1
|
Cheng L, Wang M, Yang B, Li Y, Wang T, Xi C, Han Y, Wang Z, Fang Y, Wei M, Du H, Xu A. Ultra-high static magnetic fields altered the embryonic division and development in Caenorhabditis elegans via multipolar spindles. J Adv Res 2025; 72:515-526. [PMID: 39089616 DOI: 10.1016/j.jare.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Ultra-high static magnetic fields (SMFs) have unique advantages in improving medical and academic research. However, the research on the early embryo exposure of ultra-high SMFs is minimal, extensive exploration is indispensable in living organisms. OBJECTIVES The present study was aimed to study the effects of ultra-high SMFs on the early embryonic division and development of Caenorhabditis elegans (C. elegans). METHODS Early adult parents containing fertilized eggs in vivo were exposed to SMFs at intensities ranging from 4 T to 27 T. The number of mitotic cells in the reproductive glands of the P0 worms, early embryonic cell spindle localization, embryo hatching and the reproductive as well as developmental indicators of F1 and F2 nematodes were examined as endpoints. RESULTS Our results indicated that ultra-high SMFs has no obvious effect on the germ cell cycle, while 14 T and 27 T SMFs significantly increased the proportion of multi-polar spindle formation in early embryonic cells, and reduced the developmental rate and lifespan of C. elegans exposed at the embryonic stage. Spindle abnormalities of early embryonic cells, as well as the down-regulation of genes related to asymmetric embryonic division and the abnormal expression of the non-muscle myosin NMY-2 in the division grooves played a critical role in the slowing down of embryonic development induced by ultra-high SMFs. CONCLUSIONS This study provided novel information and a new sight for evaluating the biosafety assessment by exposure to ultra-high SMFs at the early embryonic stage in vivo.
Collapse
Affiliation(s)
- Lei Cheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mudi Wang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Baolin Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yang Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tong Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Chuanying Xi
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yuyan Han
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Ze Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yanwen Fang
- Heye Health Technology Co.,Ltd., Huzhou, Zhejiang 313300, PR China
| | - Min Wei
- Heye Health Technology Co.,Ltd., Huzhou, Zhejiang 313300, PR China
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
2
|
Wang S, Yang J, Wei Y, Cai C, Chen S, Wu Y, Li X, Sun L, Li X, Gong M, Zhou J, Hu Y, Zhang W, Guo Z, Liao J, Luo C, Bai X, luo X, Duan L, Huyan T, Yang Z, Wei M, Fang Y, Zhang H, Shang P. Moderate static magnetic fields prevent estrogen deficiency-induced bone loss: Evidence from ovariectomized mouse model and small sample size randomized controlled clinical trial. PLoS One 2025; 20:e0314199. [PMID: 40299942 PMCID: PMC12040201 DOI: 10.1371/journal.pone.0314199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/25/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is the most common type of osteoporosis. Numerous studies have shown that static magnetic fields (SMFs) can inhibit bone loss by regulating bone remodeling. However, there are currently no clinical studies on the treatment of osteoporosis with SMFs. This study aims to investigate the clinical therapeutic effects of moderate static magnetic fields (MMFs) on PMOP. METHODS In this paper, we constructed MMF device using neodymium-iron-boron (NdFeB) materials. At the animal level, the effect of MMF exposure for 8 weeks on estrogen deficiency-induced bone loss was investigated by evaluating bone microstructure, mechanical properties, and bone conversion using ovariectomized (OVX) mice. Clinically, a single-blind randomized controlled study in patients with PMOP was designed. PMOP patients aged 55-70 years were recruited and randomized into the control and MMF treatment groups. Clinical assessments of bone mineral density (BMD), bone turnover markers (BTMs) and VAS scores were performed at baseline and day 90, respectively. RESULTS The results showed that MMF exposure significantly improved BMD, bone mineral content (BMC), bone microarchitecture and bone strength in OVX mice. For bone turnover, MMF increased the number of osteoblasts on the bone surface of OVX mice as well as the level of serum bone formation marker P1NP, while decreasing the number of osteoclasts and the level of serum bone resorption marker β-CTX. The clinical trial's results showed that MMF treatment had a positive effect on the improvement of BMD in the lumbar spine and increased serum P1NP levels while decreased β-CTX levels. In addition, MMF treatment decreased participants' VAS scores for low back pain. CONCLUSIONS The results of both animal and clinical studies demonstrated that MMF treatment improved bone turnover and have a positive effect on BMD improvement, as well as alleviated low back pain in PMOP patients. This study will promote the translational research and clinical application of SMF treatment for osteoporosis. TRIAL REGISTRATION Intervention study of moderate static magnetic field on osteoporosis and iron metabolism in postmenopausal women, ChiCTR2100048604.
Collapse
Affiliation(s)
- Shenghang Wang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yunpeng Wei
- Shenzhen University of Advanced Technology, Shenzhen, China
| | - Chao Cai
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shuai Chen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Youde Wu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiao Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lilei Sun
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xianglin Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ming Gong
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China
| | - Yawei Hu
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China
| | - Wang Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China
| | - Zengfeng Guo
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China
| | - Jiacheng Liao
- Minle Community Health Service Center, People's Hospital of Longhua, Shenzhen, China
| | - Chunling Luo
- Minle Community Health Service Center, People's Hospital of Longhua, Shenzhen, China
| | - Xiaosu Bai
- Department of Endocrinology, People's Hospital of Longhua, Shenzhen, China
| | - Xinle luo
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China
| | - Liming Duan
- An Shi Rui Information Technology Co., Ltd, Shenzhen, China
| | - Ting Huyan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhouqi Yang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Min Wei
- Heye Health Technology Co., Ltd, Huzhou, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Huzhou, China
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Rajabi F, Hajipour-Verdom B, Abdolmaleki P. Static magnetic field promotes the doxorubicin toxicity effects on osteosarcoma cells. Sci Rep 2025; 15:11902. [PMID: 40195518 PMCID: PMC11977194 DOI: 10.1038/s41598-025-96802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
Osteosarcoma, a highly aggressive bone cancer, primarily affects adolescents and is frequently treated with conventional chemotherapy, such as doxorubicin (DOX). However, the efficacy of DOX is often limited by severe side effects and drug resistance. This study investigates the synergistic effects of static magnetic fields (SMF) and DOX on G292 osteosarcoma cells and HFF normal fibroblasts. Cell viability was assessed using the MTT assay, intracellular reactive oxygen species (ROS) levels were quantified via DCFDA staining and flow cytometry, and iron and calcium homeostasis were analyzed using ICP-OES. Apoptosis and necrosis were determined through Annexin V-FITC/PI staining. Results demonstrated that the combination of SMF and DOX significantly reduced G292 cell viability compared to DOX alone, with IC50 values decreased from 3.2 µM (at 3 mT, p < 0.01) to 0.8 µM (at 24 mT, p < 0.001) at 24 h. Apoptosis rates increased from 8.12% with DOX alone to 16% with SMF + DOX. While DOX alone elevated ROS levels by 59.15% in G292 cells, SMF further amplified apoptosis by enhancing ROS generation and disrupting iron and calcium homeostasis. These findings suggest that SMF enhances DOX-induced cytotoxicity in osteosarcoma cells by promoting ROS production, altering metal ion homeostasis, and increasing apoptosis. SMF represents a promising adjuvant therapy for osteosarcoma treatment, though further in vivo studies are necessary to optimize treatment parameters and evaluate clinical applicability.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), 1517964311, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| |
Collapse
|
4
|
Halabian M, Beigzadeh B, Siavashi M. Numerical simulation and mathematical modeling of biomechanical stress distribution in poroelastic tumor tissue via magnetic field and bio-ferro-fluid. Heliyon 2024; 10:e34651. [PMID: 39149009 PMCID: PMC11324941 DOI: 10.1016/j.heliyon.2024.e34651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
Based on scientific evidence, it seems that bio-magnetic systems can change the process of cancer cell death by affecting the distribution of pressure and mechanical stress in the tumor tissue. Already most of the research has been done experimentally and few mathematical modeling and numerical simulations have been done to investigate the relationship between the magnetic parameters and the mechanical stress of the tumor tissue. This is despite the fact that in order to be able to make new equipment with the help of medical engineering methods, it is definitely necessary that the mathematics governing the problem and changes in the effective magnetic parameters (such as the shape of the magnetic source, magnetic flux density, magnetic source distance and ferro-fluid volume fraction) should be studied as much as possible. In this research, using numerical simulation and mathematical modeling, four common geometrical shapes (rectangular and circular) of the static magnetic field source were used to investigate the relationship between the change of the effective magnetic parameters and the mechanical stress created in the tumor tissue. The results of this research showed that when the magnetic flux density and ferro-fluid volume fraction and also the distance between the magnet and the tissue are kept constant, as well as without spending any extra energy, for a rectangular magnet, just by changing the way the source is placed on the tissue, the average biomechanical stress inside the tumor tissue causes a 25 % change. Also, for a circular magnet, just by doubling the radius of the magnet, the average biomechanical stress inside the tumor tissue causes a 73 % change.
Collapse
Affiliation(s)
- Mahdi Halabian
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Borhan Beigzadeh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Majid Siavashi
- Applied Multi-phase Fluid Dynamics Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
5
|
Wang S, Liu Y, Lou C, Cai C, Ren W, Liu J, Gong M, Shang P, Zhang H. Moderate static magnetic field promotes fracture healing and regulates iron metabolism in mice. Biomed Eng Online 2023; 22:107. [PMID: 37968671 PMCID: PMC10647027 DOI: 10.1186/s12938-023-01170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Fractures are the most common orthopedic diseases. It is known that static magnetic fields (SMFs) can contribute to the maintenance of bone health. However, the effect and mechanism of SMFs on fracture is still unclear. This study is aim to investigate the effect of moderate static magnetic fields (MMFs) on bone structure and metabolism during fracture healing. METHODS Eight-week-old male C57BL/6J mice were subjected to a unilateral open transverse tibial fracture, and following treatment under geomagnetic field (GMF) or MMF. The micro-computed tomography (Micro-CT) and three-point bending were employed to evaluate the microarchitecture and mechanical properties. Endochondral ossification and bone remodeling were evaluated by bone histomorphometric and serum biochemical assay. In addition, the atomic absorption spectroscopy and ELISA were utilized to examine the influence of MMF exposure on iron metabolism in mice. RESULTS MMF exposure increased bone mineral density (BMD), bone volume per tissue volume (BV/TV), mechanical properties, and proportion of mineralized bone matrix of the callus during fracture healing. MMF exposure reduced the proportion of cartilage in the callus area during fracture healing. Meanwhile, MMF exposure increased the number of osteoblasts in callus on the 14th day, and reduced the number of osteoclasts on the 28th day of fracture healing. Furthermore, MMF exposure increased PINP and OCN levels, and reduced the TRAP-5b and β-CTX levels in serum. It was also observed that MMF exposure reduced the iron content in the liver and callus, as well as serum ferritin levels while elevating the serum hepcidin concentration. CONCLUSIONS MMF exposure could accelerate fracture healing via promote the endochondral ossification and bone formation while regulating systemic iron metabolism during fracture healing. This study suggests that MMF may have the potential to become a form of physical therapy for fractures.
Collapse
Affiliation(s)
- Shenghang Wang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No.38 Jinglong Construction Road, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuetong Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, China
| | - Chenge Lou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, China
| | - Chao Cai
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, China
| | - Weihao Ren
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, China
| | - Junyu Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, China
| | - Ming Gong
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No.38 Jinglong Construction Road, Shenzhen, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, China.
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No.38 Jinglong Construction Road, Shenzhen, China.
| |
Collapse
|
6
|
Yang X, Yu B, Xi C, Song C, Yang R, Wang W, Wang X, Zhang X, Feng C, Wang X, Cheng G, Chen Y, Zhu Y. A safety study on ultra‑high or moderate static magnetic fields combined with platycodin D against lung cancer. Oncol Lett 2023; 26:453. [PMID: 37720665 PMCID: PMC10502950 DOI: 10.3892/ol.2023.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Due to the serious side effects of chemotherapy drugs against lung cancer, and the antitumor properties and high safety of magnetic fields, the present study combined moderate or ultra-high intensity statics magnetic fields (SMFs) with platycodin D (PD) to explore the antitumor efficiency and biosafety. The antitumor effects of PD with or without moderate and ultra-high SMFs on A549 cells bearing mice were compared. Mouse body weight, food/water intake, hematology routine, blood biochemistry, tumor weight and tissues hematoxylin and eosin (H&E) staining were examined. Behavior was measured using the elevated plus maze, open field and vital signs tests. The combined targets of PD and SMFs were detected using RNA-sequencing (RNA-seq). The results showed that the antitumor effect of 22 Tesla (T) SMF group was 3.6-fold higher compared with that of the 2 mg/kg PD group (tumor growth inhibition=10.08%), while the antitumor effect of 150 mT SMF was only 1.56-fold higher compared with that of PD. Although PD reduced the food intake, there was no significant difference in body weight, water intake or food consumption among PD and SMF groups. Behavioral results indicated that PD ameliorated dysphoria in mice, but SMFs reduced this effect. However, no significant abnormalities were found in routine blood, blood biochemistry test, H&E staining or organ index, except renal index which was reduced by PD with or without SMFs. RNA-sequencing (RNA-seq) demonstrated that SMFs and PD synergistically targeted the expression of genes associated with tumor growth, inflammation and neurological disease. The present study showed the antitumor efficacy and biosafety of moderate or ultra-high SMF combined with PD, which exhibited only few side effects in the treatment of lung cancer, thus supporting further research for the clinical application of magnetic fields.
Collapse
Affiliation(s)
- Xingxing Yang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, P.R. China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Rui Yang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, P.R. China
| | - Wei Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, P.R. China
| | - Xin Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, P.R. China
| | - Xuhan Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, P.R. China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Xinyu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Guofeng Cheng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Yansong Chen
- School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, P.R. China
| | - Yong Zhu
- School of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
7
|
Lv H, Wang Y, Liu J, Zhen C, Zhang X, Liu Y, Lou C, Guo H, Wei Y. Exposure to a static magnetic field attenuates hepatic damage and function abnormality in obese and diabetic mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166719. [PMID: 37116230 DOI: 10.1016/j.bbadis.2023.166719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Static magnetic fields (SMFs) exhibit significant effect on health care. However, the effect of SMF on hepatic metabolism and function in obesity and diabetes are still unknown. Liver is not only the main site for glucolipid metabolism but also the core part for iron metabolism regulation. Dysregulations of iron metabolism and redox status are risk factors for the development of hepatic injury and affect glucolipid metabolism in obesity and diabetes. Mice of HFD-induced obesity and HFD/streptozocin-induced diabetes were exposed to a moderate-intensity SMF (0.4-0.7 T, direction: upward, 4 h/day, 8 weeks). Results showed that SMF attenuated hepatic damage by decreasing inflammation and fibrosis in obese and diabetic mice. SMF had no effects on improving glucose/insulin tolerance but regulated proteins (GLUT1 and GLUT4) and genes (G6pc, Pdk4, Gys2 and Pkl) participating in glucose metabolism with phosphorylation of Akt/AMPK/GSK3β. SMF also reduced lipid droplets accumulation through decreasing Plin2 and Plin5 and regulated lipid metabolism with elevated hepatic expressions of PPARγ and C/EBPα in obese mice. In addition, SMF decreased hepatic iron deposition with lower FTH1 expression and modulated systematic iron homeostasis via BMP6-mediated regulation of hepcidin. Moreover, SMF balanced hepatic redox status with regulation on mitochondrial function and MAPKs/Nrf2/HO-1 pathway. Finally, we found that SMF activated hepatic autophagy and enhanced lipophagy by upregulating PNPLA2 expression in obese and diabetic mice. Our results demonstrated that SMF significantly ameliorated the development of hepatic injury in obese and diabetic mice by inhibiting inflammatory level, improving glycolipid metabolism, regulating iron metabolism, balancing redox level and activating autophagy.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China.
| | - Yijia Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Junyu Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Xinyi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuetong Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Chenge Lou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Huijie Guo
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yunpeng Wei
- School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Yu B, Song C, Feng CL, Zhang J, Wang Y, Zhu YM, Zhang L, Ji XM, Tian XF, Cheng GF, Chen WL, Zablotskii V, Wang H, Zhang X. Effects of gradient high-field static magnetic fields on diabetic mice. Zool Res 2023; 44:249-258. [PMID: 36650064 PMCID: PMC10083230 DOI: 10.24272/j.issn.2095-8137.2022.460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Although 9.4 T magnetic resonance imaging (MRI) has been tested in healthy volunteers, its safety in diabetic patients is unclear. Furthermore, the effects of high static magnetic fields (SMFs), especially gradient vs. uniform fields, have not been investigated in diabetics. Here, we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients (>10 T/m vs. 0-10 T/m) on type 1 diabetic (T1D) and type 2 diabetic (T2D) mice. We found that 14 h of prolonged treatment of gradient (as high as 55.5 T/m) high SMFs (1.0-8.6 T) had negative effects on T1D and T2D mice, including spleen, hepatic, and renal tissue impairment and elevated glycosylated serum protein, blood glucose, inflammation, and anxiety, while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects. In regular T1D mice (blood glucose ≥16.7 mmol/L), the >10 T/m gradient high SMFs increased malondialdehyde ( P<0.01) and decreased superoxide dismutase ( P<0.05). However, in the severe T1D mice (blood glucose ≥30.0 mmol/L), the >10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate. In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation. Therefore, this study showed that prolonged exposure to high-field (1.0-8.6 T) >10 T/m gradient SMFs (35-1 380 times higher than that of current clinical MRI) can have negative effects on diabetic mice, especially mice with severe T1D, whereas 9.4 T high SMFs at 0-10 T/m did not produce the same effects, providing important information for the future development and clinical application of SMFs, especially high-field MRI.
Collapse
Affiliation(s)
- Biao Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chuan-Lin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Ming Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin-Miao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xiao-Fei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Guo-Feng Cheng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Li Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Hua Wang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China. E-mail:
| |
Collapse
|
9
|
Wang J, Shang P. Static magnetic field: A potential tool of controlling stem cells fates for stem cell therapy in osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:91-102. [PMID: 36596343 DOI: 10.1016/j.pbiomolbio.2022.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a kind of bone diseases characterized by dynamic imbalance of bone formation and bone absorption, which is prone to fracture, and seriously endangers human health. At present, there is a lack of highly effective drugs for it, and the existing measures all have some side effects. In recent years, mesenchymal stem cell therapy has brought a certain hope for osteoporosis, while shortcomings such as homing difficulty and unstable therapeutic effects limit its application widely. Therefore, it is extremely urgent to find effective and reliable means/drugs for adjuvant stem cell therapy or develop new research techniques. It has been reported that static magnetic fields(SMFs) has a certain alleviating and therapeutic effect on varieties of bone diseases, also promotes the proliferation and osteogenic differentiation of mesenchymal stem cells derived from different tissues to a certain extent. Basing on the above background, this article focuses on the key words "static/constant magnetic field, mesenchymal stem cell, osteoporosis", combined literature and relevant contents were studied to look forward that SMFs has unique advantages in the treatment of osteoporosis with mesenchymal stem cells, which can be used as an application tool to promote the progress of stem cell therapy in clinical application.
Collapse
Affiliation(s)
- Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
10
|
Keskin S, Acikgoz E, Ertürk FY, Ragbetli MC, Ozkol H. Histopathological Changes in Liver and Heart Tissue Associated with Experimental Ultraviolet Radiation A and B Exposure on Wistar Albino Rats. Photochem Photobiol 2023; 99:132-136. [PMID: 35702999 DOI: 10.1111/php.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
This study aims to evaluate the influences of ultraviolet radiation A and B (UVA + B) exposure on the liver and heart organs of albino rats. Female Wistar Albino rats, whose hair of the dorsal skin was shaved, were exposed to a combined UVA + B radiation for 2 h/day, for 4 weeks in order to be compared with the control group. Histopathological findings in vital organs (liver and heart) were evaluated. Tissues were fixed in 10% buffered formalin (pH = 7.2) and embedded in paraffin. The histopathological findings were examined on the H&E stained sections with light microscopy. The results show that the liver and the heart were injured in the UVA + B group. Liver tissue in the UVA + B group showed minimal vacuolation, enlargement of hepatocytes and bile duct proliferation, and the heart tissue showed hibernomas; uniform large cells resembling brown fat with coarsely granular to multivacuolated cytoplasm that is eosinophilic or pale with a small central nucleus. The number of hibernoma cases was significantly higher in the UVA + B group compared with the control group (P = 0.021). The control group showed normal liver and heart histology with normal adipose tissue in the pericardium. As a result, UVA + B exposure has toxic effects, especially on the liver and the heart of Wistar albino rats. UV radiation may cause such adverse effects in humans. Therefore, protection against the harmful effects of UV radiation is of significant importance for skin and organs.
Collapse
Affiliation(s)
- Seda Keskin
- Department of Histology and Embryology, Van Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Van Yuzuncu Yil University School of Medicine, Van, Turkey
| | | | - Murat Cetin Ragbetli
- Department of Histology and Embryology, Karamanoglu Mehmetbey University School of Medicine, Karaman, Turkey
| | - Halil Ozkol
- Department of Medical Biology, Van Yuzuncu Yil University, Medical Faculty, Van, Turkey
| |
Collapse
|
11
|
Zhang B, Yuan X, Lv H, Che J, Wang S, Shang P. Biophysical mechanisms underlying the effects of static magnetic fields on biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:14-23. [PMID: 36240898 DOI: 10.1016/j.pbiomolbio.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 02/04/2023]
Abstract
With the widespread use of static magnetic fields (SMFs) in medicine, it is imperative to explore the biological effects of SMFs and the mechanisms underlying their effects on biological systems. The presence of magnetic materials within cells and organisms could affect various biological metabolism and processes, including stress responses, proliferation, and structural alignment. SMFs were generally found to be safe at the organ and organism levels. However. human subjects exposed to strong SMFs have reported side effects. In this review, we combined the magnetic properties of biological samples to illustrate the mechanism of action of SMFs on biological systems from a biophysical point of view. We suggest that the mechanisms of action of SMFs on biological systems mainly include the induction of electric fields and currents, generation of magnetic effects, and influence of electron spins. An electrolyte flowing in a static magnetic field generates an induced current and an electric field. Magnetomechanical effects include orientation effects upon subjecting biological samples to SMFs and movement of biological samples in strong field gradients. SMFs are thought to affect biochemical reaction rates and yields by influencing electron spin. This paper helps people how can harness the favorable biological effects of SMFs.
Collapse
Affiliation(s)
- Bin Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xichen Yuan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China; Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, 215400, China
| | - Huanhuan Lv
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shenghang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518057, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
12
|
Tian X, Wang C, Yu B, Fan Y, Zhang L, Zhang X. 9.4 T static magnetic field ameliorates imatinib mesylate-induced toxicity and depression in mice. Eur J Nucl Med Mol Imaging 2023; 50:314-327. [PMID: 36166081 DOI: 10.1007/s00259-022-05976-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/15/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE 9.4 T magnetic resonance imaging (MRI) has been initially tested on healthy human volunteers, but its future application will benefit more from experiments with animal disease models. In the meantime, high static magnetic fields (SMFs) have been shown to improve mice mental health and have anti-tumor potentials. METHODS We compared the anti-tumor effects of 9.4 T SMF with or without a commonly used chemotherapy drug imatinib mesylate on BALB/c (Nu/Nu) mice bearing gastrointestinal stromal tumor GIST-T1 cells. The body weight, food/water consumption, complete blood count, blood biochemistry, tumor weight, HE and Ki67 stains were examined. Locomotor activity and cognitive functions were also measured by four behavior tests, including open field, elevated plus maze, three-chamber and tail suspension tests. RESULTS We found that the tumor growth was inhibited up to 62.88% when treated with 9.4 T SMF alone for 200 h. More importantly, 9.4 T SMF combined with 20 mg/kg imatinib mesylate can result in 92.75% tumor suppression, which is close to the anti-tumor effect of high dose (80 mg/kg) imatinib. However, 80 mg/kg imatinib caused severe side effects, including significantly reduced gain of body weight, abnormal liver function and depressive behaviors in mice. In contrast, 9.4 T SMF treatment significantly reduced these side effects, especially for the depressive behaviors. CONCLUSION Our results demonstrate that 9.4 T SMF not only has anti-tumor effects on its own, but also could improve the anti-tumor effect of imatinib mesylate, reduce its toxicity and improve the mice mental health, which unraveled the great clinical potentials of high SMF in future applications.
Collapse
Affiliation(s)
- Xiaofei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Chentai Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Biao Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China.
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230021, Anhui, China.
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230036, Anhui, China.
| |
Collapse
|
13
|
12 T high static magnetic field suppresses osteosarcoma cells proliferation by regulating intracellular ROS and iron status. Exp Cell Res 2022; 417:113223. [PMID: 35643180 DOI: 10.1016/j.yexcr.2022.113223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022]
|
14
|
Khan MH, Huang X, Tian X, Ouyang C, Wang D, Feng S, Chen J, Xue T, Bao J, Zhang X. Short- and long-term effects of 3.5-23.0 Tesla ultra-high magnetic fields on mice behaviour. Eur Radiol 2022; 32:5596-5605. [PMID: 35294587 DOI: 10.1007/s00330-022-08677-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Higher static magnetic field (SMF) enables higher imaging capability in magnetic resonance imaging (MRI), which encourages the development of ultra-high field MRIs above 20 T with a prerequisite for safety issues. However, animal tests of ≥ 20 T SMF exposure are very limited. The objective of the current study is to evaluate mice behaviour consequences of 3.5-23.0 T SMF exposure. METHODS We systematically examined 112 mice for their short- and long-term behaviour responses to a 2-h exposure of 3.5-23.0 T SMFs. Locomotor activity and cognitive functions were measured by five behaviour tests, including balance beam, open field, elevated plus maze, three-chamber social recognition, and Morris water maze tests. RESULTS Besides the transient short-term impairment of the sense of balance and locomotor activity, the 3.5-23.0 T SMFs did not have long-term negative effects on mice locomotion, anxiety level, social behaviour, or memory. In contrast, we observed anxiolytic effects and positive effects on social and spatial memory of SMFs, which is likely correlated with the significantly increased CaMKII level in the hippocampus region of high SMF-treated mice. CONCLUSIONS Our study showed that the short exposures to high-field SMFs up to 23.0 T have negligible side effects on healthy mice and may even have beneficial outcomes in mice mood and memory, which is pertinent to the future medical application of ultra-high field SMFs in MRIs and beyond. KEY POINTS • Short-term exposure to magnetic fields up to 23.0 T is safe for mice. • High-field static magnetic field exposure transiently reduced mice locomotion. • High-field static magnetic field enhances memory while reduces the anxiety level.
Collapse
Affiliation(s)
- Md Hasanuzzaman Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
| | - Xinfeng Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
| | - Xiaofei Tian
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Changjie Ouyang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Dongmei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Shuang Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Jutao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China.
| | - Jin Bao
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China.
- Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Xin Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China.
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230031, Anhui, China.
| |
Collapse
|
15
|
Wang S, Zheng M, Lou C, Chen S, Guo H, Gao Y, Lv H, Yuan X, Zhang X, Shang P. Evaluating the biological safety on mice at 16 T static magnetic field with 700 MHz radio-frequency electromagnetic field. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113125. [PMID: 34971997 DOI: 10.1016/j.ecoenv.2021.113125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES This study evaluated the associated biological effects of radio-frequency (RF) exposure at 16 T magnetic resonance imaging (MRI) on mice health. MATERIAL AND METHODS A total of 48 healthy 8-week-old male C57BL/6 mice were investigated. A 16 T high static magnetic field (HiSMF) was generated by a superconducting magnet, and a radiofrequency (RF) electromagnetic field for hydrogen resonance at 16 T (700 MHz) was transmitted via a homemade RF system. The mice were exposed inside the 16 T HiSMF with the 700 MHz RF field for 60 min, and the body weight, organ coefficients, histomorphology of major organs, and blood indices were analyzed for the basal state of the mice on day 0 and day 14. The Heat Shock Protein 70 (HSP70), cyclooxygenase 2 (COX2), and interleukin- 6 (IL-6) were used to evaluate the thermal effects on the brain. Locomotor activity, the open field test, tail suspension test, forced swimming test, and grip strength test were used to assess the behavioral characteristics of the mice. RESULTS The 16 T HiSMF with 700 MHz RF electromagnetic field exposure had no significant effects on body weight, organ coefficients, or histomorphology of major organs in the mice. On day 0, the expressions of HSP70 and COX2 in the brain were increased by 16 T HiSMF with 700 MHz RF electromagnetic field exposure. However, the expression of HSP70, COX2, and IL-6 had no significant difference compared with the sham group on day 14. Compared with the sham groups, the meancorpuscularvolume (MCV) on day 0 and the total protein (TP) on day 14 were increased significantly, whereas the other blood indices did not change significantly. The 16 T HiSMF with 700 MHz RF electromagnetic field exposure caused the mice to briefly circle tightly but had no effect on other behavioral indicators. CONCLUSIONS In summary, 16 T HiSMF with 700 MHz RF electromagnetic field exposure for 60 min did not have severe effects on mice.
Collapse
Affiliation(s)
- Shenghang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Mengxuan Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Chenge Lou
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shuai Chen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Huijie Guo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yang Gao
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Huanhuan Lv
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xichen Yuan
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiaotong Zhang
- College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7103345. [PMID: 34917231 PMCID: PMC8670934 DOI: 10.1155/2021/7103345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
Metastasis is the leading cause of cancer patient death, which is closely correlated with reactive oxygen species (ROS) levels. It is well known that the effects of ROS on tumors are diverse, depending on ROS concentration and cell type. We found that ovarian cancer cells have significantly lower levels of ROS than normal ovarian cells. Moreover, increased ROS levels in ovarian cancer cells can substantially inhibit their migration and invasion ability. Furthermore, the results show that moderate static magnetic field (SMF) can inhibit ovarian cancer cell migration, invasion, and stemness in a ROS-dependent manner. RNA sequencing results confirm that SMFs increased the oxidative stress level and reduced the stemness of ovarian cancer cells. Consistently, the expressions of stemness-related genes were significantly decreased, including hyaluronan receptor (CD44), SRY-box transcription factor 2 (Sox2), and cell myc proto-oncogene protein (C-myc). Furthermore, moderate SMFs provided by a superconducting magnet and permanent magnet have good biosafety and can both inhibit ovarian cancer metastasis in mice. Therefore, our study demonstrates the effects of SMFs on oxidative stress and metastasis in the ovarian cancer cells, which reveals the potential of applying SMF as a physical method in cancer therapy in the future.
Collapse
|
17
|
Lv Y, Fan Y, Tian X, Yu B, Song C, Feng C, Zhang L, Ji X, Zablotskii V, Zhang X. The Anti-Depressive Effects of Ultra-High Static Magnetic Field. J Magn Reson Imaging 2021; 56:354-365. [PMID: 34921571 DOI: 10.1002/jmri.28035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ultra-high field magnetic resonance imaging (MRI) has obvious advantages in acquiring high-resolution images. 7 T MRI has been clinically approved and 21.1 T MRI has also been tested on rodents. PURPOSE To examine the effects of ultra-high field on mice behavior and neuron activity. STUDY TYPE Prospective, animal model. ANIMAL MODEL Ninety-eight healthy C57BL/6 mice and 18 depression model mice. FIELD STRENGTH 11.1-33.0 T SMF (static magnetic field) for 1 hour and 7 T for 8 hours. Gradients were not on and no imaging sequence was used. ASSESSMENT Open field test, elevated plus maze, three-chambered social test, Morris water maze, tail suspension test, sucrose preference test, blood routine, biochemistry examinations, enzyme-linked immunosorbent assay, immunofluorescent assay. STATISTICAL TESTS The normality of the data was assessed by Shapiro-Wilk test, followed by Student's t test or the Mann-Whitney U test for statistical significance. The statistical cut-off line is P < 0.05. RESULTS Compared to the sham group, healthy C57/6 mice spent more time in the center area (35.12 ± 4.034, increased by 47.19%) in open field test and improved novel index (0.6201 ± 0.02522, increased by 16.76%) in three-chambered social test a few weeks after 1 hour 11.1-33.0 T SMF exposure. 7 T SMF exposure for 8 hours alleviated the depression state of depression mice, including less immobile time in tail suspension test (58.32% reduction) and higher sucrose preference (increased by 8.80%). Brain tissue analysis shows that 11.1-33.0 T and 7 T SMFs can increase oxytocin by 164.65% and 36.03%, respectively. Moreover, the c-Fos level in hippocampus region was increased by 14.79%. DATA CONCLUSION 11.1-33.0 T SMFs exposure for 1 hour or 7 T SMF exposure for 8 hours did not have detrimental effects on healthy or depressed mice. Instead, these ultra-high field SMFs have anti-depressive potentials. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Yue Lv
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xiaofei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chao Song
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Vitalii Zablotskii
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.,International Magnetobiology Frontier Research Center, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.,International Magnetobiology Frontier Research Center, Hefei, China
| |
Collapse
|
18
|
Kimura T, Inaka K, Ogiso N. Demonstrative Experiment on the Favorable Effects of Static Electric Field Treatment on Vitamin D3-Induced Hypercalcemia. BIOLOGY 2021; 10:biology10111116. [PMID: 34827108 PMCID: PMC8615207 DOI: 10.3390/biology10111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Simple Summary Static electric field (SEF) treatment by high-voltage alternating current is a traditional complementary medicine in Japan. Although it is believed that the SEF-induced electric current serves to regulate cellular or humoral responses in patients, the mechanism for SEF treatment remains poorly understood. There have been very few experimental reports on the biological action with SEF treatment. The aim of this study was to elucidate the effects of SEF treatment on vitamin D3 (Vit D3)-induced abnormalities in mice. SEF treatment improved the abnormalities in the renal function tests and the imbalance of serum electrolytes. In addition, this treatment remarkably attenuated the Vit D3-induced tissue injuries (severe tissue calcification in the kidneys, hearts, and stomachs). It was likely that the SEF treatment had some favorable effects on the metabolism of calcium. In conclusion, this study provides important evidence that SEF treatment can reduce hypercalcemia and remove calcium deposits from the renal, cardiac, and gastric tissues. SEF treatment is useful in the regulation of disorders caused by an imbalance of serum electrolytes. This study experimentally demonstrates the favorable effects of SEF treatment on Vit D3-induced hypercalcemia. For small animals, the larger the body surface area per body weight becomes, the higher the therapeutic efficacy with SEF treatment. Abstract The purpose of this study was to elucidate the effects of static electric field (SEF) treatment on vitamin D3 (Vit D3)-induced hypercalcemia and renal calcification in mice. The mice were assigned to three groups: Vit D3-treated mice, mice treated with Vit D3 and SEF (Vit D3 + SEF), and untreated mice. After the administration of Vit D3, the Vit D3 + SEF-treated mice were exposed to SEF treatment by a high-voltage alternating current over five days. Serum biochemical examinations revealed that both the creatinine and blood urea nitrogen concentrations were significantly higher in the Vit D3-treated group. Significantly, decreased Cl concentrations, and increased Ca and inorganic phosphorus concentrations, were found in the Vit D3-treated group. In the Vit D3 + SEF-treated group, these parameters returned to the levels of the untreated group. In the Vit D3-treated group, histopathological examinations showed marked multifocal calcification in the lumens of the renal tubules and the renal parenchyma. The myocardium was replaced by abundant granular mineralization (calcification), with degeneration and necrosis of the calcified fibers. The stomach showed calcification of the cardiac mucosa. SEF treatment remarkably attenuated the Vit D3-induced hypervitaminotic injuries. In conclusion, this study provides important evidence that SEF treatment can reduce hypercalcemia and remove calcium deposits from the renal, cardiac, and gastric tissues. SEF treatment is useful in the regulation of disorders caused by an imbalance of serum electrolytes.
Collapse
Affiliation(s)
- Tohru Kimura
- Laboratory Animal Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi City 753-8515, Japan;
- Correspondence: ; Tel.: +81-83-933-5877
| | - Kengo Inaka
- Laboratory Animal Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi City 753-8515, Japan;
| | - Noboru Ogiso
- National Center for Geratrics Gerontology, National Institute for Longevity Sciences, Obu City 474-8511, Japan;
| |
Collapse
|
19
|
Hartwig V, Virgili G, Mattei FE, Biagini C, Romeo S, Zeni O, Scarfì MR, Massa R, Campanella F, Landini L, Gobba F, Modenese A, Giovannetti G. Occupational exposure to electromagnetic fields in magnetic resonance environment: an update on regulation, exposure assessment techniques, health risk evaluation, and surveillance. Med Biol Eng Comput 2021; 60:297-320. [PMID: 34586563 DOI: 10.1007/s11517-021-02435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/27/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most-used diagnostic imaging methods worldwide. There are ∼50,000 MRI scanners worldwide each of which involves a minimum of five workers from different disciplines who spend their working days around MRI scanners. This review analyzes the state of the art of literature about the several aspects of the occupational exposure to electromagnetic fields (EMF) in MRI: regulations, literature studies on biological effects, and health surveillance are addressed here in detail, along with a summary of the main approaches for exposure assessment. The original research papers published from 2013 to 2021 in international peer-reviewed journals, in the English language, are analyzed, together with documents published by legislative bodies. The key points for each topic are identified and described together with useful tips for precise safeguarding of MRI operators, in terms of exposure assessment, studies on biological effects, and health surveillance.
Collapse
Affiliation(s)
- Valentina Hartwig
- Institute of Clinical Physiology (IFC), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124, Pisa, San Cataldo, Italy.
| | - Giorgio Virgili
- Virgili Giorgio, Via G. Pastore 2, 26040, Crespina-Lorenzana, Italy
| | - F Ederica Mattei
- West Systems S.R.L, Via Don Mazzolari 25, 56025, Pontedera, PI, Italy
| | - Cristiano Biagini
- Associazione Italiana Tecnici Dell'Imaging in Risonanza Magnetica, AITIRM, Via XX Settembre 76, 50129, Florence, Italy
| | - Stefania Romeo
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy
| | - Olga Zeni
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy
| | - Maria Rosaria Scarfì
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy
| | - Rita Massa
- Institute for Electromagnetic Sensing of the Environment (IREA) , Italian National Research Council (CNR), Via Diocleziano 328, 80124, Naples, Italy.,Department of Physics, University Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Francesco Campanella
- Dipartimento di medicina, epidemiologia, Igiene del Lavoro E Ambientale, Inail, Via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Luigi Landini
- Fondazione Toscana "G. Monasterio", Via G. Moruzzi 1, 56124, Pisa, San Cataldo, Italy
| | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Giulio Giovannetti
- Institute of Clinical Physiology (IFC), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124, Pisa, San Cataldo, Italy
| |
Collapse
|
20
|
Wang S, Huyan T, Zhou L, Xue Y, Guo W, Yin D, Shang P. Effect of High Static Magnetic Field (2 T-12 T) Exposure on the Mineral Element Content in Mice. Biol Trace Elem Res 2021; 199:3416-3422. [PMID: 33411150 DOI: 10.1007/s12011-020-02469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Relative stability of mineral elements in tissues is necessary for health. High static magnetic fields (HiSMFs) have been widely used in biomedical research and industry. However, the bioeffect of HiSMFs on animals is still unclear. In this study, we investigated the effects of HiSMF exposure on the levels of Mg, Fe, Zn, Ca, and Cu in the main organs of mice. The 8-week male C57BL/6 mice were treated by 2-4 T, 6-8 T, 10-12 T HiSMFs for 28 days. The mass fractions of Mg, Fe, Zn, Ca, and Cu in the liver, brain, kidney, and heart in mice were respectively measured by atomic absorption spectroscopy, and used to evaluate mineral element content in tissues. The 2-4 T HiSMF exposure has increased the Mg, Fe, and Ca content in the kidney, as well as the Zn content in the brain. The 6-8 T HiSMF exposure has increased the Zn level in the liver; Mg, Fe, and Ca levels in the kidney; and Fe level in the heart, while the Zn in the kidney, and Zn and Ca in the heart was decreased by 6-8 T HiSMF exposure. For the 10-12 T HiSMF exposure, the Mg in the kidney, the Fe in the liver and kidney, and Cu in the brain have been increased significantly. However, the Zn in the kidney and the Ca in the brain and the heart were reduced by 10-12 T HiSMF exposure. The HiSMF exposure for 28 days can alter the Mg, Fe, Zn, Ca, and Cu content in mice, and change with the different magnetic flux density of HiSMFs (2-4 T, 6-8 T, 10-12 T), elements, and organ types.
Collapse
Affiliation(s)
- Shenghang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ting Huyan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Liangfu Zhou
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yanru Xue
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weihong Guo
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Dachuan Yin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
21
|
Zhao B, Yu T, Wang S, Che J, Zhou L, Shang P. Static Magnetic Field (0.2-0.4 T) Stimulates the Self-Renewal Ability of Osteosarcoma Stem Cells Through Autophagic Degradation of Ferritin. Bioelectromagnetics 2021; 42:371-383. [PMID: 34082485 DOI: 10.1002/bem.22352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Static magnetic field (SMF) can alter cell fate decisions in many ways. However, the effects of SMF on cancer stem cells (CSCs) are little-known. In this particular study, we evaluate the biological effect of moderate-intensity SMF on osteosarcoma stem cells (OSCs) and try to clarify the underlying mechanisms of action. First, we demonstrated that prolonged exposure to SMF induced the proliferation and tumorsphere formation in K7M2 and MG63 OSCs. Moreover, SMF promoted the release of ferrous iron (Fe2+ ) and provoked reactive oxygen species (ROS) in OSCs. Interestingly, SMF evidently triggered the autophagic degradation of ferritin, which is characterized by the activation of microtubule-associated protein 1 light chain 3 (LC3) and nuclear receptor co-activator 4 (NCOA4), and downregulation of ferritin heavy chain 1 (FTH1) in OSCs. Particularly, the colony-forming ability of K7M2 OSCs promoted by SMF was obviously abolished by using a small interfering RNA (siRNA) against NCOA4. Finally, treatment of the tumor-bearing mice with SMF did not affect the tumor volume or tumor mass, nor pulmonary metastasis of K7M2 OSCs, but the SMF-treated K7M2 OSCs caused a preference of pulmonary metastasis in a mouse model, which suggested that SMF might induce the metastatic characteristic of OSCs. Consequently, this paper demonstrates for the first time that the cumulative SMF exposure promoted the self-renewal ability of OSCs via autophagic degradation of ferritin, implying that ferritinophagy may be a potential molecular target for cancer. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.,School of Life Science, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| | - Tongyao Yu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.,School of Life Science, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| | - Shenghang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.,School of Life Science, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| | - Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.,School of Life Science, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| | - Liangfu Zhou
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.,School of Life Science, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
22
|
Tkáč I, Benneyworth MA, Nichols-Meade T, Steuer EL, Larson SN, Metzger GJ, Uğurbil K. Long-term behavioral effects observed in mice chronically exposed to static ultra-high magnetic fields. Magn Reson Med 2021; 86:1544-1559. [PMID: 33821502 DOI: 10.1002/mrm.28799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE The primary goal of this study was to investigate whether chronic exposures to ultra-high B0 fields can induce long-term cognitive, behavioral, or biological changes in C57BL/6 mice. METHODS C57BL/6 mice were chronically exposed to 10.5-T or 16.4-T magnetic fields (3-h exposures, two exposure sessions per week, 4 or 8 weeks of exposure). In vivo single-voxel 1 H magnetic resonance spectroscopy was used to investigate possible neurochemical changes in the hippocampus. In addition, a battery of behavioral tests, including the Morris water-maze, balance-beam, rotarod, and fear-conditioning tests, were used to examine long-term changes induced by B0 exposures. RESULTS Hippocampal neurochemical profile, cognitive, and basic motor functions were not impaired by chronic magnetic field exposures. However, the balance-beam-walking test and the Morris water-maze testing revealed B0 -induced changes in motor coordination and balance. The tight-circling locomotor behavior during Morris water-maze tests was found as the most sensitive factor indexing B0 -induced changes. Long-term behavioral changes were observed days or even weeks subsequent to the last B0 exposure at 16.4 T but not at 10.5 T. Fast motion of mice in and out of the 16.4-T magnet was not sufficient to induce such changes. CONCLUSION Observed results suggest that the chronic exposure to a magnetic field as high as 16.4 T may result in long-term impairment of the vestibular system in mice. Although observation of mice may not directly translate to humans, nevertheless, they indicate that studies focused on human safety at very high magnetic fields are necessary.
Collapse
Affiliation(s)
- Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael A Benneyworth
- Mouse Behavioral Core, Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tessa Nichols-Meade
- Mouse Behavioral Core, Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth L Steuer
- N Bud Grossman Center for Memory Research & Care, Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah N Larson
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Yang J, Wang S, Zhang G, Fang Y, Fang Z, Shang P, Zhang H. Static Magnetic Field (2-4 T) Improves Bone Microstructure and Mechanical Properties by Coordinating Osteoblast/Osteoclast Differentiation in Mice. Bioelectromagnetics 2021; 42:200-211. [PMID: 33655538 DOI: 10.1002/bem.22324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 01/09/2021] [Indexed: 01/03/2023]
Abstract
Static magnetic field (SMF), with constant magnetic field strength and direction, has a long history of basic and clinical research in bone biology. Numerous studies demonstrate that exposure to moderate SMF (1 mT-1 T) can increase bone mass and bone density. However, few studies pay attention to the effects of high SMF (>1 T) on the skeletal system. To investigate the physiological effects of high SMF on bone, mice were exposed to 2-4 T SMF for 28 days. Bone microstructure and mechanical properties were examined. The activity of osteoblasts and osteoclasts involved in bone remodeling was evaluated in vivo and in vitro. Compared with the unexposed group, 2-4 T significantly improved the femoral microstructure and tibial mechanical properties. For bone remodeling in vivo, the number of osteoblasts and bone formation was increased, and the osteoclastic number was decreased by 2-4 T. Moreover, the expression of marker proteins in the femur and concentrations of biochemical indicators in serum involved in bone formation were elevated and bone resorption was reduced under 2-4 T SMF. In vitro, osteoblast differentiation was promoted, and the osteoclastic formation and bone resorption ability were inhibited by 2 T SMF. Overall, these results demonstrate that 2-4 T SMF improved bone microarchitecture and strength by stimulating bone formation and restraining bone resorption, and imply that high SMF might become a potential biophysical treatment modality for bone diseases with abnormal bone remodeling. Bioelectromagnetics. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China.,School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yanwen Fang
- Zhejiang Heye Health Technology, Anji, China
| | - Zhicai Fang
- Zhejiang Heye Health Technology, Anji, China
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research & Development Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Shenzhen, China.,Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
24
|
Lv H, Liu J, Zhen C, Wang Y, Wei Y, Ren W, Shang P. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Prolif 2021; 54:e12982. [PMID: 33554390 PMCID: PMC7941227 DOI: 10.1111/cpr.12982] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with various complications that poses a huge worldwide healthcare burden. Wounds in diabetes, especially diabetic foot ulcers (DFUs), are difficult to manage, often leading to prolonged wound repair and even amputation. Wound management in people with diabetes is an extremely clinical and social concern. Nowadays, physical interventions gain much attention and have been widely developed in the fields of tissue regeneration and wound healing. Magnetic fields (MFs)-based devices are translated into clinical practice for the treatment of bone diseases and neurodegenerative disorder. This review attempts to give insight into the mechanisms and applications of MFs in wound care, especially in improving the healing outcomes of diabetic wounds. First, we discuss the pathological conditions associated with chronic diabetic wounds. Next, the mechanisms involved in MFs' effects on wounds are explored. At last, studies and reports regarding the effects of MFs on diabetic wounds from both animal experiments and clinical trials are reviewed. MFs exhibit great potential in promoting wound healing and have been practised in the management of diabetic wounds. Further studies on the exact mechanism of MFs on diabetic wounds and the development of suitable MF-based devices could lead to their increased applications into clinical practice.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Heye Health Technology Co., Ltd.AnjiZhejiangChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Junyu Liu
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Chenxiao Zhen
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yijia Wang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yunpeng Wei
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
| | - Weihao Ren
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Peng Shang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| |
Collapse
|
25
|
Wu J, Zhu J, Wu Q, An Y, Wang K, Xuan T, Zhang J, Song W, He H, Song L, Zheng J, Xiao J. Mussel-Inspired Surface Immobilization of Heparin on Magnetic Nanoparticles for Enhanced Wound Repair via Sustained Release of a Growth Factor and M2 Macrophage Polarization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2230-2244. [PMID: 33403850 DOI: 10.1021/acsami.0c18388] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient reconstruction of a fully functional skin after wounds requires multiple functionalities of wound dressing due to the complexity of healing. In these regards, topical administration of functionalized nanoparticles capable of sustainably releasing bioactive agents to the wound site may significantly accelerate wound repair. Among the various nanoparticles, superparamagnetic iron oxide (Fe3O4) nanoparticles gain increasing attractiveness due to their intrinsic response to an external magnetic field (eMF). Herein, based on the Fe3O4 nanoparticle, we developed a fibroblast growth factor (bFGF)-loaded Fe3O4 nanoparticle using a simple mussel-inspired surface immobilization method. This nanoparticle, named as bFGF-HDC@Fe3O4, could stabilize bFGF in various conditions and exhibited sustained release of bFGF. In addition, an in vitro study discovered that bFGF-HDC@Fe3O4 could promote macrophage polarization toward an anti-inflammatory (pro-healing) M2 phenotype especially under eMF. Further, in vivo full-thickness wound animal models demonstrated that bFGF-HDC@Fe3O4 could significantly accelerate wound healing through M2 macrophage polarization and increased cell proliferation. Therefore, this approach of realizing sustained the release of the growth factor with magnetically macrophage regulating behavior through modification of Fe3O4 nanoparticles offers promising potential to tissue-regenerative applications.
Collapse
Affiliation(s)
- Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Junyi Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Qiuji Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ying An
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Kangning Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Tengxiao Xuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Junwen Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wenxiang Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Liwan Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
26
|
Zhong QY, Lin B, Chen YT, Huang YP, Feng WP, Wu Y, Long GH, Zou YN, Liu Y, Lin BQ, Sang NL, Zhan JYX. Gender differences in UV-induced skin inflammation, skin carcinogenesis and systemic damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103512. [PMID: 33096234 DOI: 10.1016/j.etap.2020.103512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Ultraviolet (UV) radiation-induced chronic inflammation contributes to all stages of skin tumor development. In addition, gender plays an important role in inflammatory diseases or cancer. In this study, histopathology changes, hematology, oxidative stress and inflammatory response were used to evaluate sex differences in UV-induced chronic inflammation-associated cancer development. The results showed that the male and female mice had photoaging damage at the 9th week. However, skin tumors only appeared in male mice at 31st week. Furthermore, UV increased ROS production, p65, p-p65, IL-6 and TNF-α protein expressions in skin, and these factors elevated more in male mouse model. Hematology results showed that the parameters of blood systemic inflammation were changed in different degrees in model groups, while the pathological results showed inflammatory cell infiltration in the internal organs of both model groups in varying degrees. These results indicate that there are gender differences in UV-induced skin inflammation, carcinogenesis and systemic damage. Moreover, male mice are more sensitive to UV irradiation, which may be responsible to greater oxidative stress and inflammatory damage.
Collapse
Affiliation(s)
- Qing-Yuan Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bing Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yin-Ting Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yin-Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Wei-Peng Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ying Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Gui-Hong Long
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yun-Nan Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bao-Qin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Nian-Li Sang
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Janis Ya-Xian Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
27
|
Tian X, Lv Y, Fan Y, Wang Z, Yu B, Song C, Lu Q, Xi C, Pi L, Zhang X. Safety evaluation of mice exposed to 7.0-33.0 T high-static magnetic fields. J Magn Reson Imaging 2020; 53:1872-1884. [PMID: 33382516 DOI: 10.1002/jmri.27496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/26/2023] Open
Abstract
Magnetic resonance imaging (MRI) of 7 T and higher can provide superior image resolution and capability. Clinical tests have been performed in 9.4 T MRI, and 21.1 T small-bore-size MRI has also been tested in rodents. Although the safety issue is a prerequisite for their future medical application, there are very few relevant studies for the safety of static magnetic fields (SMFs) of ≧20 T. The aim of this study was to assess the biological effects of 7.0-33.0 T SMFs in healthy adult mice. This was a prospective study, in which 104 healthy adult C57BL/6 mice were divided into control, sham control, and 7.0-33.0 T SMF-exposed groups.The sham control group and SMF group were handled identically, except for the electric current for producing SMF. A separate control group was placed outside the magnet and their data were used as normal range. After 1 h exposure, all mice were routinely fed for another 2 months while their body weight and food/water consumption were monitored. After 2 months, their complete blood count, blood biochemistry, key organ weight, and histomorphology were examined. All data are normally distributed. Differences between the sham and SMF-exposed groups were evaluated by unpaired t test. Most indicators did not show statistically significant changes or were still within the normal ranges, with only a few exceptions. For example, mono % in Group 2 (11.1 T) is 6.03 ± 1.43% while the normal range is 6.60-9.90% (p < 0.05). The cholesterol level in 33 T group is 3.38 ± 0.36 mmol/L while the normal range is 2.48-3.29 mmol/L (p < 0.05). The high-density lipoprotein cholesterol level in 33 T group is 2.54 ± 0.29 mmol/L while the normal reference range is 1.89-2.43 mmol/L (p < 0.01). Exposure to 7.0-33.0 T for 1 h did not have detrimental effects on normal adult mice. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Xiaofei Tian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yue Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Ze Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Qingyou Lu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China.,Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei, China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Li Pi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
28
|
Dong D, Yang J, Zhang G, Huyan T, Shang P. 16 T high static magnetic field inhibits receptor activator of nuclear factor kappa‐Β ligand‐induced osteoclast differentiation by regulating iron metabolism in Raw264.7 cells. J Tissue Eng Regen Med 2019; 13:2181-2190. [DOI: 10.1002/term.2973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Dandan Dong
- School of Life ScienceNorthwestern Polytechnical University Xi'an China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
| | - Jiancheng Yang
- School of Life ScienceNorthwestern Polytechnical University Xi'an China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
- Department of Spinal SurgeryPeople's Hospital of Longhua Shenzhen Shenzhen China
| | - Gejing Zhang
- School of Life ScienceNorthwestern Polytechnical University Xi'an China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
| | - Ting Huyan
- School of Life ScienceNorthwestern Polytechnical University Xi'an China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
| | - Peng Shang
- Research & Development Institute in ShenzhenNorthwestern Polytechnical University Shenzhen China
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an China
| |
Collapse
|
29
|
Tian X, Wang D, Feng S, Zhang L, Ji X, Wang Z, Lu Q, Xi C, Pi L, Zhang X. Effects of 3.5-23.0 T static magnetic fields on mice: A safety study. Neuroimage 2019; 199:273-280. [PMID: 31158482 DOI: 10.1016/j.neuroimage.2019.05.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/03/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
People are exposed to various magnetic fields, including the high static/steady magnetic field (SMF) of MRI, which has been increased to 9.4 T in preclinical investigations. However, relevant safety studies about high SMF are deficient. Here we examined whether 3.5-23.0 T SMF exposure for 2 h has severe long-term effects on mice using 112 C57BL/6J mice. The food/water consumption, blood glucose levels, blood routine, blood biochemistry, as well as organ weight and HE stains were all examined. The food consumption and body weight were slightly decreased for 23.0 T-exposed mice (14.6%, P < 0.01, and 1.75-5.57%, P < 0.05, respectively), but not the other groups. While total bilirubin (TBIL), white blood cells, platelet and lymphocyte numbers were affected by some magnetic conditions, most of them were still within normal reference range. Although 13.5 T magnetic fields with the highest gradient (117.2 T/m) caused spleen weight increase, the blood count and biochemistry results were still within the control reference range. Moreover, the highest field 23.0 T with no gradient did not cause organ weight or blood biochemistry abnormality, which indicates that field gradient is a key parameter. Collectively, these data suggest 3.5-23.0 T static magnetic field exposure for 2 h do not have severe long-term effects on mice.
Collapse
Affiliation(s)
- Xiaofei Tian
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Dongmei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Shuang Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Ze Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qingyou Lu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, PR China; Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei, Anhui, 230031, PR China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Li Pi
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|