1
|
Zhou X, Deng YY, Qian L, Zhong SS, Zou FY, Shen LS, Luo XW, Yin BY, He YF, Guo RM. Alterations in brain iron and myelination in children with ASD: A susceptibility source separation imaging study. Neuroimage 2025; 310:121128. [PMID: 40057287 DOI: 10.1016/j.neuroimage.2025.121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Autism spectrum disorder (ASD) may have both brain iron and myelin changes, but traditional methods fail to differentiate them. This study utilized an advanced susceptibility source separation technique, APART-QSM (iterAtive magnetic suscePtibility sources sepARaTion), to investigate brain iron and myelination alterations in children with ASD and link neuroimaging findings to clinical symptom severity. Sixty-five school-aged children with ASD and Sixty age- and sex-matched typically developing children were included. By providing enhanced and broader detection capabilities compared to conventional QSM, APART-QSM uncovered reduced iron content across multiple deep gray matters and decreased myelin content in the globus pallidum in ASD. The iron and myelin contents in the globus pallidum and iron content in the substantia nigra were significantly negatively correlated with ASD symptom severity. Coexisting abnormal brain iron and myelin contents in ASD, particularly in the globus pallidus, offer innovative and promising insights into ASD pathology and potential biomarkers.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ya-Yin Deng
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Shuang-Shuang Zhong
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Feng-Yun Zou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Shan Shen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Wen Luo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo-Ya Yin
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi-Fan He
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Mi Guo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Wu W, Su Y, Qin Z, Kang J, Xiang D, Liu D, Zheng C, Haacke EM, Wang L. Quantitative Assessment of Deep Gray Matter Susceptibility and Correlation With Cognition in Patients With Liver Cirrhosis. Brain Behav 2025; 15:e70240. [PMID: 39778978 PMCID: PMC11710887 DOI: 10.1002/brb3.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/23/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Accumulation of metals quantified by quantitative susceptibility mapping (QSM) in deep gray matter (DGM) and their impact on cognition have not been studied in patients with liver cirrhosis. This study aims to use QSM to investigate the association between DGM susceptibility and cognition in cirrhotic patients. METHODS Thirty cirrhotic patients and 30 age-, gender-, and education-matched controls were imaged using a multiecho gradient-echo sequence for QSM analysis in a 3T scanner. The susceptibility values were determined for the caudate nucleus (CN), putamen (PU), globus pallidus (GP), thalamus (TH), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN). All subjects underwent number connection test A (NCT-A), digit substitution test (DST), and Montreal Cognitive Assessment (MoCA). Comparisons between the two groups and the correlation between the susceptibility values and neuropsychological scores were analyzed. RESULTS The susceptibility values of bilateral CN, TH, and RN were significantly lower in cirrhotic patients. Cirrhotic patients exhibited significantly prolonged NCT-A time and decreased DST and MoCA scores. The NCT-A, DST, MoCA, and sub-domain scores were correlated with susceptibility values of RN, DN, SN, and CN, respectively. The susceptibility value of the left RN was a predictor variable for the DST, MoCA, and visuospatial-executive scores; those of the right CN and left RN were predictor variables for the naming score, and that of the left SN was an independent predictor variable for the language score. CONCLUSIONS Altered susceptibility values of DGM measured by QSM are potential quantitative indicators of cognitive impairment in cirrhotic patients.
Collapse
Affiliation(s)
- Wenjun Wu
- Department of Radiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Yu Su
- Department of Radiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ziji Qin
- Department of RadiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionGuangxi Academy of Medical SciencesNanningChina
| | - Jiamin Kang
- Department of Radiology, Wuhan No. 1 Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dongqiao Xiang
- Department of Radiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Dingxi Liu
- Department of Radiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - E. Mark Haacke
- Magnetic Resonance InnovationsBingham FarmsMichiganUSA
- Department of RadiologyWayne State UniversityDetroitMichiganUSA
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| |
Collapse
|
3
|
Cao C, Li J, Cui W, Dai J, Guan Z, Wang D, Zhao X. Metalomics Revealed that Changes of Serum Elements were Associated with Oxidative Stress-Induced Inflammation of Cortex in a Mouse Model of Autism. Biol Trace Elem Res 2024:10.1007/s12011-024-04501-0. [PMID: 39733022 DOI: 10.1007/s12011-024-04501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder emerging during early childhood. However, the mechanism underlying the pathogenesis of ASD remains unclear. This study investigated the alterations of elements in serum and prefrontal cortex of BTBR T + tf/J (BTBR) mice and potential mechanisms. The male BTBR mice were used for experimental group and C57BL/6 J (C57) mice were used for control group (n = 15). After behavioral tests were monitored, serum and prefrontal cortex of mice were analyzed by ICP-MS. The results demonstrated that the level of copper (Cu) was increased, and the levels of calcium (Ca), magnesium (Mg), selenium (Se), cobalt (Co), iron (Fe) and zinc (Zn) were decreased in BTBR mice compared to C57 mice (p < 0.01). The levels of above differential elements in serum demonstrated positive correlations with those in prefrontal cortex. Meanwhile, differential elements in prefrontal cortex had correlations with the total distance traveled (open field test) and the number of marbles buried (marble burying test) in BTBR mice (p < 0.05 or p < 0.01). The abnormally changed elements in serum might cross blood-brain-barrier into the brain and lead to oxidative stress, causing inflammation. Furtherly, the levels of inflammation-related indicators including tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were increased in prefrontal cortex of BTBR mice (p < 0.01), which were consistent with the aforementioned results. Our study suggested that the abnormal elements in the serum of BTBR mice may cause oxidative stress and inflammation in prefrontal cortex, which might contribute to increase the understanding of ASD pathogenesis.
Collapse
Affiliation(s)
- Can Cao
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Jian Li
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Wenqi Cui
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Jiaohua Dai
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Zhiyu Guan
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Dan Wang
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| | - Xiujuan Zhao
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
4
|
Zhang H, Liu Y, Zhang Z, Jiang M, Tao X, Lee XN, Fang Z, Song X, Silkiss RZ, Fan X, Zhou H. Neuroimaging in thyroid eye disease: A systematic review. Autoimmun Rev 2024; 23:103667. [PMID: 39396626 DOI: 10.1016/j.autrev.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Thyroid eye disease (TED) is an organ-specific autoimmune disease secondary largely to hyperthyroid Graves' disease, which profoundly affects patients' visual function, appearance, and physical and mental well-being. Emerging neuroimaging studies have reported alterations in the brains of patients with TED, suggesting that the impact of this autoimmune disease may extend beyond the orbit. This systematic review aims to consolidate the neuroimaging evidence that describes the brain alterations of TED. We analyzed information from thirty-one related studies involving 1349 TED patients and 710 healthy controls, employing multimodal neuroimaging techniques such as structural magnetic resonance imaging (MRI), functional MRI, diffusion MRI, and metabolic MRI. These studies define the brain alterations in regions associated with vision, cognition, and emotion regulation, such as gray matter volume changes, altered functional connectivity and activity, and microstructural modifications, revealing the neurological impact of TED beyond the orbit. Notably, there was convergence across these studies indicating predominant abnormalities within the occipital and parietal lobes. This review underscores the critical role of advanced neuroimaging techniques in unraveling the complex neuropathological mechanism of TED, laying a foundation for future research and potential therapeutic targets.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixiang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ning Lee
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilin Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefei Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rona Z Silkiss
- Division of Ophthalmic Plastic Surgery, California Pacific Medical Center, Silkiss Eye Surgery, San Francisco, CA, United States
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Schulze M, Coghill D, Lux S, Philipsen A, Silk T. Assessing Brain Iron and Its Relationship to Cognition and Comorbidity in Children With Attention-Deficit/Hyperactivity Disorder With Quantitative Susceptibility Mapping. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00250-7. [PMID: 39218036 DOI: 10.1016/j.bpsc.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Quantitative susceptibility mapping is a neuroimaging technique that detects local changes in magnetic susceptibility induced by brain iron. Brain iron and the dopaminergic system are linked because iron is an important cofactor for dopamine synthesis. Attention-deficit/hyperactivity disorder (ADHD) is associated with dysregulation of dopaminergic transmission. Therefore, we applied quantitative susceptibility mapping on subcortical structures to study potential alterations in brain iron and its impact on cognition and mental health in children with ADHD. METHODS Quantitative susceptibility mapping data (3T) of 111 participants (nADHD = 58, mean [SD] age = 13.2 [0.63] years; nControl = 53, mean [SD] age = 13.2 [0.51] years) were analyzed. Subcortical regional brain iron values were extracted. Analysis of variance was used to examine group differences for each region of interest. For dimensional approaches, Pearson correlation analysis was performed across the cohort to examine the association of brain iron with symptoms, mental health, and cognition. RESULTS No significant differences were found in iron susceptibility between children with ADHD and control children, between children with persistent ADHD and those with remitted ADHD, or between medicated and medication-naïve children. An unexpected finding was that children with an internalizing disorder had significantly higher iron susceptibility, but the result did not survive multiple comparison correction. Higher brain iron was associated with sustained attention, but not inhibition, IQ, or working memory. CONCLUSIONS This is the first study to address brain iron susceptibility and its association with comorbidities and cognition in ADHD. Alterations in brain iron may not fully account for a diagnosis of ADHD but may be an indicator of internalizing problems in children. Alterations in brain iron content in children were linked to detrimental sustained attention and may represent developmental variation in cognition.
Collapse
Affiliation(s)
- Marcel Schulze
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - David Coghill
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Department of Mental Health, The Royal Children's Hospital, Parkville Victoria, Australia; Neurodevelopment and Disability Research, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tim Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Ran Q, Chen X, Li X, He L, Zhang K, Tang S. Application of eye and hand interventions in brain magnetic resonance imaging of young children. Heliyon 2024; 10:e35613. [PMID: 39170568 PMCID: PMC11336866 DOI: 10.1016/j.heliyon.2024.e35613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To explore the feasibility of eye and hand interventions in young children during brain magnetic resonance imaging (MRI). Methods A total of 414 4- to 6-year-old children who underwent brain MRI at our hospital were randomly divided into 4 groups: the routine posture group (n = 105), eye mask group (n = 102), fixed hand apron group (n = 108), and eye mask and fixed hand apron group (n = 99). All the children underwent brain MRI when they were awake (without using sedatives). The success rate of brain MRI and the quality of brain MR images were compared among the four groups. Results The success rate of brain MRI was the highest in the eye mask and fixed hand apron group (94.9 %), followed by the eye mask group (85.3 %) (P < 0.05). The brain MR image quality was the best for children wearing eye masks and fixed hand aprons (5 points, 69 patients), followed by those wearing eye masks (5 points, 53 patients) (P < 0.05). Conclusion When children undergo brain MRI, simultaneous eye and hand interventions can greatly improve the success rate of the examination and the quality of MR images. This study protocol was registered at the Chinese clinical trial registry (ChiCTR2100050248).
Collapse
Affiliation(s)
- Qiying Ran
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Xi Chen
- Department of Equipment Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiang Li
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Ling He
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Ke Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Shilong Tang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| |
Collapse
|
7
|
Liang W, Zhou B, Miao Z, Liu X, Liu S. Abnormality in Peripheral and Brain Iron Contents and the Relationship with Grey Matter Volumes in Major Depressive Disorder. Nutrients 2024; 16:2073. [PMID: 38999819 PMCID: PMC11243628 DOI: 10.3390/nu16132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Major depressive disorder (MDD) is a prevalent mental illness globally, yet its etiology remains largely elusive. Recent interest in the scientific community has focused on the correlation between the disruption of iron homeostasis and MDD. Prior studies have revealed anomalous levels of iron in both peripheral blood and the brain of MDD patients; however, these findings are not consistent. This study involved 95 MDD patients aged 18-35 and 66 sex- and age-matched healthy controls (HCs) who underwent 3D-T1 and quantitative susceptibility mapping (QSM) sequence scans to assess grey matter volume (GMV) and brain iron concentration, respectively. Plasma ferritin (pF) levels were measured in a subset of 49 MDD individuals and 41 HCs using the Enzyme-linked immunosorbent assay (ELISA), whose blood data were simultaneously collected. We hypothesize that morphological brain changes in MDD patients are related to abnormal regulation of iron levels in the brain and periphery. Multimodal canonical correlation analysis plus joint independent component analysis (MCCA+jICA) algorithm was mainly used to investigate the covariation patterns between the brain iron concentration and GMV. The results of "MCCA+jICA" showed that the QSM values in bilateral globus pallidus and caudate nucleus of MDD patients were lower than HCs. While in the bilateral thalamus and putamen, the QSM values in MDD patients were higher than in HCs. The GMV values of these brain regions showed a significant positive correlation with QSM. The GMV values of bilateral putamen were found to be increased in MDD patients compared with HCs. A small portion of the thalamus showed reduced GMV values in MDD patients compared to HCs. Furthermore, the region of interest (ROI)-based comparison results in the basal ganglia structures align with the outcomes obtained from the "MCCA+jICA" analysis. The ELISA results indicated that the levels of pF in MDD patients were higher than those in HCs. Correlation analysis revealed that the increase in pF was positively correlated with the iron content in the left thalamus. Finally, the covariation patterns obtained from "MCCA+jICA" analysis as classification features effectively differentiated MDD patients from HCs in the support vector machine (SVM) model. Our findings indicate that elevated peripheral ferritin in MDD patients may disrupt the normal metabolism of iron in the brain, leading to abnormal changes in brain iron levels and GMV.
Collapse
Affiliation(s)
- Wenjia Liang
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
| | - Bo Zhou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhongyan Miao
- Department of Radiology, Shandong Mental Health Center, Shandong University, Jinan 250014, Shandong, China
| | - Xi Liu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan 250014, Shandong, China
| | - Shuwei Liu
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
8
|
Du L, Ye F, Gao W, Yang A, Luan J, Xu M, Lv K, Hu P, Liu B, Yu H, Wang Y, Huang W, Shu N, Ouyang G, Yin Q, Shmuel A, Wang Y, Zhang Q, Xu P, Ma G. Decreased brain iron deposition based on quantitative susceptibility mapping correlates with reduced neurodevelopmental status in children with autism spectrum disorder. Cereb Cortex 2024; 34:63-71. [PMID: 38696609 DOI: 10.1093/cercor/bhae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 05/04/2024] Open
Abstract
To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.
Collapse
Affiliation(s)
- Lei Du
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian, Beijing 100142, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
- Department of Radiology, the Sixth Medical Center of People's Liberation Army (PLA) General Hospital, No. 6 Fucheng Road, Haidian, Beijing 100048, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Manxi Xu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Yuli Wang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Qian Yin
- School of Artificial Intelligence, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 45 Sherbrooke St W, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, McGill University, 45 Sherbrooke St W, Montreal, QC, Canada
| | - Yunfeng Wang
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Pengfei Xu
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| |
Collapse
|
9
|
Morandini HAE, Watson PA, Barbaro P, Rao P. Brain iron concentration in childhood ADHD: A systematic review of neuroimaging studies. J Psychiatr Res 2024; 173:200-209. [PMID: 38547742 DOI: 10.1016/j.jpsychires.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Iron deficiency may play a role in the pathophysiology of Attention Deficit/Hyperactivity Disorder (ADHD). Due to its preponderant function in monoamine catecholamine and myelin synthesis, brain iron concentration may be of primary interest in the investigation of iron dysregulation in ADHD. This study reviewed current evidence of brain iron abnormalities in children and adolescents with ADHD using magnetic resonance imaging methods, such as relaxometry and quantitative susceptibility mapping, to assess brain iron estimates. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature search was performed for studies published between January 1, 2008 and July 7, 2023 in Medline, Scopus and Proquest. Regions of interest, brain iron index values and phenotypical information were extracted from the relevant studies. Risk of bias was assessed using a modified version of the National Heart, Lung, and Blood Institute quality assessment tool. Seven cross-sectional studies comparing brain iron estimates in children with ADHD with neurotypical children were included. Significantly reduced brain iron content in medication-naïve children with ADHD was a consistent finding. Two studies found psychostimulant use may increase and normalize brain iron concentration in children with ADHD. The findings were consistent across the studies despite differing methodologies and may lay the early foundation for the recognition of a potential biomarker in ADHD, although longitudinal prospective neuroimaging studies using larger sample sizes are required. Lastly, the effects of iron supplementation on brain iron concentration in children with ADHD need to be elucidated.
Collapse
Affiliation(s)
- Hugo A E Morandini
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia.
| | - Prue A Watson
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Parma Barbaro
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Pradeep Rao
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia; Telethon Kids Institute, Perth, Australia
| |
Collapse
|
10
|
Silvestri R, Di Perri MC. Is iron depletion the only cause of motor restlessness in restless sleep presenting in autism spectrum disorder? J Clin Sleep Med 2024; 20:337-338. [PMID: 38174874 PMCID: PMC11019212 DOI: 10.5664/jcsm.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Affiliation(s)
- Rosalia Silvestri
- Sleep Medicine Center, UOSD of Neurophysiopathology and Movement Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Caterina Di Perri
- Sleep Medicine Center, UOSD of Neurophysiopathology and Movement Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Voci A, Mazzone L, De Stefano D, Valeriani M, Bruni O, Moavero R. Restless sleep disorder in a sample of children and adolescents with autism spectrum disorder: preliminary results from a case series. J Clin Sleep Med 2024; 20:427-432. [PMID: 37909101 PMCID: PMC11019215 DOI: 10.5664/jcsm.10902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
STUDY OBJECTIVES Sleep disorders are a frequent comorbidity among children with autism spectrum disorder (ASD). Among sleep-related issues of ASD, restless sleep is a common complaint. In recent years, restless sleep disorder (RSD) has been proposed as a new clinical entity, characterized by agitated sleep as its predominant manifestation. Despite the high prevalence of sleep disorders and data reporting restless sleep among ASD patients, to date no study has yet characterized RSD within patients with ASD. Therefore, the aim of our study was to assess the occurrence of RSD in a sample of children and adolescents with ASD through clinical and polysomnographic assessment. METHODS Children and adolescents with ASD ages 6-18 years were recruited for the study. Through parental interviews, patients with a suspected RSD were selected and offered diagnostic investigation by video-polysomnography and blood tests to assess martial balance. RESULTS Among the 129 participants included, 16 patients (12.4%) were found to have a suspected RSD. Only 6 (4.7%) underwent video-polysomnography due to lack of compliance or family refusal. In 6/6 participants examined, the disorder was confirmed by video-polysomnography movement analysis (total movement index ≥ 5 events/h) and ferritin values were found in the normal range. CONCLUSIONS RSD does not appear to be particularly frequent among patients with ASD and that of iron metabolism may not be the main factor implicated in the pathogenesis of RSD within this population. Additional evaluation is needed to confirm the result and further investigate the etiological mechanisms underlying the disorder. CITATION Voci A, Mazzone L, De Stefano D, Valeriani M, Bruni O, Moavero R. Restless sleep disorder in a sample of children and adolescents with autism spectrum disorder: preliminary results from a case series. J Clin Sleep Med. 2024;20(3):427-432.
Collapse
Affiliation(s)
- Alessandra Voci
- Child Neurology and Psychiatry Unit, Tor Vergata University of Rome, Italy
- Developmental Neurology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Luigi Mazzone
- Child Neurology and Psychiatry Unit, Tor Vergata University of Rome, Italy
| | - Donata De Stefano
- Developmental Neurology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Massimiliano Valeriani
- Developmental Neurology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Center for Sensory Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Rome, Italy
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Tor Vergata University of Rome, Italy
- Developmental Neurology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Wang M, Yang X, Liu D, Dang P, Huang X, Zheng J, Ding F, Ding X, Wang X. Altered brain iron deposition in patients with minimal hepatic encephalopathy: an MRI quantitative susceptibility mapping study. Clin Radiol 2024; 79:e369-e375. [PMID: 38071103 DOI: 10.1016/j.crad.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/08/2023] [Accepted: 11/06/2023] [Indexed: 02/15/2024]
Abstract
AIM To explore the use of quantitative susceptibility mapping (QSM) in assessing changes in brain iron deposits and their association with cognitive function in patients with minimal hepatic encephalopathy (MHE). MATERIALS AND METHODS The study cohort comprised 27 cases with hepatitis B-associated cirrhosis with MHE (MHE group), 25 with hepatitis B-associated cirrhosis without MHE (NMHE group), and 25 healthy controls (HC group). Iron deposits in the bilateral frontal white matter, caudate nucleus (CN), putamen, globus pallidus, thalamus, red nucleus, substantia nigra (SN), hippocampus, and dentate nucleus were measured by QSM. The associations between iron deposition with the time taken to complete number connection tests A (NCT-A) and the score on digital-symbol test (DST) were analysed. RESULTS Susceptibility values differed significantly in the bilateral CN, left thalamus, right SN, and left hippocampus in the MHE group compared with the other groups and were positively associated with the times taken to complete the NCT-A in the bilateral CN, left thalamus, and right SN and negatively associated with DST scores in the bilateral CN, left TH, and left HP. CONCLUSION Reduced cognitive function in MHE patients was significantly associated with abnormally increased iron deposition in certain brain areas. The quantification of brain iron deposition by QSM may thus be an objective and accurate means of evaluating MHE.
Collapse
Affiliation(s)
- M Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - D Liu
- Department of Traditional Chinese Medicine Orthopedics and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - P Dang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X Huang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - J Zheng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - F Ding
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X Ding
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
13
|
Domínguez D JF, Stewart A, Burmester A, Akhlaghi H, O'Brien K, Bollmann S, Caeyenberghs K. Improving quantitative susceptibility mapping for the identification of traumatic brain injury neurodegeneration at the individual level. Z Med Phys 2024:S0939-3889(24)00001-1. [PMID: 38336583 DOI: 10.1016/j.zemedi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Emerging evidence suggests that traumatic brain injury (TBI) is a major risk factor for developing neurodegenerative disease later in life. Quantitative susceptibility mapping (QSM) has been used by an increasing number of studies in investigations of pathophysiological changes in TBI. However, generating artefact-free quantitative susceptibility maps in brains with large focal lesions, as in the case of moderate-to-severe TBI (ms-TBI), is particularly challenging. To address this issue, we utilized a novel two-pass masking technique and reconstruction procedure (two-pass QSM) to generate quantitative susceptibility maps (QSMxT; Stewart et al., 2022, Magn Reson Med.) in combination with the recently developed virtual brain grafting (VBG) procedure for brain repair (Radwan et al., 2021, NeuroImage) to improve automated delineation of brain areas. We used QSMxT and VBG to generate personalised QSM profiles of individual patients with reference to a sample of healthy controls. METHODS Chronic ms-TBI patients (N = 8) and healthy controls (N = 12) underwent (multi-echo) GRE, and anatomical MRI (MPRAGE) on a 3T Siemens PRISMA scanner. We reconstructed the magnetic susceptibility maps using two-pass QSM from QSMxT. We then extracted values of magnetic susceptibility in grey matter (GM) regions (following brain repair via VBG) across the whole brain and determined if they deviate from a reference healthy control group [Z-score < -3.43 or > 3.43, relative to the control mean], with the aim of obtaining personalised QSM profiles. RESULTS Using two-pass QSM, we achieved susceptibility maps with a substantial increase in quality and reduction in artefacts irrespective of the presence of large focal lesions, compared to single-pass QSM. In addition, VBG minimised the loss of GM regions and exclusion of patients due to failures in the region delineation step. Our findings revealed deviations in magnetic susceptibility measures from the HC group that differed across individual TBI patients. These changes included both increases and decreases in magnetic susceptibility values in multiple GM regions across the brain. CONCLUSIONS We illustrate how to obtain magnetic susceptibility values at the individual level and to build personalised QSM profiles in ms-TBI patients. Our approach opens the door for QSM investigations in more severely injured patients. Such profiles are also critical to overcome the inherent heterogeneity of clinical populations, such as ms-TBI, and to characterize the underlying mechanisms of neurodegeneration at the individual level more precisely. Moreover, this new personalised QSM profiling could in the future assist clinicians in assessing recovery and formulating a neuroscience-guided integrative rehabilitation program tailored to individual TBI patients.
Collapse
Affiliation(s)
- Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Ashley Stewart
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Hamed Akhlaghi
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Emergency Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - Kieran O'Brien
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture, and Information Technology, The University of Queensland, Brisbane, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
14
|
Huang W, Liu Z, Li Z, Meng S, Huang Y, Gao M, Zhong N, Zeng S, Wang L, Zhao W. Identification of Immune Infiltration and Iron Metabolism-Related Subgroups in Autism Spectrum Disorder. J Mol Neurosci 2024; 74:12. [PMID: 38236354 DOI: 10.1007/s12031-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with a broad spectrum of symptoms and prognoses. Effective therapy requires understanding this variability. ASD children's cognitive and immunological development may depend on iron homoeostasis. This study employs a machine learning model that focuses on iron metabolism hub genes to identify ASD subgroups and describe immune infiltration patterns. A total of 97 control and 148 ASD samples were obtained from the GEO database. Differentially expressed genes (DEGs) and an iron metabolism gene collection achieved the intersection of 25 genes. Unsupervised cluster analysis determined molecular subgroups in individuals with ASD based on 25 genes related to iron metabolism. We assessed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene set variation analysis (GSVA), and immune infiltration analysis to compare iron metabolism subtype effects. We employed machine learning to identify subtype-predicting hub genes and utilized both training and validation sets to assess gene subtype prediction accuracy. ASD can be classified into two iron-metabolizing molecular clusters. Metabolic enrichment pathways differed between clusters. Immune infiltration showed that clusters differed immunologically. Cluster 2 had better immunological scores and more immune cells, indicating a stronger immune response. Machine learning screening identified SELENBP1 and CAND1 as important genes in ASD's iron metabolism signaling pathway. These genes express in the brain and have AUC values over 0.8, implying significant predictive power. The present study introduces iron metabolism signaling pathway indicators to predict ASD subtypes. ASD is linked to immune cell infiltration and iron metabolism disorders.
Collapse
Affiliation(s)
- Wenyan Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Zhenni Liu
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Ziling Li
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Si Meng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Yuhang Huang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Min Gao
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Ning Zhong
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Sujuan Zeng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Lijing Wang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
15
|
Ji L, Yoon YB, Hendrix CL, Kennelly EC, Majbri A, Bhatia T, Taylor A, Thomason ME. Developmental coupling of brain iron and intrinsic activity in infants during the first 150 days. Dev Cogn Neurosci 2023; 64:101326. [PMID: 37979299 PMCID: PMC10692666 DOI: 10.1016/j.dcn.2023.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
Brain iron is vital for core neurodevelopmental processes including myelination and neurotransmitter synthesis and, accordingly, iron accumulates in the brain with age. However, little is known about the association between brain iron and neural functioning and how they evolve with age in early infancy. This study investigated brain iron in 48 healthy infants (22 females) aged 64.00 ± 33.28 days by estimating R2 * relaxometry from multi-echo functional MRI (fMRI). Linked independent component analysis was performed to examine the association between iron deposition and spontaneous neural activity, as measured by the amplitude of low frequency fluctuations (ALFF) by interrogating shared component loadings across modalities. Further, findings were validated in an independent dataset (n = 45, 24 females, 77.93 ± 26.18 days). The analysis revealed developmental coupling between the global R2 * and ALFF within the default mode network (DMN). Furthermore, we observed that this coupling effect significantly increased with age (r = 0.78, p = 9.2e-11). Our results highlight the importance of iron-neural coupling during early development and suggest that the neural maturation of the DMN may correspond to growth in distributed brain iron.
Collapse
Affiliation(s)
- Lanxin Ji
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Youngwoo Bryan Yoon
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Cassandra L Hendrix
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | - Amyn Majbri
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Tanya Bhatia
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Alexis Taylor
- Department of Psychology, Wayne State University, USA
| | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA; Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Xu G, Chen X, Zhang Y. Quantitative susceptibility mapping shows lower brain iron content in children with childhood epilepsy with centrotemporal spikes. Jpn J Radiol 2023; 41:1344-1350. [PMID: 37418180 DOI: 10.1007/s11604-023-01464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE The dysregulation of brain iron homeostasis is closely relevant to a multitude of chronic neurological disorders. This study employed quantitative susceptibility mapping (QSM) to detect and compare whole-brain iron content between childhood epilepsy with centrotemporal spikes (CECTS) children and typically developing children. MATERIALS AND METHODS 32 children with CECTS and 25 age- and gender-matched healthy children were enrolled. All participants were imaged with 3.0-T MRI to acquire the structural and susceptibility-weighted data. The susceptibility-weighted data were processed using STISuite toolbox to obtain QSM. The magnetic susceptibility difference between the two groups was compared using voxel-wise and region of interest methods. Multivariable linear regression, controlling for age, were employed to investigate the associations between the brain magnetic susceptibility and age at onset. RESULTS Lower magnetic susceptibility was mainly observed in sensory- and motor-related brain regions in children with CECTS, including bilateral middle frontal gyrus, supplementary motor area, midcingulate cortex, paracentral lobule and precentral gyrus, the magnetic susceptibility of right paracentral lobule, right precuneus and left supplementary motor area were found to have positive correlation with the age at onset. CONCLUSIONS This study suggests that the potential iron deficiency in certain brain regions is associated with CECTS, which might be helpful for further illumination of potential pathogenesis mechanism of CECTS.
Collapse
Affiliation(s)
- Gaoqiang Xu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China.
| | - Xiaoxi Chen
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China
| | - Yao Zhang
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, China
| |
Collapse
|
17
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
18
|
Harada T, Kudo K, Fujima N, Yoshikawa M, Ikebe Y, Sato R, Shirai T, Bito Y, Uwano I, Miyata M. Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. Radiographics 2022; 42:1161-1176. [PMID: 35522577 DOI: 10.1148/rg.210054] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quantitative susceptibility mapping (QSM), one of the advanced MRI techniques for evaluating magnetic susceptibility, offers precise quantitative measurements of spatial distributions of magnetic susceptibility. Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and is a substance-specific value. Recently, QSM has been widely used to estimate various levels of substances in the brain, including iron, hemosiderin, and deoxyhemoglobin (paramagnetism), as well as calcification (diamagnetism). By visualizing iron distribution in the brain, it is possible to identify anatomic structures that are not evident on conventional images and to evaluate various neurodegenerative diseases. It has been challenging to apply QSM in areas outside the brain because of motion artifacts from respiration and heartbeats, as well as the presence of fat, which has a different frequency to the proton. In this review, the authors provide a brief overview of the theoretical background and analyze methods of converting MRI phase images to QSM. Moreover, we provide an overview of the current clinical applications of QSM. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Taisuke Harada
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Kohsuke Kudo
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Noriyuki Fujima
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Masato Yoshikawa
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Yohei Ikebe
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Ryota Sato
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Toru Shirai
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Yoshitaka Bito
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Ikuko Uwano
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Mari Miyata
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| |
Collapse
|
19
|
Brain Iron and Mental Health Symptoms in Youth with and without Prenatal Alcohol Exposure. Nutrients 2022; 14:nu14112213. [PMID: 35684012 PMCID: PMC9183007 DOI: 10.3390/nu14112213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Prenatal alcohol exposure (PAE) negatively affects brain development and increases the risk of poor mental health. We investigated if brain volumes or magnetic susceptibility, an indirect measure of brain iron, were associated with internalizing or externalizing symptoms in youth with and without PAE. T1-weighted and quantitative susceptibility mapping (QSM) MRI scans were collected for 19 PAE and 40 unexposed participants aged 7.5–15 years. Magnetic susceptibility and volume of basal ganglia and limbic structures were extracted using FreeSurfer. Internalizing and Externalizing Problems were assessed using the Behavioural Assessment System for Children (BASC-2-PRS). Susceptibility in the nucleus accumbens was negatively associated with Internalizing Problems, while amygdala susceptibility was positively associated with Internalizing Problems across groups. PAE moderated the relationship between thalamus susceptibility and internalizing symptoms as well as the relationship between putamen susceptibility and externalizing symptoms. Brain volume was not related to internalizing or externalizing symptoms. These findings highlight that brain iron is related to internalizing and externalizing symptoms differently in some brain regions for youth with and without PAE. Atypical iron levels (high or low) may indicate mental health issues across individuals, and iron in the thalamus may be particularly important for behavior in individuals with PAE.
Collapse
|
20
|
Tang S, Nie L, Liu X, Chen Z, Zhou Y, Pan Z, He L. Application of Quantitative Magnetic Resonance Imaging in the Diagnosis of Autism in Children. Front Med (Lausanne) 2022; 9:818404. [PMID: 35646984 PMCID: PMC9133426 DOI: 10.3389/fmed.2022.818404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the application of quantitative magnetic resonance imaging in the diagnosis of autism in children. Methods Sixty autistic children aged 2–3 years and 60 age- and sex-matched healthy children participated in the study. All the children were scanned using head MRI conventional sequences, 3D-T1, diffusion kurtosis imaging (DKI), enhanced T2*- weighted magnetic resonance angiography (ESWAN) and 3D-pseudo continuous Arterial Spin-Labeled (3D-pcASL) sequences. The quantitative susceptibility mapping (QSM), cerebral blood flow (CBF), and brain microstructure of each brain area were compared between the groups, and correlations were analyzed. Results The iron content and cerebral blood flow in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, substantia nigra, and red nucleus of the study group were lower than those in the corresponding brain areas of the control group (P < 0.05). The mean kurtosis (MK), radial kurtosis (RK), and axial kurtosis (AK) values of the frontal lobe, temporal lobe, putamen, hippocampus, caudate nucleus, substantia nigra, and red nucleus in the study group were lower than those of the corresponding brain areas in the control group (P < 0.05). The mean diffusivity (MD) and fractional anisotropy of kurtosis (FAK) values of the frontal lobe, temporal lobe and hippocampus in the control group were lower than those in the corresponding brain areas in the study group (P < 0.05). The values of CBF, QSM, and DKI in frontal lobe, temporal lobe and hippocampus could distinguish ASD children (AUC > 0.5, P < 0.05), among which multimodal technology (QSM, CBF, DKI) had the highest AUC (0.917) and DKI had the lowest AUC (0.642). Conclusion Quantitative magnetic resonance imaging (including QSM, 3D-pcASL, and DKI) can detect abnormalities in the iron content, cerebral blood flow and brain microstructure in young autistic children, multimodal technology (QSM, CBF, DKI) could be considered as the first choice of imaging diagnostic technology. Clinical Trial Registration [http://www.chictr.org.cn/searchprojen.aspx], identifier [ChiCTR2000029699].
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Xianfan Liu
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhuo Chen
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yu Zhou
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhengxia Pan
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- *Correspondence: Zhengxia Pan,
| | - Ling He
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Ling He,
| |
Collapse
|
21
|
Shayganfard M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol Trace Elem Res 2022; 200:1032-1059. [PMID: 33904124 DOI: 10.1007/s12011-021-02733-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
The emergence of mental disorders is associated with several risk factors including genetic and environmental susceptibility. A group of nutrients serves an especially important role in a number of essential neurodevelopmental processes through brain areas promoting the high degree of brain metabolism during early life, although almost all nutrients are needed. These include macronutrients and micronutrients (e.g., iron, magnesium, zinc, copper, selenium). Numerous nutritional psychiatry trials have been performed to examine the correlation of many individual nutrients with mental health, such as essential trace elements. The increased accumulation or lack of such components will facilitate an alternative metabolic pathway that can lead to many diseases and conditions of neurodevelopment. Mental functions have biochemical bases, so the impairment of such neurochemical mechanisms due to lack of trace elements can have mental effects. In psychological conditions such as depression, anxiety, schizophrenia, and autism, scientific studies demonstrate the putative role of trace element deficiency. Therefore, given the critical roles played by essential trace elements in the neurodevelopment and mental health, the effect of these elements' intake on the modulation of psychological functioning is reviewed.
Collapse
Affiliation(s)
- Mehran Shayganfard
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
22
|
Tang S, Zhang G, Ran Q, Nie L, Liu X, Pan Z, He L. Quantitative susceptibility mapping shows lower brain iron content in children with attention-deficit hyperactivity disorder. Hum Brain Mapp 2022; 43:2495-2502. [PMID: 35107194 PMCID: PMC9057088 DOI: 10.1002/hbm.25798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022] Open
Abstract
To investigate the feasibility of quantitative susceptibility mapping in children with attention‐deficit hyperactivity disorder (ADHD), 53 children with ADHD aged 5–16 years were prospectively selected as the study group and 49 healthy children matched with age and gender were selected as the control group. All children underwent magnetic resonance imaging conventional sequence, 3D‐T1, and enhanced T2*‐weighted magnetic resonance angiography (ESWAN) sequence scanning. The iron content of brain regions was obtained through software postprocessing, and the iron content of brain regions of children with ADHD and healthy children was compared and analyzed to find out the characteristics of the iron content of brain regions of children with ADHD. The iron content in frontal lobe, globus pallidus, caudate nucleus, substantia nigra, putamen, and hippocampus of children with ADHD was lower than that of healthy children (p < .05). There was no significant difference in the content of iron in the left and right brain regions of children with ADHD (p > .05). The volume of frontal lobe and hippocampus of children with ADHD was lower than that of healthy children (p < .05). Iron content in brain areas such as globus pallidus, caudate nucleus, hippocampus, and putamen could distinguish children with ADHD (Area under curve [AUC] > 0.5, p < .05). Quantitative susceptibility mapping showed decreased iron content in some brain regions of children with ADHD.
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| | - Guanping Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| | - Qiying Ran
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Xianfan Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| | - Zhengxia Pan
- Department of Cardiovascular and Thoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| |
Collapse
|
23
|
Tang S, Liu X, Nie L, Chen Z, Ran Q, He L. Diagnosis of children with attention-deficit/hyperactivity disorder (ADHD) comorbid autistic traits (ATs) by applying quantitative magnetic resonance imaging techniques. Front Psychiatry 2022; 13:1038471. [PMID: 36465303 PMCID: PMC9712964 DOI: 10.3389/fpsyt.2022.1038471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To explore the feasibility of applying quantitative magnetic resonance imaging techniques for the diagnosis of children with attention-deficit/hyperactivity disorder (ADHD) comorbid autistic traits (ATs). METHODS A prospective study was performed by selecting 56 children aged 4-5 years with ADHD-ATs as the study group and 53 sex- and age-matched children with ADHD without ATs as the control group. All children underwent magnetic resonance scans with enhanced T2*- weighted magnetic resonance angiography (ESWAN), 3D-PCASL, and 3D-T1 sequences. Iron content and cerebral blood flow parameters were obtained via subsequent software processing, and the parameter values in particular brain regions in both groups were compared and analyzed to determine the characteristics of these parameters in children with ADHD-ATs. RESULTS Iron content and cerebral blood flow in the frontal lobe, temporal lobe, hippocampus, and caudate nucleus of children with ADHD-ATs were lower than those of children with ADHD without ATs (p < 0.05). Iron content and CBF values in the frontal lobe, temporal lobe and caudate nucleus could distinguish children with ADHD-ATs from those without ATs (AUC > 0.5, p < 0.05). CONCLUSIONS Quantitative magnetic resonance techniques could distinguish children with ADHD-ATs. TRIAL REGISTRATION This study protocol was registered at the Chinese clinical trial registry (ChiCTR2100046616).
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xianfan Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Zhuo Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiying Ran
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
24
|
Raab P, Ropele S, Bültmann E, Salcher R, Lanfermann H, Wattjes MP. Analysis of deep grey nuclei susceptibility in early childhood: a quantitative susceptibility mapping and R2* study at 3 Tesla. Neuroradiology 2021; 64:1021-1031. [PMID: 34787698 PMCID: PMC9005446 DOI: 10.1007/s00234-021-02846-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/24/2021] [Indexed: 11/18/2022]
Abstract
Purpose Aging is the most significant determinant for brain iron accumulation in the deep grey matter. Data on brain iron evolution during brain maturation in early childhood are limited. The purpose of this study was to investigate age-related iron deposition in the deep grey matter in children using quantitative susceptibility (QSM) and R2* mapping. Methods We evaluated brain MRI scans of 74 children (age 6–154 months, mean 40 months). A multi-echo gradient-echo sequence obtained at 3 Tesla was used for the QSM and R2* calculation. Susceptibility of the pallidum, head of caudate nucleus, and putamen was correlated with age and compared between sexes. Results Susceptibility changes in all three nuclei correlated with age (correlation coefficients for QSM/R2*: globus pallidus 0.955/0.882, caudate nucleus 0.76/0.65, and putamen 0.643/0.611). During the first 2 years, the R2* values increased more rapidly than the QSM values, indicating a combined effect of iron deposition and myelination, followed by a likely dominating effect of iron deposition. There was no significant gender difference. Conclusion QSM and R2* can monitor myelin maturation processes and iron accumulation in the deep grey nuclei of the brain in early life and may be a promising tool for the detection of deviations of this normal process. Susceptibility in the deep nuclei is almost similar early after birth and increases more quickly in the pallidum. The combined use of QSM and R2* analysis is beneficial.
Collapse
Affiliation(s)
- Peter Raab
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Stefan Ropele
- Clinical Department of Neurology, Medical University of Graz, Graz, Austria
| | - Eva Bültmann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rolf Salcher
- Clinic for Laryngology, Rhinology and Otology, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
25
|
Guo X, Wang J, Wang X, Liu W, Yu H, Xu L, Li H, Wu J, Dong M, Tan W, Chen W, Yang Y, Chen Y. Diagnosing autism spectrum disorder in children using conventional MRI and apparent diffusion coefficient based deep learning algorithms. Eur Radiol 2021; 32:761-770. [PMID: 34482428 DOI: 10.1007/s00330-021-08239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion coefficient (ADC) images. METHODS A total of 151 ASD children and 151 age-matched typically developing (TD) controls were included in this study. The data from these subjects were assigned to training and validation datasets. An additional 20 ASD children and 25 TD controls were acquired, whose data were utilized in an independent test set. All subjects underwent cMRI and diffusion-weighted imaging examination of the brain. We developed a series of DL models to separate ASD from TD based on the cMRI and ADC data. The seven models used include five single-sequence models (SSMs), one dominant-sequence model (DSM), and one all-sequence model (ASM). To enhance the feature detection of the models, we embed an attention mechanism module. RESULTS The highest AUC (0.824 ~ 0.850) was achieved when applying the SSM based on either FLAIR or ADC to the validation and independent test sets. A DSM using the combination of FLAIR and ADC showed an improved AUC in the validation (0.873) and independent test sets (0.876). The ASM also showed better diagnostic value in the validation (AUC = 0.838) and independent test sets (AUC = 0.836) compared to the SSMs. Among the models with attention mechanism, the DSM achieved the highest diagnostic performance with an AUC, accuracy, sensitivity, and specificity of 0.898, 84.4%, 85.0%, and 84.0% respectively. CONCLUSIONS This study established the potential of DL models to distinguish ASD cases from TD controls based on cMRI and ADC images. KEY POINTS • Deep learning models based on conventional MRI and ADC can be used to diagnose ASD. • The model (DSM) based on the FLAIR and ADC sequence achieved the best diagnostic performance with an AUC of 0.836 in the independent test sets. • The attention mechanism further improved the diagnostic performance of the models.
Collapse
Affiliation(s)
- Xiang Guo
- Department of Radiology, the Affiliated Hospital of Jining Medical University, Jining, China
| | - Jiehuan Wang
- Department of Radiology, the Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiaoqiang Wang
- Department of Radiology, the Affiliated Hospital of Jining Medical University, Jining, China
| | - Wenjing Liu
- Children Rehabilitation Center, the Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Yu
- Department of Radiology, the Affiliated Hospital of Jining Medical University, Jining, China
| | - Li Xu
- Department of Radiology, the Affiliated Hospital of Jining Medical University, Jining, China
| | - Hengyan Li
- Department of Radiology, the Affiliated Hospital of Jining Medical University, Jining, China
| | | | | | | | - Weijian Chen
- Department of Medical Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunjun Yang
- Department of Medical Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yueqin Chen
- Department of Radiology, the Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
26
|
Treit S, Naji N, Seres P, Rickard J, Stolz E, Wilman AH, Beaulieu C. R2* and quantitative susceptibility mapping in deep gray matter of 498 healthy controls from 5 to 90 years. Hum Brain Mapp 2021; 42:4597-4610. [PMID: 34184808 PMCID: PMC8410539 DOI: 10.1002/hbm.25569] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Putative MRI markers of iron in deep gray matter have demonstrated age related changes during discrete periods of healthy childhood or adulthood, but few studies have included subjects across the lifespan. This study reports both transverse relaxation rate (R2*) and quantitative susceptibility mapping (QSM) of four primary deep gray matter regions (thalamus, putamen, caudate, and globus pallidus) in 498 healthy individuals aged 5–90 years. In the caudate, putamen, and globus pallidus, increases of QSM and R2* were steepest during childhood continuing gradually throughout adulthood, except caudate susceptibility which reached a plateau in the late 30s. The thalamus had a unique profile with steeper changes of R2* (reflecting additive effects of myelin and iron) than QSM during childhood, both reaching a plateau in the mid‐30s to early 40s and decreasing thereafter. There were no hemispheric or sex differences for any region. Notably, both R2* and QSM values showed more inter‐subject variability with increasing age from 5 to 90 years, potentially reflecting a common starting point in iron/myelination during childhood that diverges as a result of lifestyle and genetic factors that accumulate with age.
Collapse
Affiliation(s)
- Sarah Treit
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nashwan Naji
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Rickard
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Stolz
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|