination of VMI and MAR as well as MAR as a standalone approach provides effective reduction of artifacts from CIEDs. Still, higher keV values should be applied with caution due to a loss of soft tissue and vessel contrast along the leads. KEY POINTS • The combination of VMI and MAR as well as MAR as a standalone approach enables effective reduction of artifacts from CIEDs. • Higher keV values of both VMI and VMIMAR at CIED leads should be applied with caution since diagnostic assessment can be hampered by a loss of soft tissue and vessel contrast. • Recommended keV values for CIED generators are between 140 and 200 keV and for leads around 100 keV.
Collapse
|
23
|
Deep learning-based metal artefact reduction in PET/CT imaging. Eur Radiol 2021; 31:6384-6396. [PMID: 33569626 PMCID: PMC8270868 DOI: 10.1007/s00330-021-07709-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Objectives The susceptibility of CT imaging to metallic objects gives rise to strong streak artefacts and skewed information about the attenuation medium around the metallic implants. This metal-induced artefact in CT images leads to inaccurate attenuation correction in PET/CT imaging. This study investigates the potential of deep learning–based metal artefact reduction (MAR) in quantitative PET/CT imaging. Methods Deep learning–based metal artefact reduction approaches were implemented in the image (DLI-MAR) and projection (DLP-MAR) domains. The proposed algorithms were quantitatively compared to the normalized MAR (NMAR) method using simulated and clinical studies. Eighty metal-free CT images were employed for simulation of metal artefact as well as training and evaluation of the aforementioned MAR approaches. Thirty 18F-FDG PET/CT images affected by the presence of metallic implants were retrospectively employed for clinical assessment of the MAR techniques. Results The evaluation of MAR techniques on the simulation dataset demonstrated the superior performance of the DLI-MAR approach (structural similarity (SSIM) = 0.95 ± 0.2 compared to 0.94 ± 0.2 and 0.93 ± 0.3 obtained using DLP-MAR and NMAR, respectively) in minimizing metal artefacts in CT images. The presence of metallic artefacts in CT images or PET attenuation correction maps led to quantitative bias, image artefacts and under- and overestimation of scatter correction of PET images. The DLI-MAR technique led to a quantitative PET bias of 1.3 ± 3% compared to 10.5 ± 6% without MAR and 3.2 ± 0.5% achieved by NMAR. Conclusion The DLI-MAR technique was able to reduce the adverse effects of metal artefacts on PET images through the generation of accurate attenuation maps from corrupted CT images. Key Points • The presence of metallic objects, such as dental implants, gives rise to severe photon starvation, beam hardening and scattering, thus leading to adverse artefacts in reconstructed CT images. • The aim of this work is to develop and evaluate a deep learning–based MAR to improve CT-based attenuation and scatter correction in PET/CT imaging. • Deep learning–based MAR in the image (DLI-MAR) domain outperformed its counterpart implemented in the projection (DLP-MAR) domain. The DLI-MAR approach minimized the adverse impact of metal artefacts on whole-body PET images through generating accurate attenuation maps from corrupted CT images. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-07709-z.
Collapse
|
24
|
Gupta A, Obmann VC, Jordan M, Lennartz S, Obmann MM, Große Hokamp N, Zopfs D, Pennig L, Fürtjes G, Ramaiya N, Gilkeson R, Laukamp KR. CT artifacts after contrast media injection in chest imaging: evaluation of post-processing algorithms, virtual monoenergetic images and their combination for artifact reduction. Quant Imaging Med Surg 2021; 11:226-239. [PMID: 33392024 DOI: 10.21037/qims-20-435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background After injection into a brachial vein, high contrast media concentration in axillary and subclavian veins can cause artifacts that impair diagnostic utility. This study assessed artifact reduction by artifact-reduction-algorithms (ARA) and virtual-monoenergetic-images (VMI), as well as their combination (VMIARA) compared to conventional CT-images (CI). Methods Forty-six spectral-detector-CT (SDCT) examinations of patients that received ARA-reconstructions due to perivenous-artifacts were included in this retrospective study. CI, ARA, VMI, and VMIARA (range: 70-200 keV) were reconstructed. Objective analysis was performed with ROI-based assessment of mean and standard deviation of attenuation (HU) in hypo- and hyperdense artifacts and impaired muscle and arteries as well as artifact-free reference-tissue. Extent of artifact reduction, assessment of surrounding soft tissue and vessels, and appearance of new artifacts were rated visually by two radiologists. Results Hypo- and hyperdense artifacts showed significant improvement as evidenced by decreasing attenuation differences between artifact impaired and artifact-free reference tissue in ARA, VMI ≥80 keV, and VMIARA between 70-200 keV (e.g., CI/ARA/VMI100keV/VMIARA100keV: hypodense artifacts, (-)264.8±150.9/(-)87.1±78.9/(-)48.6±64.6/9.9±63.9 HU; P<0.001); hyperdense artifacts, 164.2±51.1/82.1±73.2/7.9±34.7/(-)17.3±50.7 HU; P<0.001). Artifacts impairing surrounding muscle and arteries were also reduced by all three approaches. In visual assessment, ARA, VMI ≥100 keV, and VMIARA between 70-200 keV also showed significant artifact reduction and improved assessment; however, for assessment of arteries improvement was not significant using ARA alone. New artifacts were reported, particularly at higher keV-values. Conclusions In presence of perivenous-artifacts, ARA, VMI and their combination allow for significant artifact reduction; however, their combination and VMI as a standalone approach yielded best results and should therefore be used, if available.
Collapse
Affiliation(s)
- Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Verena Carola Obmann
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Michelle Jordan
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Michael Obmann
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nils Große Hokamp
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gina Fürtjes
- Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nikhil Ramaiya
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Robert Gilkeson
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Kai Roman Laukamp
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Steffen C, Sellenschloh K, Vollmer M, Morlock MM, Heiland M, Huber G, Rendenbach C. Biomechanical comparison of titanium miniplates versus a variety of CAD/CAM plates in mandibular reconstruction. J Mech Behav Biomed Mater 2020; 111:104007. [DOI: 10.1016/j.jmbbm.2020.104007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
|
26
|
Kubo Y, Ito K, Sone M, Nagasawa H, Onishi Y, Umakoshi N, Hasegawa T, Akimoto T, Kusumoto M. Diagnostic Value of Model-Based Iterative Reconstruction Combined with a Metal Artifact Reduction Algorithm during CT of the Oral Cavity. AJNR Am J Neuroradiol 2020; 41:2132-2138. [PMID: 32972957 DOI: 10.3174/ajnr.a6767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Metal artifacts reduce the quality of CT images and increase the difficulty of interpretation. This study compared the ability of model-based iterative reconstruction and hybrid iterative reconstruction to improve CT image quality in patients with metallic dental artifacts when both techniques were combined with a metal artifact reduction algorithm. MATERIALS AND METHODS This retrospective clinical study included 40 patients (men, 31; women, 9; mean age, 62.9 ± 12.3 years) with oral and oropharyngeal cancer who had metallic dental fillings or implants and underwent contrast-enhanced ultra-high-resolution CT of the neck. Axial CT images were reconstructed using hybrid iterative reconstruction and model-based iterative reconstruction, and the metal artifact reduction algorithm was applied to all images. Finally, hybrid iterative reconstruction + metal artifact reduction algorithms and model-based iterative reconstruction + metal artifact reduction algorithm data were obtained. In the quantitative analysis, SDs were measured in ROIs over the apex of the tongue (metal artifacts) and nuchal muscle (no metal artifacts) and were used to calculate the metal artifact indexes. In a qualitative analysis, 3 radiologists blinded to the patients' conditions assessed the image-quality scores of metal artifact reduction and structural depictions. RESULTS Hybrid iterative reconstruction + metal artifact reduction algorithms and model-based iterative reconstruction + metal artifact reduction algorithms yielded significantly different metal artifact indexes of 82.2 and 73.6, respectively (95% CI, 2.6-14.7; P < .01). The latter algorithms resulted in significant reduction in metal artifacts and significantly improved structural depictions(P < .01). CONCLUSIONS Model-based iterative reconstruction + metal artifact reduction algorithms significantly reduced the artifacts and improved the image quality of structural depictions on neck CT images.
Collapse
Affiliation(s)
- Y Kubo
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan .,Department of Cancer Medicine (Y.K., T.A.), Jikei University Graduate School of Medicine, Tokyo, Japan
| | - K Ito
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - M Sone
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - H Nagasawa
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - Y Onishi
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - N Umakoshi
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - T Hasegawa
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - T Akimoto
- Department of Cancer Medicine (Y.K., T.A.), Jikei University Graduate School of Medicine, Tokyo, Japan.,Division of Radiation Oncology and Particle Therapy (T.A.), National Cancer Center Hospital East, Kashiwa, Japan
| | - M Kusumoto
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
27
|
Biomechanical comparison of polylactide-based versus titanium miniplates in mandible reconstruction in vitro. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 121:377-382. [DOI: 10.1016/j.jormas.2019.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/28/2022]
|
28
|
Maloca PM, Faludi B, Zelechowski M, Jud C, Vollmar T, Hug S, Müller PL, de Carvalho ER, Zarranz-Ventura J, Reich M, Lange C, Egan C, Tufail A, Hasler PW, Scholl HPN, Cattin PC. Validation of virtual reality orbitometry bridges digital and physical worlds. Sci Rep 2020; 10:11815. [PMID: 32678297 PMCID: PMC7366721 DOI: 10.1038/s41598-020-68867-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
Clinical science and medical imaging technology are traditionally displayed in two dimensions (2D) on a computer monitor. In contrast, three-dimensional (3D) virtual reality (VR) expands the realm of 2D image visualization, enabling an immersive VR experience with unhindered spatial interaction by the user. Thus far, analysis of data extracted from VR applications was mainly qualitative. In this study, we enhance VR and provide evidence for quantitative VR research by validating digital VR display of computed tomography (CT) data of the orbit. Volumetric CT data were transferred and rendered into a VR environment. Subsequently, seven graders performed repeated and blinded diameter measurements. The intergrader variability of the measurements in VR was much lower compared to measurements in the physical world and measurements were reasonably consistent with their corresponding elements in the real context. The overall VR measurements were 5.49% higher. As such, this study attests the ability of VR to provide similar quantitative data alongside the added benefit of VR interfaces. VR entails a lot of potential for the future research in ophthalmology and beyond in any scientific field that uses three-dimensional data.
Collapse
Affiliation(s)
- Peter M Maloca
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland. .,OCTlab, Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland. .,Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland. .,Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
| | - Balázs Faludi
- Center for Medical Image Analysis & Navigation, University of Basel, 4031, Basel, Switzerland
| | - Marek Zelechowski
- Center for Medical Image Analysis & Navigation, University of Basel, 4031, Basel, Switzerland
| | - Christoph Jud
- Center for Medical Image Analysis & Navigation, University of Basel, 4031, Basel, Switzerland
| | - Theo Vollmar
- MRZ Medical Radiology Center, 6004, Lucerne, Switzerland
| | - Sibylle Hug
- MRZ Medical Radiology Center, 6004, Lucerne, Switzerland
| | - Philipp L Müller
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | | | | | - Michael Reich
- Faculty of Medicine, Eye Center, Albert-Ludwigs University Freiburg, 79085, Freiburg, Germany
| | - Clemens Lange
- Faculty of Medicine, Eye Center, Albert-Ludwigs University Freiburg, 79085, Freiburg, Germany
| | - Catherine Egan
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Pascal W Hasler
- OCTlab, Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland.,Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.,Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland.,Wilmer Eye Institute, Johns Hopkins University, Baltimore, 21287, USA
| | - Philippe C Cattin
- Center for Medical Image Analysis & Navigation, University of Basel, 4031, Basel, Switzerland
| |
Collapse
|
29
|
Große Hokamp N, Eck B, Siedek F, Pinto Dos Santos D, Holz JA, Maintz D, Haneder S. Quantification of metal artifacts in computed tomography: methodological considerations. Quant Imaging Med Surg 2020; 10:1033-1044. [PMID: 32489927 DOI: 10.21037/qims.2020.04.03] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous methods for artifact quantification in computed tomography (CT) imaging have been suggested. This study evaluated their utility with regards to correspondence with visual artifact perception and reproducibility. Two titanium rods (5 and 10 mm) were examined with 25 different scanning- and image-reconstruction parameters resulting in different types and extents of artifacts. Four radiologists evaluated every image against each other using an in-house developed software. Rating was repeated two times (2,400 comparisons = 2 times × 4 readers × 300 comparisons). Rankings were combined to obtain a reference ranking. Proposed approaches for artifact quantification include manual measurement of attenuation, standard deviation and noise and sophisticated algorithm-based approaches within the image- and frequency-domain. Two radiologists conducted manual measurements twice while the aforementioned algorithms were implemented within the Matlab-Environment allowing for automated image analysis. The reference ranking was compared to all aforementioned methods for artifact quantification to identify suited approaches. Besides visual analysis, Kappa-statistics and intraclass correlation coefficients (ICC) were used. Intra- and Inter-reader agreements of visual artifact perception were excellent (ICC 0.85-0.92). No quantitative method was able to represent the exact ranking of visually perceived artifacts; however, ICC for manual measurements were low (ICC 0.25-0.97). The method that showed best correspondence and reproducibility used a Fourier-transformed linear ROI and lower-end frequency bins. Automated measurements of artifact extent should be preferred over manual measurements as the latter show a limited reproducibility. One method that allows for automated quantification of such artefacts is made available as an electronic supplement.
Collapse
Affiliation(s)
- Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, University Hospitals Medical Center, Cleveland, OH, USA
| | - Brendan Eck
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Florian Siedek
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Pinto Dos Santos
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jasmin A Holz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefan Haneder
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Zopfs D, Lennartz S, Pennig L, Glauner A, Abdullayev N, Bremm J, Große Hokamp N, Persigehl T, Kabbasch C, Borggrefe J, Laukamp KR. Virtual monoenergetic images and post-processing algorithms effectively reduce CT artifacts from intracranial aneurysm treatment. Sci Rep 2020; 10:6629. [PMID: 32313094 PMCID: PMC7170914 DOI: 10.1038/s41598-020-63574-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/01/2020] [Indexed: 11/09/2022] Open
Abstract
To evaluate artifact reduction by virtual monoenergetic images (VMI) and metal artifact reduction algorithms (MAR) as well as the combination of both approaches (VMIMAR) compared to conventional CT images (CI) as standard of reference. In this retrospective study, 35 patients were included who underwent spectral-detector CT (SDCT) with additional MAR-reconstructions due to artifacts from coils or clips. CI, VMI, MAR and VMIMAR (range: 100-200 keV, 10 keV-increment) were reconstructed. Region-of-interest based objective analysis was performed by assessing mean and standard deviation of attenuation (HU) in hypo- and hyperdense artifacts from coils and clips. Visually, extent of artifact reduction and diagnostic assessment were rated. Compared to CI, VMI ≥ 100 keV, MAR and VMIMAR between 100-200 keV increased attenuation in hypoattenuating artifacts (CI/VMI200keV/MAR/VMIMAR200keV, HU: -77.6 ± 81.1/-65.1 ± 103.2/-36.9 ± 27.7/-21.1 ± 26.7) and decreased attenuation in hyperattenuating artifacts (HU: 47.4 ± 32.3/42.1 ± 50.2/29.5 ± 18.9/20.8 ± 25.8). However, differences were only significant for MAR in hypodense and VMIMAR in hypo- and hyperdense artifacts (p < 0.05). Visually, hypo- and hyperdense artifacts were significantly reduced compared to CI by VMI≥140/100keV, MAR and VMIMAR≥100keV. Diagnostic assessment of surrounding brain tissue was significantly improved in VMI≥100keV, MAR and VMIMAR≥100keV. The combination of VMI and MAR facilitates a significant reduction of artifacts adjacent to intracranial coils and clips. Hence, if available, these techniques should be combined for optimal reduction of artifacts following intracranial aneurysm treatment.
Collapse
Affiliation(s)
- David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Glauner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nuran Abdullayev
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Johannes Bremm
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kabbasch
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan Borggrefe
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai Roman Laukamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA.
- Case Western Reserve University, Department of Radiology, Cleveland, OH, USA.
| |
Collapse
|
31
|
Laukamp KR, Große Hokamp N, Alabar O, Obmann VC, Lennartz S, Zopfs D, Gilkeson R, Ramaiya N, Gupta A. Metal artifacts from sternal wires: evaluation of virtual monoenergetic images from spectral-detector CT for artifact reduction. Clin Imaging 2020; 60:249-256. [DOI: 10.1016/j.clinimag.2019.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
32
|
Laukamp KR, Lennartz S, Ho V, Große Hokamp N, Zopfs D, Gupta A, Graner FP, Borggrefe J, Gilkeson R, Ramaiya N. Evaluation of the liver with virtual non-contrast: single institution study in 149 patients undergoing TAVR planning. Br J Radiol 2020; 93:20190701. [PMID: 31825655 DOI: 10.1259/bjr.20190701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To evaluate accuracy of virtual-non-contrast images (VNC) compared to true-unenhanced-images (TNC) for evaluation of liver attenuation acquired using spectral-detector CT (SDCT). METHODS 149 patients who underwent multiphase transcatheter-aortic-valve-replacement (TAVR) SDCT-examinations [unenhanced-chest (TNC), CT-angiography chest (CTA-chest, early arterial-phase) and abdomen (CTA-abdomen, additional early arterial-phase after a second injection of contrast media)] were retrospectively included. VNC of CTA-chest (VNC-chest) and CTA-abdomen (VNC-abdomen) were reconstructed and compared to TNC. Region of interest-based measurement of mean attenuation (Hounsfield unit, HU) was applied in the following regions: liver, spleen, abdominal aorta and paraspinal muscle. RESULTS VNC accuracy was high in the liver, spleen, abdominal aorta and muscle for abdomen-scanning. For the liver, average attenuation was 59.0 ± 9.1 HU for TNC and 72.6 ± 9.5 HU for CTA-abdomen. Liver attenuation in VNC-abdomen (59.1 ± 6.4 HU) was not significantly different from attenuation in TNC (p > 0.05). In contrast, VNC was less accurate for chest-scanning: Due to the protocol, in CTA-chest no contrast media was present in the liver parenchyma as indicated by the same attenuation in TNC (59.0 ± 9.1 HU) and CTA-chest (58.8 ± 8.9 HU, p > 0.05). Liver attenuation in VNC-chest (56.2 ± 6.4 HU, p < 0.05) was, however, significantly lower than in TNC and CTA-chest implying an artificial reduction of attenuation. CONCLUSION VNC performed well in a large cohort of TAVR-examinations yielding equivalent mean attenuations to TNC; however, application of this technique might be limited when no or very little contrast media is present in parenchyma, more precisely in an early arterial-phase of the liver. ADVANCES IN KNOWLEDGE This study showed that VNC can be reliably applied in cardiac protocols when certain limitations are considered.
Collapse
Affiliation(s)
- Kai Roman Laukamp
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vivian Ho
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Nils Große Hokamp
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Frank Philipp Graner
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Jan Borggrefe
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Robert Gilkeson
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Nikhil Ramaiya
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
Laukamp KR, Zopfs D, Wagner A, Lennartz S, Pennig L, Borggrefe J, Ramaiya N, Große Hokamp N. CT artifacts from port systems: Virtual monoenergetic reconstructions from spectral-detector CT reduce artifacts and improve depiction of surrounding tissue. Eur J Radiol 2019; 121:108733. [PMID: 31739270 DOI: 10.1016/j.ejrad.2019.108733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/19/2019] [Accepted: 10/27/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE CT artifacts from port-systems are a common problem in staging- and restaging-examinations and reduce image quality and diagnostic assessment. The purpose of this study was to investigate the reduction of these artifacts using virtual monoenergetic images (VMI) from dual-energy spectral-detector CT (SDCT) in comparison to conventional CT-images (CI). METHOD 50 SDCT-datasets of patients with artifacts from port-chamber and port-catheters were included in this IRB-approved, retrospective study. CI and VMI (range, 40-200 keV, 10 keV increment) were reconstructed from the same acquisition. The quantitative image analysis was performed ROI-based assessing mean and standard deviation of attenuation (HU) in most pronounced hypo- and hyperdense artifacts surrounding to the port-chamber and the distal end of the port-catheter in the superior vena cava. Subjectively, artifact reduction and diagnostic assessment of surrounding soft tissue were rated on 5-point Likert-scales. RESULTS In comparison to CI, VMI of higher keV-values showed strong reduction of hypo- and hyperattenuating artifacts around the port-chamber and port-catheter (CI/VMI200keV: hypodense -104.7 ± 124.7HU/10.8 ± 58.1HU and -101.6 ± 101.5HU/-36.7 ± 32.9HU; hyperdense 240.8 ± 151.6HU/79.6 ± 81.3HU and 108.6 ± 129.3HU/25.9 ± 31.9HU; all p < 0.001). Image noise could also be reduced significantly. The subjective analysis showed significantly reduced artifacts around the port-chamber and port-catheter (CI/VMI200keV: hypodense 3(1-4)/5(4-5) and 3(2-4)/5(4-5); hyperdense 3(1-4)/5(4-5) and 3(2-3)/5(3-5); all p < 0.001) and improved diagnostic assessment of pectoral/subclavian soft tissue for VMI of ≥100keV. Ratings for diagnostic assessment were best between 140-200 keV. Overall interrater agreement was high (ICC = 0.79). CONCLUSIONS Higher keV VMI enabled a significant reduction of artifacts from port-systems around the chamber and the catheter leading to improved assessment of surrounding soft tissue.
Collapse
Affiliation(s)
- Kai Roman Laukamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of Radiology, University Hospitals Cleveland Medical Center, 11000 Euclid Ave, 44106 Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, 10900 Euclid Ave, 44106, Cleveland, OH, USA.
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Anton Wagner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jan Borggrefe
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Nikhil Ramaiya
- Department of Radiology, University Hospitals Cleveland Medical Center, 11000 Euclid Ave, 44106 Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, 10900 Euclid Ave, 44106, Cleveland, OH, USA
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of Radiology, University Hospitals Cleveland Medical Center, 11000 Euclid Ave, 44106 Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, 10900 Euclid Ave, 44106, Cleveland, OH, USA
| |
Collapse
|