1
|
Karakas AB, Govsa F, Ozer MA, Biceroglu H, Eraslan C, Tanir D. From pixels to prognosis: leveraging radiomics and machine learning to predict IDH1 genotype in gliomas. Neurosurg Rev 2025; 48:396. [PMID: 40299088 PMCID: PMC12040993 DOI: 10.1007/s10143-025-03515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/17/2025] [Accepted: 04/05/2025] [Indexed: 04/30/2025]
Abstract
Gliomas are the most common primary tumors of the central nervous system, and advances in genetics and molecular medicine have significantly transformed their classification and treatment. This study aims to predict the IDH1 genotype in gliomas using radiomics and machine learning (ML) methods. Retrospective data from 108 glioma patients were analyzed, including MRI data supported by demographic details such as age, sex, and comorbidities. Tumor segmentation was manually performed using 3D Slicer software, and 112 radiomic features were extracted with the PyRadiomics library. Feature selection using the mRMR algorithm identified 17 significant radiomic features. Various ML algorithms, including KNN, Ensemble, DT, LR, Discriminant and SVM, were applied to predict the IDH1 genotype. The KNN and Ensemble models achieved the highest sensitivity (92-100%) and specificity (100%), emerging as the most successful models. Comparative analyses demonstrated that KNN achieved an accuracy of 92.59%, sensitivity of 92.38%, specificity of 100%, precision of 100%, and an F1-score of 95.02%. Similarly, the Ensemble model achieved an accuracy of 90.74%, sensitivity of 90.65%, specificity of 100%, precision of 100%, and an F1-score of 95.13%. To evaluate their effectiveness, KNN and Ensemble models were compared with commonly used machine learning approaches in glioma classification. LR, a conventional statistical approach, exhibited lower predictive performance with an accuracy of 79.63%, while SVM, a frequently utilized ML model for radiomics-based tumor classification, achieved an accuracy of 85.19%. Our findings are consistent with previous research indicating that radiomics-based ML models achieve high accuracy in IDH1 mutation prediction, with reported performances typically exceeding 80%. These findings suggest that KNN and Ensemble models are more effective in capturing the non-linear radiomic patterns associated with IDH1 status, compared to traditional ML approaches. Our findings indicate that radiomic analyses provide comprehensive genotypic classification by assessing the entire tumor and present a safer, faster, and more patient-friendly alternative to traditional biopsies. This study highlights the potential of radiomics and ML techniques, particularly KNN, Ensemble, and SVM, as powerful tools for predicting the molecular characteristics of gliomas and developing personalized treatment strategies.
Collapse
Affiliation(s)
- Asli Beril Karakas
- Department of Anatomy, Faculty of Medicine, Kastamonu University, Kastamonu, 37200, Turkey.
| | - Figen Govsa
- Department of Anatomy, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Mehmet Asim Ozer
- Department of Anatomy, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Huseyin Biceroglu
- Department of Neurosurgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cenk Eraslan
- Department of Radiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Deniz Tanir
- Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Kafkas University, Kars, Turkey
| |
Collapse
|
2
|
Wang Z, Wang L, Wang Y. Radiomics in glioma: emerging trends and challenges. Ann Clin Transl Neurol 2025; 12:460-477. [PMID: 39901654 PMCID: PMC11920724 DOI: 10.1002/acn3.52306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025] Open
Abstract
Radiomics is a promising neuroimaging technique for extracting and analyzing quantitative glioma features. This review discusses the application, emerging trends, and challenges associated with using radiomics in glioma. Integrating deep learning algorithms enhances various radiomics components, including image normalization, region of interest segmentation, feature extraction, feature selection, and model construction and can potentially improve model accuracy and performance. Moreover, investigating specific tumor habitats of glioblastomas aids in a better understanding of glioblastoma aggressiveness and the development of effective treatment strategies. Additionally, advanced imaging techniques, such as diffusion-weighted imaging, perfusion-weighted imaging, magnetic resonance spectroscopy, magnetic resonance fingerprinting, functional MRI, and positron emission tomography, can provide supplementary information for tumor characterization and classification. Furthermore, radiomics analysis helps understand the glioma immune microenvironment by predicting immune-related biomarkers and characterizing immune responses within tumors. Integrating multi-omics data, such as genomics, transcriptomics, proteomics, and pathomics, with radiomics, aids the understanding of the biological significance of the underlying radiomics features and improves the prediction of genetic mutations, prognosis, and treatment response in patients with glioma. Addressing challenges, such as model reproducibility, model generalizability, model interpretability, and multi-omics data integration, is crucial for the clinical translation of radiomics in glioma.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lei Wang
- Department of NeurosurgeryGuiqian International General HospitalGuiyangGuizhouChina
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Chen Y, Lin H, Sun J, Pu R, Zhou Y, Sun B. Texture Feature Differentiation of Glioblastoma and Solitary Brain Metastases Based on Tumor and Tumor-brain Interface. Acad Radiol 2025; 32:400-410. [PMID: 39217081 DOI: 10.1016/j.acra.2024.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
RATIONALE AND OBJECTIVES Texture features, derived from both the entire tumor area and the region of the tumor-to-brain interface, are crucial indicators for distinguishing tumor types and their degrees of malignancy. However, the discriminative value of texture features from both regions for identifying glioblastomas and metastatic tumors has not been thoroughly explored. The aim of this study is to develop and validate a diagnostic model that combines texture features from the entire tumor area and a 10 mm tumor-to-brain interface region, in an attempt to identify more stable and effective texture features. METHOD We retrospectively collected enhanced T1-weighted imaging data from 97 patients with glioblastoma (GBM) and 90 patients with single brain metastasis (SBM) between 2010 and 2024. Machine learning is used to establish multiple diagnostic models for discriminating GBM and SBM based on texture features of the entire tumor and 10 mm tumor-to-brain interface regions. Results underwent evaluation through 5-fold cross-validation analysis, calculating the area under the receiver operating characteristic curve (AUC) for each model. The performance of each model was compared using the Delong test, and the interpretability of the optimized model was further augmented by employing Shapley additive explanations (SHAP). RESULTS The AUCs for all pipelines in the validation dataset were compared using FeAture Explorer (FAE) software. Among the models established by Kruskal-Wallis(KW) and Logistic Regression(LR), the AUC was highest using the "one-standard error" rule. '10mm_glrlm_GrayLevelNonUniformity' was considered the most stable and predictive feature. The best models in the training set, test set, and validation set were not the same. In the test set, the KW1LR model had the highest AUC of 0.880 and an accuracy of 0.824. CONCLUSION The texture feature model that combines the overall tumor and the tumor-brain interface is beneficial for distinguishing glioblastoma from solitary metastatic tumors, and the texture features of the tumor interface exhibit higher heterogeneity.
Collapse
Affiliation(s)
- Yini Chen
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.C., H.L., J.S., R.P., Y.Z., B.S.)
| | - Hongsen Lin
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.C., H.L., J.S., R.P., Y.Z., B.S.)
| | - Jiayi Sun
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.C., H.L., J.S., R.P., Y.Z., B.S.); College of Medical Imaging, Dalian Medical University, Dalian, Liaoning, China (J.S.)
| | - Renwang Pu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.C., H.L., J.S., R.P., Y.Z., B.S.)
| | - Yujing Zhou
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.C., H.L., J.S., R.P., Y.Z., B.S.)
| | - Bo Sun
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.C., H.L., J.S., R.P., Y.Z., B.S.).
| |
Collapse
|
4
|
Bai J, He M, Gao E, Yang G, Zhang C, Yang H, Dong J, Ma X, Gao Y, Zhang H, Yan X, Zhang Y, Cheng J, Zhao G. High-performance presurgical differentiation of glioblastoma and metastasis by means of multiparametric neurite orientation dispersion and density imaging (NODDI) radiomics. Eur Radiol 2024; 34:6616-6628. [PMID: 38485749 PMCID: PMC11399163 DOI: 10.1007/s00330-024-10686-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVES To evaluate the performance of multiparametric neurite orientation dispersion and density imaging (NODDI) radiomics in distinguishing between glioblastoma (Gb) and solitary brain metastasis (SBM). MATERIALS AND METHODS In this retrospective study, NODDI images were curated from 109 patients with Gb (n = 57) or SBM (n = 52). Automatically segmented multiple volumes of interest (VOIs) encompassed the main tumor regions, including necrosis, solid tumor, and peritumoral edema. Radiomics features were extracted for each main tumor region, using three NODDI parameter maps. Radiomics models were developed based on these three NODDI parameter maps and their amalgamation to differentiate between Gb and SBM. Additionally, radiomics models were constructed based on morphological magnetic resonance imaging (MRI) and diffusion imaging (diffusion-weighted imaging [DWI]; diffusion tensor imaging [DTI]) for performance comparison. RESULTS The validation dataset results revealed that the performance of a single NODDI parameter map model was inferior to that of the combined NODDI model. In the necrotic regions, the combined NODDI radiomics model exhibited less than ideal discriminative capabilities (area under the receiver operating characteristic curve [AUC] = 0.701). For peritumoral edema regions, the combined NODDI radiomics model achieved a moderate level of discrimination (AUC = 0.820). Within the solid tumor regions, the combined NODDI radiomics model demonstrated superior performance (AUC = 0.904), surpassing the models of other VOIs. The comparison results demonstrated that the NODDI model was better than the DWI and DTI models, while those of the morphological MRI and NODDI models were similar. CONCLUSION The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM. CLINICAL RELEVANCE STATEMENT The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM, and radiomics features can be incorporated into the multidimensional phenotypic features that describe tumor heterogeneity. KEY POINTS • The neurite orientation dispersion and density imaging (NODDI) radiomics model showed promising performance for preoperative discrimination between glioblastoma and solitary brain metastasis. • Compared with other tumor volumes of interest, the NODDI radiomics model based on solid tumor regions performed best in distinguishing the two types of tumors. • The performance of the single-parameter NODDI model was inferior to that of the combined-parameter NODDI model.
Collapse
Affiliation(s)
- Jie Bai
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Mengyang He
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Eryuan Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Chengxiu Zhang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Hongxi Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Jie Dong
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Xiaoyue Ma
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Yufei Gao
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers, Wuhan, 201318, China
| | - Xu Yan
- MR Research Collaboration, Siemens Healthineers, Wuhan, 201318, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Zhang Y, Zhang H, Zhang H, Ouyang Y, Su R, Yang W, Huang B. Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic-MRI and Deep-Learning Radiomics Signatures. J Magn Reson Imaging 2024; 60:909-920. [PMID: 37955154 DOI: 10.1002/jmri.29123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Studies have shown that deep-learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic-MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain. PURPOSE To construct and validate a demographic-MRI deep-learning radiomics nomogram (DDLRN) integrating demographic-MRI and DLR signatures to differentiate GBM from SBM preoperatively. STUDY TYPE Retrospective. POPULATION Two hundred and thirty-five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM). FIELD STRENGTH/SEQUENCE Axial T2-weighted fast spin-echo sequence (T2WI), T2-weighted fluid-attenuated inversion recovery sequence (T2-FLAIR), and contrast-enhanced T1-weighted spin-echo sequence (CE-T1WI) using 1.5-T and 3.0-T scanners. ASSESSMENT The demographic-MRI signature was constructed with seven imaging features ("pool sign," "irregular ring sign," "regular ring sign," "intratumoral vessel sign," the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2-FLAIR to CE-T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep-learning (DL) models, DLR signature, and DDLRN were developed and validated. STATISTICAL TESTS The Mann-Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models. RESULTS DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic-MRI signature (AUC = 0.775) was comparable to the T2-FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively). DATA CONCLUSION DDLRN integrating demographic-MRI and DLR signatures showed excellent performance in differentiating GBM from SBM. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yuze Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongbo Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hanwen Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Ouyang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruru Su
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wanqun Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Yang C, Fan Y, Zhao D, Wang Z, Wang X, Wang H, Hu Y, He L, Zhang J, Wang Y, Liu Y, Sha X, Su J. Habitat-Based Radiomics for Predicting EGFR Mutations in Exon 19 and 21 From Brain Metastasis. Acad Radiol 2024; 31:3764-3773. [PMID: 38599906 DOI: 10.1016/j.acra.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024]
Abstract
RATIONALE AND OBJECTIVES To explore and externally validate habitat-based radiomics for preoperative prediction of epidermal growth factor receptor (EGFR) mutations in exon 19 and 21 from MRI imaging of non-small cell lung cancer (NSCLC)-originated brain metastasis (BM). METHODS A total of 170, 62 and 61 patients from center 1, center 2 and center 3, respectively were included. All patients underwent contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) MRI scans. Radiomics features were extracted from the tumor active (TA) and peritumoral edema (PE) regions in each MRI slice. The most important features were selected by the least absolute shrinkage and selection operator regression to develop radiomics signatures based on TA (RS-TA), PE (RS-PE) and their combination (RS-Com). Receiver operating characteristic (ROC) curve analysis was performed to access performance of radiomics models for both internal and external validation cohorts. RESULTS 10, four and six most predictive features were identified to be strongly associated with the EGFR mutation status, exon 19 and exon 21, respectively. The RSs derived from the PE region outperformed those from the TA region for predicting the EGFR mutation, exon 19 and exon 21. The RS-Coms generated the highest performance in the primary training (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.955 vs. 0.946 vs. 0.928), internal validation (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.879 vs. 0.819 vs. 0.882), external validation 1 (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.830 vs. 0.825 vs. 0.822), and external validation 2 (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.812 vs. 0.818 vs. 0.800) cohort. CONCLUSION The developed habitat-based radiomics model can be used to accurately predict the EGFR mutation subtypes, which may potentially guide personalized treatments for NSCLC patients with BM.
Collapse
Affiliation(s)
- Chunna Yang
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Ying Fan
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Dan Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Zekun Wang
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Yanjun Hu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Lingzi He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110122, PR China
| | - Jin Zhang
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Yan Wang
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Yan Liu
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Xianzheng Sha
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Juan Su
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China.
| |
Collapse
|
7
|
Sirén A, Turkia E, Nyman M, Hirvonen J. Accuracy of Intra-Axial Brain Tumor Characterization in the Emergency MRI Reports: A Retrospective Human Performance Benchmarking Pilot Study. Diagnostics (Basel) 2024; 14:1791. [PMID: 39202279 PMCID: PMC11353410 DOI: 10.3390/diagnostics14161791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Demand for emergency neuroimaging is increasing. Even magnetic resonance imaging (MRI) is often performed outside office hours, sometimes revealing more uncommon entities like brain tumors. The scientific literature studying artificial intelligence (AI) methods for classifying brain tumors on imaging is growing, but knowledge about the radiologist's performance on this task is surprisingly scarce. Our study aimed to tentatively fill this knowledge gap. We hypothesized that the radiologist could classify intra-axial brain tumors at the emergency department with clinically acceptable accuracy. We retrospectively examined emergency brain MRI reports from 2013 to 2021, the inclusion criteria being (1) emergency brain MRI, (2) no previously known intra-axial brain tumor, and (3) suspicion of an intra-axial brain tumor on emergency MRI report. The tumor type suggestion and the final clinical diagnosis were pooled into groups: (1) glial tumors, (2) metastasis, (3) lymphoma, and (4) other tumors. The final study sample included 150 patients, of which 108 had histopathological tumor type confirmation. Among the patients with histopathological tumor type confirmation, the accuracy of the MRI reports in classifying the tumor type was 0.86 for gliomas against other tumor types, 0.89 for metastases, and 0.99 for lymphomas. We found the result encouraging, given the prolific need for emergency imaging.
Collapse
Affiliation(s)
- Aapo Sirén
- Department of Radiology, Turku University Hospital, and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Elina Turkia
- Department of Radiology, Turku University Hospital, and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Mikko Nyman
- Department of Radiology, Turku University Hospital, and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, Turku University Hospital, and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Medical Imaging Center, Department of Radiology, Tampere University Hospital, and Tampere University, 33520 Tampere, Finland
| |
Collapse
|
8
|
Wei R, Lu S, Lai S, Liang F, Zhang W, Jiang X, Zhen X, Yang R. A subregion-based RadioFusionOmics model discriminates between grade 4 astrocytoma and glioblastoma on multisequence MRI. J Cancer Res Clin Oncol 2024; 150:73. [PMID: 38305926 PMCID: PMC10837235 DOI: 10.1007/s00432-023-05603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To explore a subregion-based RadioFusionOmics (RFO) model for discrimination between adult-type grade 4 astrocytoma and glioblastoma according to the 2021 WHO CNS5 classification. METHODS 329 patients (40 grade 4 astrocytomas and 289 glioblastomas) with histologic diagnosis was retrospectively collected from our local institution and The Cancer Imaging Archive (TCIA). The volumes of interests (VOIs) were obtained from four multiparametric MRI sequences (T1WI, T1WI + C, T2WI, T2-FLAIR) using (1) manual segmentation of the non-enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE), and (2) K-means clustering of four habitats (H1: high T1WI + C, high T2-FLAIR; (2) H2: high T1WI + C, low T2-FLAIR; (3) H3: low T1WI + C, high T2-FLAIR; and (4) H4: low T1WI + C, low T2-FLAIR). The optimal VOI and best MRI sequence combination were determined. The performance of the RFO model was evaluated using the area under the precision-recall curve (AUPRC) and the best signatures were identified. RESULTS The two best VOIs were manual VOI3 (putative peritumoral edema) and clustering H34 (low T1WI + C, high T2-FLAIR (H3) combined with low T1WI + C and low T2-FLAIR (H4)). Features fused from four MRI sequences ([Formula: see text]) outperformed those from either a single sequence or other sequence combinations. The RFO model that was trained using fused features [Formula: see text] achieved the AUPRC of 0.972 (VOI3) and 0.976 (H34) in the primary cohort (p = 0.905), and 0.971 (VOI3) and 0.974 (H34) in the testing cohort (p = 0.402). CONCLUSION The performance of subregions defined by clustering was comparable to that of subregions that were manually defined. Fusion of features from the edematous subregions of multiple MRI sequences by the RFO model resulted in differentiation between grade 4 astrocytoma and glioblastoma.
Collapse
Affiliation(s)
- Ruili Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Songlin Lu
- School of Biomedical Engineering, Southern Medical University, GuangZhou, China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Fangrong Liang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Wanli Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Xinqing Jiang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, GuangZhou, China.
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China.
| |
Collapse
|
9
|
Müller SJ, Khadhraoui E, Ernst M, Rohde V, Schatlo B, Malinova V. Differentiation of multiple brain metastases and glioblastoma with multiple foci using MRI criteria. BMC Med Imaging 2024; 24:3. [PMID: 38166651 PMCID: PMC10759655 DOI: 10.1186/s12880-023-01183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Glioblastoma with multiple foci (mGBM) and multiple brain metastases share several common features on magnetic resonance imaging (MRI). A reliable preoperative diagnosis would be of clinical relevance. The aim of this study was to explore the differences and similarities between mGBM and multiple brain metastases on MRI. METHODS We performed a retrospective analysis of 50 patients with mGBM and compared them with a cohort of 50 patients with multiple brain metastases (2-10 lesions) histologically confirmed and treated at our department between 2015 and 2020. The following imaging characteristics were analyzed: lesion location, distribution, morphology, (T2-/FLAIR-weighted) connections between the lesions, patterns of contrast agent uptake, apparent diffusion coefficient (ADC)-values within the lesion, the surrounding T2-hyperintensity, and edema distribution. RESULTS A total of 210 brain metastases and 181 mGBM lesions were analyzed. An infratentorial localization was found significantly more often in patients with multiple brain metastases compared to mGBM patients (28 vs. 1.5%, p < 0.001). A T2-connection between the lesions was detected in 63% of mGBM lesions compared to 1% of brain metastases. Cortical edema was only present in mGBM. Perifocal edema with larger areas of diffusion restriction was detected in 31% of mGBM patients, but not in patients with metastases. CONCLUSION We identified a set of imaging features which improve preoperative diagnosis. The presence of T2-weighted imaging hyperintensity connection between the lesions and cortical edema with varying ADC-values was typical for mGBM.
Collapse
Affiliation(s)
- Sebastian Johannes Müller
- Department of Neuroradiology, University Medical Center, Göttingen, Germany
- Neuroradiologische Klinik, Klinikum Stuttgart, Stuttgart, Germany
| | - Eya Khadhraoui
- Department of Neuroradiology, University Medical Center, Göttingen, Germany
- Neuroradiologische Klinik, Klinikum Stuttgart, Stuttgart, Germany
| | - Marielle Ernst
- Department of Neuroradiology, University Medical Center, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center, Göttingen, Germany
| | - Bawarjan Schatlo
- Department of Neurosurgery, University Medical Center, Göttingen, Germany
| | - Vesna Malinova
- Department of Neurosurgery, University Medical Center, Göttingen, Germany.
| |
Collapse
|
10
|
Bai J, He M, Gao E, Yang G, Yang H, Dong J, Ma X, Gao Y, Zhang H, Yan X, Zhang Y, Cheng J, Zhao G. Radiomic texture analysis based on neurite orientation dispersion and density imaging to differentiate glioblastoma from solitary brain metastasis. BMC Cancer 2023; 23:1231. [PMID: 38098041 PMCID: PMC10722697 DOI: 10.1186/s12885-023-11718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND We created discriminative models of different regions of interest (ROIs) using radiomic texture features of neurite orientation dispersion and density imaging (NODDI) and evaluated the feasibility of each model in differentiating glioblastoma multiforme (GBM) from solitary brain metastasis (SBM). METHODS We conducted a retrospective study of 204 patients with GBM (n = 146) or SBM (n = 58). Radiomic texture features were extracted from five ROIs based on three metric maps (intracellular volume fraction, orientation dispersion index, and isotropic volume fraction of NODDI), including necrosis, solid tumors, peritumoral edema, tumor bulk volume (TBV), and abnormal bulk volume. Four feature selection methods and eight classifiers were used for the radiomic texture feature selection and model construction. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of the models. Routine magnetic resonance imaging (MRI) radiomic texture feature models generated in the same manner were used for the horizontal comparison. RESULTS NODDI-radiomic texture analysis based on TBV subregions exhibited the highest accuracy (although nonsignificant) in differentiating GBM from SBM, with area under the ROC curve (AUC) values of 0.918 and 0.882 in the training and test datasets, respectively, compared to necrosis (AUCtraining:0.845, AUCtest:0.714), solid tumor (AUCtraining:0.852, AUCtest:0.821), peritumoral edema (AUCtraining:0.817, AUCtest:0.762), and ABV (AUCtraining:0.834, AUCtest:0.779). The performance of the five ROI radiomic texture models in routine MRI was inferior to that of the NODDI-radiomic texture model. CONCLUSION Preoperative NODDI-radiomic texture analysis based on TBV subregions shows great potential for distinguishing GBM from SBM.
Collapse
Affiliation(s)
- Jie Bai
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Mengyang He
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Eryuan Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Hongxi Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Jie Dong
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Xiaoyue Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Yufei Gao
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers, Wuhan, 201318, China
| | - Xu Yan
- MR Research Collaboration, Siemens Healthineers, Wuhan, 201318, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Shi J, Chen H, Wang X, Cao R, Chen Y, Cheng Y, Pang Z, Huang C. Using Radiomics to Differentiate Brain Metastases From Lung Cancer Versus Breast Cancer, Including Predicting Epidermal Growth Factor Receptor and human Epidermal Growth Factor Receptor 2 Status. J Comput Assist Tomogr 2023; 47:924-933. [PMID: 37948368 DOI: 10.1097/rct.0000000000001499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
OBJECTIVE We evaluated the feasibility of using multiregional radiomics to identify brain metastasis (BM) originating from lung adenocarcinoma (LA) and breast cancer (BC) and assess the epidermal growth factor receptor (EGFR) mutation and human epidermal growth factor receptor 2 (HER2) status. METHODS Our experiment included 160 patients with BM originating from LA (n = 70), BC (n = 67), and other tumor types (n = 23), between November 2017 and December 2021. All patients underwent contrast-enhanced T1- and T2-weighted magnetic resonance imaging (MRI) scans. A total of 1967 quantitative MRI features were calculated from the tumoral active area and peritumoral edema area and selected using least absolute shrinkage and selection operator regression with 5-fold cross-validation. We constructed radiomic signatures (RSs) based on the most predictive features for preoperative assessment of the metastatic origins, EGFR mutation, and HER2 status. Prediction performance of the constructed RSs was evaluated based on the receiver operating characteristic curve analysis. RESULTS The developed multiregion RSs generated good area under the receiver operating characteristic curve (AUC) for identifying the LA and BC origin in the training (AUCs, RS-LA vs RS-BC, 0.767 vs 0.898) and validation (AUCs, RS-LA vs RS-BC, 0.778 and 0.843) cohort and for predicting the EGFR and HER2 status in the training (AUCs, RS-EGFR vs RS-HER2, 0.837 vs 0.894) and validation (AUCs, RS-EGFR vs RS-HER2, 0.729 vs 0.784) cohorts. CONCLUSIONS Our results revealed associations between brain MRI-based radiomics and their metastatic origins, EGFR mutations, and HER2 status. The developed multiregion combined RSs may be considered noninvasive predictive markers for planning early treatment for BM patients.
Collapse
Affiliation(s)
- Jiaxin Shi
- From the School of Intelligent Medicine, China Medical University
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, People's Republic of China
| | - Ran Cao
- From the School of Intelligent Medicine, China Medical University
| | - Yu Chen
- From the School of Intelligent Medicine, China Medical University
| | - Yuan Cheng
- From the School of Intelligent Medicine, China Medical University
| | - Ziyan Pang
- From the School of Intelligent Medicine, China Medical University
| | | |
Collapse
|
12
|
Yu L, Yu Z, Sun L, Zhu L, Geng D. A brain tumor computer-aided diagnosis method with automatic lesion segmentation and ensemble decision strategy. Front Med (Lausanne) 2023; 10:1232496. [PMID: 37841015 PMCID: PMC10576559 DOI: 10.3389/fmed.2023.1232496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Objectives Gliomas and brain metastases (Mets) are the most common brain malignancies. The treatment strategy and clinical prognosis of patients are different, requiring accurate diagnosis of tumor types. However, the traditional radiomics diagnostic pipeline requires manual annotation and lacks integrated methods for segmentation and classification. To improve the diagnosis process, a gliomas and Mets computer-aided diagnosis method with automatic lesion segmentation and ensemble decision strategy on multi-center datasets was proposed. Methods Overall, 1,022 high-grade gliomas and 775 Mets patients' preoperative MR images were adopted in the study, including contrast-enhanced T1-weighted (T1-CE) and T2-fluid attenuated inversion recovery (T2-flair) sequences from three hospitals. Two segmentation models trained on the gliomas and Mets datasets, respectively, were used to automatically segment tumors. Multiple radiomics features were extracted after automatic segmentation. Several machine learning classifiers were used to measure the impact of feature selection methods. A weight soft voting (RSV) model and ensemble decision strategy based on prior knowledge (EDPK) were introduced in the radiomics pipeline. Accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were used to evaluate the classification performance. Results The proposed pipeline improved the diagnosis of gliomas and Mets with ACC reaching 0.8950 and AUC reaching 0.9585 after automatic lesion segmentation, which was higher than those of the traditional radiomics pipeline (ACC:0.8850, AUC:0.9450). Conclusion The proposed model accurately classified gliomas and Mets patients using MRI radiomics. The novel pipeline showed great potential in diagnosing gliomas and Mets with high generalizability and interpretability.
Collapse
Affiliation(s)
- Liheng Yu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China
- Greater BayArea Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, Guangdong, China
| | - Zekuan Yu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China
- Greater BayArea Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, Guangdong, China
| | - Linlin Sun
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhu
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daoying Geng
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China
- Greater BayArea Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, Guangdong, China
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Li X, Tang P, Liang F, Wang L, Huang X, Li J, Zhen X. Machine learning based multi-label classification of single or mixed-composition urinary stones in in vivo spectral CT. Med Phys 2023; 50:661-674. [PMID: 36520004 DOI: 10.1002/mp.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Urinary stones comprise both single and mixed compositions. Knowledge of the stone composition helps the urologists choose appropriate medical interventions for patients. The parameters from the spectral computerized tomography (CT) analysis have potential values for identification of the urinary stone compositions. PURPOSE The present study aims to identify the compositions of urinary stones in vivo using parameters from spectral CT and machine learning, based on multi-label classification modeling. METHODS This retrospective study collected 252 urinary stone samples with single/mixed compositions (including carbapatite [CP], calcium oxalate monohydrate [COM], calcium oxalate dehydrate [COD], uric acid [UA], and struvite [STR]), which were confirmed by ex vivo infrared spectroscopy. Parameters were extracted from an energy spectrum analysis (ESA) of the spectral CT, including the effective atomic number (Zeff ), Zeff histogram, CT values at a given x-ray energy level, and material densities. These ESA parameters were utilized for composition analysis via a multi-label classification fusion framework, where 250 multi-label models were built and the classification decisions from the top performance models were integrated by a multi-criterion weighted fusion (MCWF) approach in order to reach a consensus prediction. An example-based metric A c c e x a m $Ac{c_{exam}}$ and label-based metric A c c l a b e l $Ac{c_{label}}$ were used for global and label-wise accuracy evaluations, respectively. The top-ranked parameters associated with discriminating the stone composition were also identified. RESULTS The multi-label classification fusion framework achieved an overall A c c e x a m $Ac{c_{exam}}$ of 81.2%, with A c c l a b e l $Ac{c_{label}}$ of 86.7% (CP), 90.6% (COM), 80.6% (COD), 95.0% (UA), and 94.4% (STR) for each composition on the independent testing cohort 1, and A c c e x a m $Ac{c_{exam}}$ of 76.4% with A c c l a b e l $Ac{c_{label}}$ of 80.5% (CP), 88.7% (COM), 74.9% (COD), 94.4% (UA), and 98.5% (STR) on the independent testing cohort 2. CONCLUSION The parameters extracted from the ESA on spectral CT can be utilized to characterize single or mixed stone compositions via multi-label classification modeling. The generalization capability of the proposed methodology still requires further verification.
Collapse
Affiliation(s)
- Xian Li
- Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangrong Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Linjing Wang
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Huang
- Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jieer Li
- Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Luo Z, Li J, Liao Y, Huang W, Li Y, Shen X. Prediction of response to preoperative neoadjuvant chemotherapy in extremity high-grade osteosarcoma using X-ray and multiparametric MRI radiomics. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:611-626. [PMID: 37005907 DOI: 10.3233/xst-221352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
PURPOSE This study aims to evaluate the value of applying X-ray and magnetic resonance imaging (MRI) models based on radiomics feature to predict response of extremity high-grade osteosarcoma to neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS A retrospective dataset was assembled involving 102 consecutive patients (training dataset, n = 72; validation dataset, n = 30) diagnosed with extremity high-grade osteosarcoma. The clinical features of age, gender, pathological type, lesion location, bone destruction type, size, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were evaluated. Imaging features were extracted from X-ray and multi-parametric MRI (T1-weighted, T2-weighted, and contrast-enhanced T1-weighted) data. Features were selected using a two-stage process comprising minimal-redundancy-maximum-relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) regression. Logistic regression (LR) modelling was then applied to establish models based on clinical, X-ray, and multi-parametric MRI data, as well as combinations of these datasets. Each model was evaluated using sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI). RESULTS AUCs of 5 models using clinical, X-ray radiomics, MRI radiomics, X-ray plus MRI radiomics, and combination of all were 0.760 (95% CI: 0.583-0.937), 0.706 (95% CI: 0.506-0.905), 0.751 (95% CI: 0.572-0.930), 0.796 (95% CI: 0.629-0.963), 0.828 (95% CI: 0.676-0.980), respectively. The DeLong test showed no significant difference between any pair of models (p > 0.05). The combined model yielded higher performance than the clinical and radiomics models as demonstrated by net reclassification improvement (NRI) and integrated difference improvement (IDI) values, respectively. This combined model was also found to be clinically useful in the decision curve analysis (DCA). CONCLUSION Modelling based on combination of clinical and radiomics data improves the ability to predict pathological responses to NAC in extremity high-grade osteosarcoma compared to the models based on either clinical or radiomics data.
Collapse
Affiliation(s)
- Zhendong Luo
- Department of Radiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jing Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Wenxiao Huang
- Department of Radiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yulin Li
- Department of Radiology, Peking Universtiy Shenzhen Hospital, Shenzhen, China
| | - Xinping Shen
- Department of Radiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
15
|
Alshammari A. Construction of VGG16 Convolution Neural Network (VGG16_CNN) Classifier with NestNet-Based Segmentation Paradigm for Brain Metastasis Classification. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22208076. [PMID: 36298426 PMCID: PMC9606896 DOI: 10.3390/s22208076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Brain metastases (BMs) happen often in patients with metastatic cancer (MC), requiring initial and precise diagnosis of BMs, which remains important for medical care preparation and radiotherapy prognostication. Nevertheless, the susceptibility of automated BM (ABMS) diagnosis is unfairly great for minute BMs, and integrating into medical exercises to distinguish true metastases (MtS) from false positives remains difficult. For enhancing BM classification execution, MtS localization is performed through the NestNet framework. Subsequent to segmentation, classification is performed by employing the VGG16 convolution neural network. A novel loss function is computed by employing the weighted softmax function (WSF) for enhancing minute MtS diagnosis and for calibrating susceptibility and particularity. The aim of this study was to merge temporal prior data for ABMS detection. The proffered VGG16_CNN is capable of differentiating positive MtS among MtS candidates with high confidence, which typically needs distinct specialist analysis or additional investigation, remaining specifically apt for specialist reinforcement in actual medical practice. The proffered VGG16_CNN framework can be correlated with three advanced methodologies (moU-Net, DSNet, and U-Net) concerning diverse criteria. It was observed that the proffered VGG16_CNN attained 93.74% accuracy, 92% precision, 92.1% recall, and 67.08% F1-score.
Collapse
Affiliation(s)
- Abdulaziz Alshammari
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| |
Collapse
|
16
|
Fan Y, He L, Yang H, Wang Y, Su J, Hou S, Luo Y, Jiang X. Preoperative MRI-Based Radiomics of Brain Metastasis to Assess T790M Resistance Mutation After EGFR-TKI Treatment in NSCLC. J Magn Reson Imaging 2022; 57:1778-1787. [PMID: 36165534 DOI: 10.1002/jmri.28441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Preoperative assessment of the acquired resistance T790M mutation in patients with metastatic non-small cell lung cancer (NSCLC) based on brain metastasis (BM) is important for early treatment decisions. PURPOSE To investigate preoperative magnetic resonance imaging (MRI)-based radiomics for assessing T790M resistance mutation after epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment in NSCLC patients with BM. STUDY TYPE Retrospective. POPULATION One hundred and ten primary NSCLC patients with pathologically confirmed BM and T790M mutation status assessment from two centers divided into primary training (N = 53), internal validation (N = 27), and external validation (N = 30) sets. FIELD STRENGTH/SEQUENCE Contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) fast spin echo sequences at 3.0 T. ASSESSMENT Forty-five (40.9%) patients were T790M-positive and 65 (59.1%) patients were T790M-negative. The tumor active area (TAA) and peritumoral edema area (POA) of BM were delineated on pre-treatment T1CE and T2W images. Radiomics signatures were built based on features selected from TAA (RS-TAA), POA (RS-POA), and their combination (RS-Com) to assess the T790M resistance mutation after EGFR-TKI treatment. STATISTICAL TESTS Receiver operating characteristic (ROC) curves were used to assess the capabilities of the developed RSs. The area under the ROC curves (AUC), sensitivity, and specificity were generated as comparison metrics. RESULTS We identified two features (from TAA) and three features (from POA) that are highly associated with the T790M mutation status. The developed RS-TAA, RS-POA, and RS-Com showed good performance, with AUCs of 0.807, 0.807, and 0.864 in the internal validation, and 0.783, 0.814, and 0.860 in the external validation sets, respectively. DATA CONCLUSION Pretreatment brain MRI of NSCLC patients with BM might effectively detect the T790M resistance mutation, with both TAA and POA having important values. The multi-region combined radiomics signature may have potential to be a new biomarker for assessing T790M mutation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Lingzi He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Yan Wang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Juan Su
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Shaoping Hou
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Yahong Luo
- Department of Radiology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Pang H, Yu Z, Yu H, Chang M, Cao J, Li Y, Guo M, Liu Y, Cao K, Fan G. Multimodal striatal neuromarkers in distinguishing parkinsonian variant of multiple system atrophy from idiopathic Parkinson's disease. CNS Neurosci Ther 2022; 28:2172-2182. [PMID: 36047435 PMCID: PMC9627351 DOI: 10.1111/cns.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS To develop an automatic method of classification for parkinsonian variant of multiple system atrophy (MSA-P) and Idiopathic Parkinson's disease (IPD) in early to moderately advanced stages based on multimodal striatal alterations and identify the striatal neuromarkers for distinction. METHODS 77 IPD and 75 MSA-P patients underwent 3.0 T multimodal MRI comprising susceptibility-weighted imaging, resting-state functional magnetic resonance imaging, T1-weighted imaging, and diffusion tensor imaging. Iron-radiomic features, volumes, functional and diffusion scalars of bilateral 10 striatal subregions were calculated and provided to the support vector machine for classification RESULTS: A combination of iron-radiomic features, function, diffusion, and volumetric measures optimally distinguished IPD and MSA-P in the testing dataset (accuracy 0.911 and area under the receiver operating characteristic curves [AUC] 0.927). The diagnostic performance further improved when incorporating clinical variables into the multimodal model (accuracy 0.934 and AUC 0.953). The most crucial factor for classification was the functional activity of the left dorsolateral putamen. CONCLUSION The machine learning algorithm applied to multimodal striatal dysfunction depicted dorsal striatum and supervening prefrontal lobe and cerebellar dysfunction through the frontostriatal and cerebello-striatal connections and facilitated accurate classification between IPD and MSA-P. The dorsolateral putamen was the most valuable neuromarker for the classification.
Collapse
Affiliation(s)
- Huize Pang
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Ziyang Yu
- School of MedicineXiamen UniversityXiamenChina
| | - Hongmei Yu
- Department of NeurologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Miao Chang
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jibin Cao
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yingmei Li
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Miaoran Guo
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yu Liu
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Kaiqiang Cao
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Guoguang Fan
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
18
|
Li J, Zhang Y, Yin D, Shang H, Li K, Jiao T, Fang C, Cui Y, Liu M, Pan J, Zeng Q. CT perfusion-based delta-radiomics models to identify collateral vessel formation after revascularization in patients with moyamoya disease. Front Neurosci 2022; 16:974096. [PMID: 36033623 PMCID: PMC9403315 DOI: 10.3389/fnins.2022.974096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Purpose To build CT perfusion (CTP)-based delta-radiomics models to identify collateral vessel formation after revascularization in patients with moyamoya disease (MMD). Methods Fifty-three MMD patients who underwent CTP and digital subtraction angiography (DSA) examination were retrospectively enrolled. Patients were divided into good and poor groups based on postoperative DSA. CTP parameters, such as mean transit time (MTT), time to drain (TTD), time to maximal plasma concentration (Tmax), and flow extraction product (FE), were obtained. CTP efficacy in evaluating surgical treatment were compared between the good and poor groups. The changes in the relative CTP parameters (ΔrMTT, ΔrTTD, ΔrTmax, and ΔrFE) were calculated to evaluate the differences between pre- and postoperative CTP values. CTP parameters were selected to build delta-radiomics models for identifying collateral vessel formation. The identification performance of machine learning classifiers was assessed using area under the receiver operating characteristic curve (AUC). Results Of the 53 patients, 36 (67.9%) and 17 (32.1%) were divided into the good and poor groups, respectively. The postoperative changes of ΔrMTT, ΔrTTD, ΔrTmax, and ΔrFE in the good group were significantly better than the poor group (p < 0.05). Among all CTP parameters in the perfusion improvement evaluation, the ΔrTTD had the largest AUC (0.873). Eleven features were selected from the TTD parameter to build the delta-radiomics model. The classifiers of the support vector machine and k-nearest neighbors showed good diagnostic performance with AUC values of 0.933 and 0.867, respectively. Conclusion The TTD-based delta-radiomics model has the potential to identify collateral vessel formation after the operation.
Collapse
Affiliation(s)
- Jizhen Li
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Department of Radiology, Shandong Mental Health Center Affiliated to Shandong University, Jinan, China
| | - Yan Zhang
- Department of Radiology, Shandong Mental Health Center Affiliated to Shandong University, Jinan, China
| | - Di Yin
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Hui Shang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Kejian Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Tianyu Jiao
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Caiyun Fang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yi Cui
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Pan
- Department of Radiology, Shandong Mental Health Center Affiliated to Shandong University, Jinan, China
| | - Qingshi Zeng
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Qingshi Zeng,
| |
Collapse
|
19
|
Keek SA, Beuque M, Primakov S, Woodruff HC, Chatterjee A, van Timmeren JE, Vallières M, Hendriks LEL, Kraft J, Andratschke N, Braunstein SE, Morin O, Lambin P. Predicting Adverse Radiation Effects in Brain Tumors After Stereotactic Radiotherapy With Deep Learning and Handcrafted Radiomics. Front Oncol 2022; 12:920393. [PMID: 35912214 PMCID: PMC9326101 DOI: 10.3389/fonc.2022.920393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThere is a cumulative risk of 20–40% of developing brain metastases (BM) in solid cancers. Stereotactic radiotherapy (SRT) enables the application of high focal doses of radiation to a volume and is often used for BM treatment. However, SRT can cause adverse radiation effects (ARE), such as radiation necrosis, which sometimes cause irreversible damage to the brain. It is therefore of clinical interest to identify patients at a high risk of developing ARE. We hypothesized that models trained with radiomics features, deep learning (DL) features, and patient characteristics or their combination can predict ARE risk in patients with BM before SRT.MethodsGadolinium-enhanced T1-weighted MRIs and characteristics from patients treated with SRT for BM were collected for a training and testing cohort (N = 1,404) and a validation cohort (N = 237) from a separate institute. From each lesion in the training set, radiomics features were extracted and used to train an extreme gradient boosting (XGBoost) model. A DL model was trained on the same cohort to make a separate prediction and to extract the last layer of features. Different models using XGBoost were built using only radiomics features, DL features, and patient characteristics or a combination of them. Evaluation was performed using the area under the curve (AUC) of the receiver operating characteristic curve on the external dataset. Predictions for individual lesions and per patient developing ARE were investigated.ResultsThe best-performing XGBoost model on a lesion level was trained on a combination of radiomics features and DL features (AUC of 0.71 and recall of 0.80). On a patient level, a combination of radiomics features, DL features, and patient characteristics obtained the best performance (AUC of 0.72 and recall of 0.84). The DL model achieved an AUC of 0.64 and recall of 0.85 per lesion and an AUC of 0.70 and recall of 0.60 per patient.ConclusionMachine learning models built on radiomics features and DL features extracted from BM combined with patient characteristics show potential to predict ARE at the patient and lesion levels. These models could be used in clinical decision making, informing patients on their risk of ARE and allowing physicians to opt for different therapies.
Collapse
Affiliation(s)
- Simon A. Keek
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Manon Beuque
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Avishek Chatterjee
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Vallières
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lizza E. L. Hendriks
- Department of Pulmonary Diseases, GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Johannes Kraft
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Steve E. Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Olivier Morin
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
- *Correspondence: Philippe Lambin,
| |
Collapse
|
20
|
Cao R, Pang Z, Wang X, Du Z, Chen H, Liu J, Yue Z, Wang H, Luo Y, Jiang X. Radiomics evaluates the EGFR mutation status from the brain metastasis: a multi-center study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To develop and externally validate habitat-based MRI radiomics for preoperative prediction of the EGFR mutation status based on brain metastasis (BM) from primary lung adenocarcinoma (LA). Approach. We retrospectively reviewed 150 and 38 patients from hospital 1 and hospital 2 between January 2017 and December 2021 to form a primary and an external validation cohort, respectively. Radiomics features were calculated from the whole tumor (W), tumor active area (TAA) and peritumoral oedema area (POA) in the contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) MRI image. The least absolute shrinkage and selection operator was applied to select the most important features and to develop radiomics signatures (RSs) based on W (RS-W), TAA (RS-TAA), POA (RS-POA) and in combination (RS-Com). The area under receiver operating characteristic curve (AUC) and accuracy analysis were performed to assess the performance of radiomics models. Main results. RS-TAA and RS-POA outperformed RS-W in terms of AUC, ACC and sensitivity. The multi-region combined RS-Com showed the best prediction performance in the primary validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.901 versus 0.699 versus 0.812 versus 0.883) and external validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.900 versus 0.637 versus 0.814 versus 0.842) cohort. Significance. The developed habitat-based radiomics models can accurately detect the EGFR mutation in patients with BM from primary LA, and may provide a preoperative basis for personal treatment planning.
Collapse
|
21
|
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis. Cancers (Basel) 2022; 14:cancers14112731. [PMID: 35681711 PMCID: PMC9179305 DOI: 10.3390/cancers14112731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Gliomas can be difficult to discern clinically and radiologically from other brain lesions (either neoplastic or non-neoplastic) since their clinical manifestations as well as preoperative imaging features often overlap and appear misleading. Radiomics could be extremely helpful for non-invasive glioma differential diagnosis (DDx). However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. In this context, we aimed to summarize the current status and quality of radiomic studies concerning glioma DDx in a systematic review. In total, 42 studies were selected and examined in our work. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx. Abstract Radiomics is a promising tool that may increase the value of imaging in differential diagnosis (DDx) of glioma. However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the current status of radiomic studies concerning glioma DDx, also using the radiomics quality score (RQS) to assess the quality of the methodology used in each study. A systematic literature search was performed to identify original articles focused on the use of radiomics for glioma DDx from 2015. Methodological quality was assessed using the RQS tool. Spearman’s correlation (ρ) analysis was performed to explore whether RQS was correlated with journal metrics and the characteristics of the studies. Finally, 42 articles were selected for the systematic qualitative analysis. Selected articles were grouped and summarized in terms of those on DDx between glioma and primary central nervous system lymphoma, those aiming at differentiating glioma from brain metastases, and those based on DDx of glioma and other brain diseases. Median RQS was 8.71 out 36, with a mean RQS of all studies of 24.21%. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx.
Collapse
|
22
|
Differentiating solitary brain metastases from glioblastoma by radiomics features derived from MRI and 18F-FDG-PET and the combined application of multiple models. Sci Rep 2022; 12:5722. [PMID: 35388124 PMCID: PMC8986767 DOI: 10.1038/s41598-022-09803-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
This study aimed to explore the ability of radiomics derived from both MRI and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) images to differentiate glioblastoma (GBM) from solitary brain metastases (SBM) and to investigate the combined application of multiple models. The imaging data of 100 patients with brain tumours (50 GBMs and 50 SBMs) were retrospectively analysed. Three model sets were built on MRI, 18F-FDG-PET, and MRI combined with 18F-FDG-PET using five feature selection methods and five classification algorithms. The model set with the highest average AUC value was selected, in which some models were selected and divided into Groups A, B, and C. Individual and joint voting predictions were performed in each group for the entire data. The model set based on MRI combined with 18F-FDG-PET had the highest average AUC compared with isolated MRI or 18F-FDG-PET. Joint voting prediction showed better performance than the individual prediction when all models reached an agreement. In conclusion, radiomics derived from MRI and 18F-FDG-PET could help differentiate GBM from SBM preoperatively. The combined application of multiple models can provide greater benefits.
Collapse
|
23
|
Single brain metastasis versus glioblastoma multiforme: a VOI-based multiparametric analysis for differential diagnosis. Radiol Med 2022; 127:490-497. [PMID: 35316518 PMCID: PMC9098536 DOI: 10.1007/s11547-022-01480-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022]
Abstract
Purpose The authors’ purpose was to create a valid multiparametric MRI model for the differential diagnosis between glioblastoma and solitary brain metastasis. Materials and methods Forty-one patients (twenty glioblastomas and twenty-one brain metastases) were retrospectively evaluated. MRIs were analyzed with Olea Sphere® 3.0. Lesions’ volumes of interest (VOIs) were drawn on enhanced 3D T1 MP-RAGE and projected on ADC and rCBV co-registered maps. Another two VOIs were drawn in the region of hyperintense cerebral edema, surrounding the lesion, respectively, within 5 mm around the enhancing tumor and into residual edema. Perfusion curves were obtained, and the value of signal recovery (SR) was reported. A two-sample T test was obtained to compare all parameters of GB and BM groups. Receiver operating characteristics (ROC) analysis was performed. Results According to ROC analysis, the area under the curve was 88%, 78% and 74%, respectively, for mean ADC VOI values of the solid component, the mean and max rCBV values in the perilesional edema and the PSR. The cumulative ROC curve of these parameters reached an area under the curve of 95%. Using perilesional max rCBV > 1.37, PSR > 75% and mean lesional ADC < 1 × 10−3 mm2 s−1 GB could be differentiated from solitary BM (sensitivity and specificity of 95% and 86%). Conclusion Lower values of ADC in the enhancing tumor, a higher percentage of SR in perfusion curves and higher values of rCBV in the peritumoral edema closed to the lesion are strongly indicative of GB than solitary BM.
Collapse
|
24
|
Shahsavari N, Ahmad M, Sekar V, Meola A, Hancock SL, Chang SD, Chiang VL. Synchronous glioblastoma and brain metastases: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE21714. [PMID: 36273867 PMCID: PMC9379681 DOI: 10.3171/case21714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Radiosurgical treatment of brain metastases is usually performed without brain tissue confirmation. While it is extremely rare for glioblastoma to develop concurrently in patients with brain metastases, they can look radiographically similar, and recognition is important because it alters management and prognosis. The synchronous presence of brain metastases and glioblastoma has not been published to date in the literature, making this a rare illustrative case. OBSERVATIONS A 70-year-old female had lung biopsy-proven metastatic lung adenocarcinoma and multiple brain metastases. Her treatment course included initial carboplatin, pemetrexed, and bevacizumab followed by maintenance nivolumab, and she underwent stereotactic radiosurgery to the multiple brain metastases. During interval radiological surveillance, one lesion in the right temporal lobe was noted to slowly progress associated with development of significant perilesional edema causing midline shift despite repeated stereotactic radiosurgical treatments. Biopsy of this lesion revealed glioblastoma, IDH wildtype. LESSONS Glioblastomas and brain metastases have similar radiological features, so the possibility of incorrect diagnosis needs to be considered for all lesions with interval growth poststereotactic radiosurgery. Biopsy and/or resection/laser ablation should be considered prior to reirradiation.
Collapse
Affiliation(s)
| | | | | | | | - Steven L. Hancock
- Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; and
| | | | - Veronica L. Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
25
|
Machine Learning Applications for Differentiation of Glioma from Brain Metastasis-A Systematic Review. Cancers (Basel) 2022; 14:cancers14061369. [PMID: 35326526 PMCID: PMC8946855 DOI: 10.3390/cancers14061369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary We present a systematic review of published reports on machine learning (ML) applications for the differentiation of gliomas from brain metastases by summarizing study characteristics, strengths, and pitfalls. Based on these findings, we present recommendations for future research in this field. Abstract Glioma and brain metastasis can be difficult to distinguish on conventional magnetic resonance imaging (MRI) due to the similarity of imaging features in specific clinical circumstances. Multiple studies have investigated the use of machine learning (ML) models for non-invasive differentiation of glioma from brain metastasis. Many of the studies report promising classification results, however, to date, none have been implemented into clinical practice. After a screening of 12,470 studies, we included 29 eligible studies in our systematic review. From each study, we aggregated data on model design, development, and best classifiers, as well as quality of reporting according to the TRIPOD statement. In a subset of eligible studies, we conducted a meta-analysis of the reported AUC. It was found that data predominantly originated from single-center institutions (n = 25/29) and only two studies performed external validation. The median TRIPOD adherence was 0.48, indicating insufficient quality of reporting among surveyed studies. Our findings illustrate that despite promising classification results, reliable model assessment is limited by poor reporting of study design and lack of algorithm validation and generalizability. Therefore, adherence to quality guidelines and validation on outside datasets is critical for the clinical translation of ML for the differentiation of glioma and brain metastasis.
Collapse
|
26
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
27
|
Nowakowski A, Lahijanian Z, Panet-Raymond V, Siegel PM, Petrecca K, Maleki F, Dankner M. Radiomics as an emerging tool in the management of brain metastases. Neurooncol Adv 2022; 4:vdac141. [PMID: 36284932 PMCID: PMC9583687 DOI: 10.1093/noajnl/vdac141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brain metastases (BM) are associated with significant morbidity and mortality in patients with advanced cancer. Despite significant advances in surgical, radiation, and systemic therapy in recent years, the median overall survival of patients with BM is less than 1 year. The acquisition of medical images, such as computed tomography (CT) and magnetic resonance imaging (MRI), is critical for the diagnosis and stratification of patients to appropriate treatments. Radiomic analyses have the potential to improve the standard of care for patients with BM by applying artificial intelligence (AI) with already acquired medical images to predict clinical outcomes and direct the personalized care of BM patients. Herein, we outline the existing literature applying radiomics for the clinical management of BM. This includes predicting patient response to radiotherapy and identifying radiation necrosis, performing virtual biopsies to predict tumor mutation status, and determining the cancer of origin in brain tumors identified via imaging. With further development, radiomics has the potential to aid in BM patient stratification while circumventing the need for invasive tissue sampling, particularly for patients not eligible for surgical resection.
Collapse
Affiliation(s)
- Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Zubin Lahijanian
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Valerie Panet-Raymond
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Farhad Maleki
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|
28
|
Bo L, Zhang Z, Jiang Z, Yang C, Huang P, Chen T, Wang Y, Yu G, Tan X, Cheng Q, Li D, Liu Z. Differentiation of Brain Abscess From Cystic Glioma Using Conventional MRI Based on Deep Transfer Learning Features and Hand-Crafted Radiomics Features. Front Med (Lausanne) 2021; 8:748144. [PMID: 34869438 PMCID: PMC8636043 DOI: 10.3389/fmed.2021.748144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: To develop and validate the model for distinguishing brain abscess from cystic glioma by combining deep transfer learning (DTL) features and hand-crafted radiomics (HCR) features in conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI). Methods: This single-center retrospective analysis involved 188 patients with pathologically proven brain abscess (102) or cystic glioma (86). One thousand DTL and 105 HCR features were extracted from the T1WI and T2WI of the patients. Three feature selection methods and four classifiers, such as k-nearest neighbors (KNN), random forest classifier (RFC), logistic regression (LR), and support vector machine (SVM), for distinguishing brain abscess from cystic glioma were compared. The best feature combination and classifier were chosen according to the quantitative metrics including area under the curve (AUC), Youden Index, and accuracy. Results: In most cases, deep learning-based radiomics (DLR) features, i.e., DTL features combined with HCR features, contributed to a higher accuracy than HCR and DTL features alone for distinguishing brain abscesses from cystic gliomas. The AUC values of the model established, based on the DLR features in T2WI, were 0.86 (95% CI: 0.81, 0.91) in the training cohort and 0.85 (95% CI: 0.75, 0.95) in the test cohort, respectively. Conclusions: The model established with the DLR features can distinguish brain abscess from cystic glioma efficiently, providing a useful, inexpensive, convenient, and non-invasive method for differential diagnosis. This is the first time that conventional MRI radiomics is applied to identify these diseases. Also, the combination of HCR and DTL features can lead to get impressive performance.
Collapse
Affiliation(s)
- Linlin Bo
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Zijian Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zekun Jiang
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Chao Yang
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Pu Huang
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Tingyin Chen
- Department of Network Information Center, Xiangya Hospital, Centra South University, Changsha, China
| | - Yifan Wang
- Department of Network Information Center, Xiangya Hospital, Centra South University, Changsha, China
| | - Gang Yu
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xiao Tan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dengwang Li
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Machine Learning-Based Radiomics in Neuro-Oncology. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:139-151. [PMID: 34862538 DOI: 10.1007/978-3-030-85292-4_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, modern medicine has evolved into a data-centered discipline, generating massive amounts of granular high-dimensional data exceeding human comprehension. With improved computational methods, machine learning and artificial intelligence (AI) as tools for data processing and analysis are becoming more and more important. At the forefront of neuro-oncology and AI-research, the field of radiomics has emerged. Non-invasive assessments of quantitative radiological biomarkers mined from complex imaging characteristics across various applications are used to predict survival, discriminate between primary and secondary tumors, as well as between progression and pseudo-progression. In particular, the application of molecular phenotyping, envisioned in the field of radiogenomics, has gained popularity for both primary and secondary brain tumors. Although promising results have been obtained thus far, the lack of workflow standardization and availability of multicenter data remains challenging. The objective of this review is to provide an overview of novel applications of machine learning- and deep learning-based radiomics in primary and secondary brain tumors and their implications for future research in the field.
Collapse
|
30
|
Wu J, Liang F, Wei R, Lai S, Lv X, Luo S, Wu Z, Chen H, Zhang W, Zeng X, Ye X, Wu Y, Wei X, Jiang X, Zhen X, Yang R. A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis. Cancers (Basel) 2021; 13:5793. [PMID: 34830943 PMCID: PMC8616314 DOI: 10.3390/cancers13225793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate the diagnostic potential of a novel RFO model in differentiating GBM and SBM with multiparametric MR sequences collected from 244 (131 GBM and 113 SBM) patients. Three basic volume of interests (VOIs) were delineated on the conventional axial MR images (T1WI, T2WI, T2_FLAIR, and CE_T1WI), including volumetric non-enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE). Using the RFO model, radiomics features extracted from different multiparametric MRI sequence(s) and VOI(s) were fused and the best sequence and VOI, or possible combinations, were determined. A multi-disciplinary team (MDT)-like fusion was performed to integrate predictions from the high-performing models for the final discrimination of GBM vs. SBM. Image features extracted from the volumetric ET (VOIET) had dominant predictive performances over features from other VOI combinations. Fusion of VOIET features from the T1WI and T2_FLAIR sequences via the RFO model achieved a discrimination accuracy of AUC = 0.925, accuracy = 0.855, sensitivity = 0.856, and specificity = 0.853, on the independent testing cohort 1, and AUC = 0.859, accuracy = 0.836, sensitivity = 0.708, and specificity = 0.919 on the independent testing cohort 2, which significantly outperformed three experienced radiologists (p = 0.03, 0.01, 0.02, and 0.01, and p = 0.02, 0.01, 0.45, and 0.02, respectively) and the MDT-decision result of three experienced experts (p = 0.03, 0.02, 0.03, and 0.02, and p = 0.03, 0.02, 0.44, and 0.03, respectively).
Collapse
Affiliation(s)
- Jialiang Wu
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
- Department of Radiology, The University of Hong Kong Shenzhen Hospital, Shenzhen 518000, China
| | - Fangrong Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| | - Ruili Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou 510520, China;
| | - Xiaofei Lv
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shiwei Luo
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Zhe Wu
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Huixian Chen
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Wanli Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Xiangling Zeng
- Department of Radiology, Huizhou Municipal Central Hospital, Huizhou 516001, China;
| | - Xianghua Ye
- Department of Radiation Oncology, 1st Affiliated Hospital, Zhejiang University, Hangzhou 310009, China;
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China;
| | - Xinhua Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Xinqing Jiang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; (J.W.); (R.W.); (S.L.); (Z.W.); (H.C.); (W.Z.); (X.W.); (X.J.)
| |
Collapse
|
31
|
Zhang L, Yao R, Gao J, Tan D, Yang X, Wen M, Wang J, Xie X, Liao R, Tang Y, Chen S, Li Y. An Integrated Radiomics Model Incorporating Diffusion-Weighted Imaging and 18F-FDG PET Imaging Improves the Performance of Differentiating Glioblastoma From Solitary Brain Metastases. Front Oncol 2021; 11:732704. [PMID: 34527594 PMCID: PMC8435895 DOI: 10.3389/fonc.2021.732704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/06/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The effectiveness of conventional MRI (cMRI)-based radiomics in differentiating glioblastoma (GBM) from solitary brain metastases (SBM) is not satisfactory enough. Therefore, we aimed to develop an integrated radiomics model to improve the performance of differentiating GBM from SBM. METHODS One hundred patients with solitary brain tumors (50 with GBM, 50 with SBM) were retrospectively enrolled and randomly assigned to the training set (n = 80) or validation set (n = 20). A total of 4,424 radiomic features were obtained from contrast-enhanced T1-weighted imaging (CE-T1WI) with the contrast-enhancing and peri-enhancing edema region, T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI)-derived apparent diffusion coefficient (ADC), and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images. The partial least squares (PLS) regression with fivefold cross-validation is used to analyze the correlation between different radiomic features and different modalities. The cross-validity analysis was performed to judge whether a new principal component or a new feature dimension can significantly improve the final prediction effect. The principal components with effective interpretation in all radiomic features were projected to a low-dimensional space (2D in this study). The effective features of the new projection mapping were then sent to the random forest classifier to predict the results. The performance of differentiating GBM from SBM was compared between the integrated radiomics model and other radiomics models or nonradiomics methods using the area under the receiver operating characteristics curve (AUC). RESULTS Through the cross-validity analysis of partial least squares, hundreds of radiomic features were projected into a new two-dimensional space to complete the construction of radiomics model. Compared with the combined radiomics model using DWI + 18F-FDG PET (AUC = 0.93, p = 0.014), cMRI + DWI (AUC = 0.89, p = 0.011), cMRI + 8F-FDG PET (AUC = 0.91, p = 0.015), and single radiomics model using cMRI (AUC = 0.85, p = 0.018), DWI (AUC = 0.84, p = 0.017), and 18F-FDG PET (AUC = 0.85, p = 0.421), the integrated radiomics model (AUC = 0.98) showed more efficient diagnostic performance. The integrated radiomics model (AUC = 0.98) also showed significantly better performance than any single ADC, SUV, or TBR parameter (AUC = 0.57-0.71, p < 0.05). The integrated radiomics model showed better performance in the training (AUC = 0.98) and validation (AUC = 0.93) sets than any other models and methods, demonstrating robustness. CONCLUSIONS We developed an integrated radiomics model incorporating DWI and 18F-FDG PET, which improved the performance of differentiating GBM from SBM greatly.
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yao
- College of Computer & Information Science, Southwest University, Chongqing, China
| | - Jueni Gao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Duo Tan
- College of Computer & Information Science, Southwest University, Chongqing, China
| | - Xinyi Yang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Wen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangxian Xie
- Department of Radiology, Chongqing United Medical Imaging Center, Chongqing, China
| | - Ruikun Liao
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Yao Tang
- Department of Oncology, People’s Hospital of Chongqing Hechuan, Chongqing, China
| | - Shanxiong Chen
- College of Computer & Information Science, Southwest University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Differentiating Glioblastomas from Solitary Brain Metastases: An Update on the Current Literature of Advanced Imaging Modalities. Cancers (Basel) 2021; 13:cancers13122960. [PMID: 34199151 PMCID: PMC8231515 DOI: 10.3390/cancers13122960] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Differentiating between glioblastomas and solitary brain metastases proves to be a challenging diagnosis for neuroradiologists, as both present with imaging patterns consisting of peritumoral hyperintensities with similar intratumoral texture on traditional magnetic resonance imaging sequences. Early diagnosis is paramount, as each pathology has completely different methods of clinical assessment. In the past decade, recent developments in advanced imaging modalities enabled providers to acquire a more accurate diagnosis earlier in the patient's clinical assessment, thus optimizing clinical outcome. Dynamic susceptibility contrast has been optimized for detecting relative cerebral blood flow and relative cerebral blood volume. Diffusion tensor imaging can be used to detect changes in mean diffusivity. Neurite orientation dispersion and density imaging is an innovative modality detecting changes in intracellular volume fraction, isotropic volume fraction, and extracellular volume fraction. Magnetic resonance spectroscopy is able to assist by providing a metabolic descriptor while detecting variable ratios of choline/N-acetylaspartate, choline/creatine, and N-acetylaspartate/creatine. Finally, radiomics and machine learning algorithms have been devised to assist in improving diagnostic accuracy while often utilizing more than one advanced imaging protocol per patient. In this review, we provide an update on all the current evidence regarding the identification and differentiation of glioblastomas from solitary brain metastases.
Collapse
|
33
|
Su CQ, Chen XT, Duan SF, Zhang JX, You YP, Lu SS, Hong XN. A radiomics-based model to differentiate glioblastoma from solitary brain metastases. Clin Radiol 2021; 76:629.e11-629.e18. [PMID: 34092362 DOI: 10.1016/j.crad.2021.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/21/2021] [Indexed: 11/18/2022]
Abstract
AIM To differentiate glioblastoma (GBM) from solitary brain metastases (MET) using radiomic analysis. MATERIALS AND METHODS Two hundred and fifty-three patients with solitary brain tumours (157 GBM and 98 solitary brain MET) were split into a training cohort (n=178) and a validation cohort (n=77) by stratified sampling using computer-generated random numbers at a ratio of 7:3. After feature extraction, minimum redundancy maximum relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO) were used to build the radiomics signature on the training cohort and validation cohort. Performance was assessed by radiomics score (Rad-score), receiver operating characteristic (ROC) curve, calibration, and clinical usefulness. RESULTS Eleven radiomic features were selected as significant features in the training cohort. The Rad-score was significantly associated with the differentiation between GBM and solitary brain MET (p<0.001) both in the training and validation cohorts. The radiomics signature yielded area under the curve (AUC) values of 0.82 and 0.81 in the training and validation cohorts to distinguish between GBM and solitary brain MET. CONCLUSIONS The radiomics model might be a useful supporting tool for the preoperative differentiation of GBM from solitary brain MET, which could aid pretreatment decision-making.
Collapse
Affiliation(s)
- C-Q Su
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - X-T Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - S-F Duan
- GE Healthcare China, NO.1, Huatuo Road, Pudong New Town, Shanghai 210000, China
| | - J-X Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Y-P You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - S-S Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| | - X-N Hong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
34
|
Li Q, Dong F, Jiang B, Zhang M. Exploring MRI Characteristics of Brain Diffuse Midline Gliomas With the H3 K27M Mutation Using Radiomics. Front Oncol 2021; 11:646267. [PMID: 34109112 PMCID: PMC8182051 DOI: 10.3389/fonc.2021.646267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives To explore the magnetic resonance imaging (MRI) characteristics of brain diffuse midline gliomas with the H3 K27M mutation (DMG-M) using radiomics. Materials and Methods Thirty patients with diffuse midline gliomas, including 16 with the H3 K27M mutant and 14 with wild type tumors, were retrospectively included in this study. A total of 272 radiomic features were initially extracted from MR images of each tumor. Principal component analysis, univariate analysis, and three other feature selection methods, including variance thresholding, recursive feature elimination, and the elastic net, were used to analyze the radiomic features. Based on the results, related visually accessible features of the tumors were further evaluated. Results Patients with DMG-M were younger than those with diffuse midline gliomas with H3 K27M wild (DMG-W) (median, 25.5 and 48 years old, respectively; p=0.005). Principal component analysis showed that there were obvious overlaps in the first two principal components for both DMG-M and DMG-W tumors. The feature selection results showed that few features from T2-weighted images (T2WI) were useful for differentiating DMG-M and DMG-W tumors. Thereafter, four visually accessible features related to T2WI were further extracted and analyzed. Among these features, only cystic formation showed a significant difference between the two types of tumors (OR=7.800, 95% CI 1.476-41.214, p=0.024). Conclusions DMGs with and without the H3 K27M mutation shared similar MRI characteristics. T2W sequences may be valuable, and cystic formation a useful MRI biomarker, for diagnosing brain DMG-M.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Dong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Biao Jiang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Priya S, Liu Y, Ward C, Le NH, Soni N, Pillenahalli Maheshwarappa R, Monga V, Zhang H, Sonka M, Bathla G. Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics. Sci Rep 2021; 11:10478. [PMID: 34006893 PMCID: PMC8131619 DOI: 10.1038/s41598-021-90032-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Few studies have addressed radiomics based differentiation of Glioblastoma (GBM) and intracranial metastatic disease (IMD). However, the effect of different tumor masks, comparison of single versus multiparametric MRI (mp-MRI) or select combination of sequences remains undefined. We cross-compared multiple radiomics based machine learning (ML) models using mp-MRI to determine optimized configurations. Our retrospective study included 60 GBM and 60 IMD patients. Forty-five combinations of ML models and feature reduction strategies were assessed for features extracted from whole tumor and edema masks using mp-MRI [T1W, T2W, T1-contrast enhanced (T1-CE), ADC, FLAIR], individual MRI sequences and combined T1-CE and FLAIR sequences. Model performance was assessed using receiver operating characteristic curve. For mp-MRI, the best model was LASSO model fit using full feature set (AUC 0.953). FLAIR was the best individual sequence (LASSO-full feature set, AUC 0.951). For combined T1-CE/FLAIR sequence, adaBoost-full feature set was the best performer (AUC 0.951). No significant difference was seen between top models across all scenarios, including models using FLAIR only, mp-MRI and combined T1-CE/FLAIR sequence. Top features were extracted from both the whole tumor and edema masks. Shape sphericity is an important discriminating feature.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| | - Yanan Liu
- College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Caitlin Ward
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Nam H Le
- College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Neetu Soni
- Department of Radiology, University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | | | - Varun Monga
- Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Honghai Zhang
- College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Milan Sonka
- College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Girish Bathla
- Department of Radiology, University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| |
Collapse
|
36
|
Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gliomas are the most common primary brain tumors. They are classified into 4 grades (Grade I–II-III–IV) according to the guidelines of the World Health Organization (WHO). The accurate grading of gliomas has clinical significance for planning prognostic treatments, pre-diagnosis, monitoring and administration of chemotherapy. The purpose of this study is to develop a deep learning-based classification method using radiomic features of brain tumor glioma grades with deep neural network (DNN). The classifier was combined with the discrete wavelet transform (DWT) the powerful feature extraction tool. This study primarily focuses on the four main aspects of the radiomic workflow, namely tumor segmentation, feature extraction, analysis, and classification. We evaluated data from 121 patients with brain tumors (Grade II, n = 77; Grade III, n = 44) from The Cancer Imaging Archive, and 744 radiomic features were obtained by applying low sub-band and high sub-band 3D wavelet transform filters to the 3D tumor images. Quantitative values were statistically analyzed with MannWhitney U tests and 126 radiomic features with significant statistical properties were selected in eight different wavelet filters. Classification performances of 3D wavelet transform filter groups were measured using accuracy, sensitivity, F1 score, and specificity values using the deep learning classifier model. The proposed model was highly effective in grading gliomas with 96.15% accuracy, 94.12% precision, 100% recall, 96.97% F1 score, and 98.75% Area under the ROC curve. As a result, deep learning and feature selection techniques with wavelet transform filters can be accurately applied using the proposed method in glioma grade classification.
Collapse
|