1
|
Zhou Q, Ke X, Man J, Jiang J, Ren J, Xue C, Zhang B, Zhang P, Zhao J, Zhou J. Integrated MRI radiomics, tumor microenvironment, and clinical risk factors for improving survival prediction in patients with glioblastomas. Strahlenther Onkol 2025; 201:398-410. [PMID: 39249499 DOI: 10.1007/s00066-024-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/14/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE To construct a comprehensive model for predicting the prognosis of patients with glioblastoma (GB) using a radiomics method and integrating clinical risk factors, tumor microenvironment (TME), and imaging characteristics. MATERIALS AND METHODS In this retrospective study, we included 148 patients (85 males and 63 females; median age 53 years) with isocitrate dehydrogenase-wildtype GB between January 2016 and April 2022. Patients were randomly divided into the training (n = 104) and test (n = 44) sets. The best feature combination related to GB overall survival (OS) was selected using LASSO Cox regression analyses. Clinical, radiomics, clinical-radiomics, clinical-TME, and clinical-radiomics-TME models were established. The models' concordance index (C-index) was evaluated. The survival curve was drawn using the Kaplan-Meier method, and the prognostic stratification ability of the model was tested. RESULTS LASSO Cox analyses were used to screen the factors related to OS in patients with GB, including MGMT (hazard ratio [HR] = 0.642; 95% CI 0.414-0.997; P = 0.046), TERT (HR = 1.755; 95% CI 1.095-2.813; P = 0.019), peritumoral edema (HR = 1.013; 95% CI 0.999-1.027; P = 0.049), tumor purity (TP; HR = 0.982; 95% CI 0.964-1.000; P = 0.054), CD163 + tumor-associated macrophages (TAMs; HR = 1.049; 95% CI 1.021-1.078; P < 0.001), CD68 + TAMs (HR = 1.055; 95% CI 1.018-1.093; P = 0.004), and the six radiomics features. The clinical-radiomics-TME model had the best survival prediction ability, the C‑index was 0.768 (0.717-0.819). The AUC of 1‑, 2‑, and 3‑year OS prediction in the test set was 0.842, 0.844, and 0.795, respectively. CONCLUSION The clinical-radiomics-TME model is the most effective for predicting the survival of patients with GB. Radiomics features, TP, and TAMs play important roles in the prognostic model.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Jiangwei Man
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Department of Surgical, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jian Jiang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Peng Zhang
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jun Zhao
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
- Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China.
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, 730030, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Li X, Song L, Zhang H, Ji X, Song P, Liu J, An P. Predicting postoperative recurrence and survival in glioma patients using enhanced MRI-based delta habitat radiomics: an 8-year retrospective pilot study. World J Surg Oncol 2025; 23:104. [PMID: 40155892 PMCID: PMC11951543 DOI: 10.1186/s12957-025-03760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
OBJECTIVE This study aimed to develop predictive models for postoperative recurrence and overall survival in patients with brain glioma (BG) by integrating preoperative contrast-enhanced MRI-derived delta habitat radiomics features with clinical characteristics. METHODS In this retrospective study, preoperative contrast-enhanced MRI data and clinical records of 187 BG patients were analyzed. Patients were stratified into non-recurrence (n = 100) and recurrence (n = 87) cohorts based on postoperative outcomes. The dataset was randomly divided into training and test sets (7:3 ratio). Delta habitat radiomic features were extracted from intratumoral and peritumoral edema regions. A radiomic score (Radscore) was generated via LASSO regression with ten-fold cross-validation in the training cohort. Clinical variables (gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns) and radiomic features were compared between groups using χ² or Student's t-tests. Multivariate logistic regression models incorporating significant predictors were developed. Model performance was evaluated using AUC comparisons (DeLong test), decision curve analysis (clinical utility), and validated via XGBoost machine learning. Nomograms were constructed to visualize recurrence and survival predictions. RESULTS The training cohort revealed significant intergroup differences in gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns, and delta habitat radiomic scores (Radscore1/2, p < 0.05). The combined model (clinical + radiomic features) demonstrated superior predictive performance for recurrence [AUC 0.921 (95% CI 0.861-0.961), OR 0.023, sensitivity: 87.18%, specificity: 82.03%] compared to clinical-only [AUC 0.802 (0.745-0.833), OR 0.036] and radiomic-only [AUC 0.843 (0.769-0.900), OR 0.034] models (p < 0.05, DeLong test). Decision curve analysis confirmed greater clinical net benefit for the combined model. These findings were replicated in the test cohort. The survival nomogram incorporated IDH1 mutation status, gender, and Radscore1/2, with Kaplan-Meier analysis verifying their prognostic significance (p < 0.01). CONCLUSION Delta habitat radiomics derived from preoperative contrast-enhanced MRI may enhance the accuracy of postoperative recurrence and survival predictions in BG patients. The validated nomograms provide actionable tools for optimizing postoperative surveillance and personalized clinical decision-making.
Collapse
Affiliation(s)
- Xiumei Li
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China
| | - Lina Song
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China
| | - Haidong Zhang
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Xianqun Ji
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China
| | - Ping Song
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Junjie Liu
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China.
| | - Peng An
- Department of Oncology, Surgery and Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
- Department of Internal Medicine, Pathology and Epidemiology, Xiangyang Key Laboratory of Maternal-Fetal Medicine on Fetal Congenital Heart Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R.C, Xiangyang, Hubei Province, 441000, China.
| |
Collapse
|
3
|
Pignotti F, Ius T, Russo R, Bagatto D, Beghella Bartoli F, Boccia E, Boldrini L, Chiesa S, Ciardi C, Cusumano D, Giordano C, La Rocca G, Mazzarella C, Mazzucchi E, Olivi A, Skrap M, Tran HE, Varcasia G, Gaudino S, Sabatino G. Development and validation of a MRI-radiomics-based machine learning approach in High Grade Glioma to detect early recurrence. Front Oncol 2024; 14:1449235. [PMID: 39610930 PMCID: PMC11602423 DOI: 10.3389/fonc.2024.1449235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 11/30/2024] Open
Abstract
Purpose Patients diagnosed with High Grade Gliomas (HGG) generally tend to have a relatively negative prognosis with a high risk of early tumor recurrence (TR) after post-operative radio-chemotherapy. The assessment of the pre-operative risk of early versus delayed TR can be crucial to develop a personalized surgical approach. The purpose of this article is to predict TR using MRI radiomic analysis. Methods Data were retrospectively collected from a database. A total of 248 patients were included based on the availability of 6-month TR results: 188 were used to train the model, the others to externally validate it. After manual segmentation of the tumor, Radiomic features were extracted and different machine learning models were implemented considering a combination of T1 and T2 weighted MR sequences. Receiver Operating Characteristic (ROC) curve was calculated with relative model performance metrics (accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV)) at the best threshold based on the Youden Index. Results Models performance were evaluated based on test set results. The best model resulted to be the XGBoost, with an area under ROC curve of 0.72 (95% CI: 0.56 - 0.87). At the best threshold, the model exhibits 0.75 (95% CI: 0.63 - 0.75) as accuracy, 0.62 (95% CI: 0.38 - 0.83) as sensitivity 0.80 (95% CI: 0.66 - 0.89 as specificity, 0.53 (95% CI: 0.31 - 0.73) as PPV, 0.88 (95% CI: 0.72 - 0.94) as NPV. Conclusion MRI radiomic analysis represents a powerful tool to predict late HGG recurrence, which can be useful to plan personalized surgical treatments and to offer pertinent patient pre-operative counseling.
Collapse
Affiliation(s)
- Fabrizio Pignotti
- Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Rosellina Russo
- Advanced Radiodiagnostics Centre, Unità Operativa Semplice Dipartimentale (UOSD) Neuroradiology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Daniele Bagatto
- Department of Neuroradiology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC) “Santa Maria Della Misericordia”, Udine, Italy
| | - Francesco Beghella Bartoli
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Edda Boccia
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Luca Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Silvia Chiesa
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Chiara Ciardi
- Department of Neuroradiology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC) “Santa Maria Della Misericordia”, Udine, Italy
| | | | - Carolina Giordano
- Advanced Radiodiagnostics Centre, Unità Operativa Semplice Dipartimentale (UOSD) Neuroradiology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Ciro Mazzarella
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Edoardo Mazzucchi
- Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Miran Skrap
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Houng Elena Tran
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Giuseppe Varcasia
- Advanced Radiodiagnostics Centre, Unità Operativa Semplice Dipartimentale (UOSD) Neuroradiology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Simona Gaudino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
- Advanced Radiodiagnostics Centre, Unità Operativa Semplice Dipartimentale (UOSD) Neuroradiology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Giovanni Sabatino
- Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| |
Collapse
|
4
|
Zhang M, Li X, Yang Y, Wang X, Li S, Yue Q, Wei Q, Hong J. The prognostic value and biological significance of MRI CE-T1-based radiomics models in CNS5-identified GBM: a multi-center study. Sci Rep 2024; 14:27551. [PMID: 39528608 PMCID: PMC11554799 DOI: 10.1038/s41598-024-78705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Following the publication of the 2021 WHO Classification of Central Nervous System Tumors (CNS5), Following the publication of the 2021 WHO Classification of Central Nervous System Tumors (CNS5), prognostic markers of glioblastoma (GBM) need to be further explored. Radiomics is a non-invasive and reproducible method for the prognostic assessment of multiple solid tumors. This study aimed to explore the prognostic value and biological significance of MRI T1-weighted enhancement (CE-T1) based radiomics in GBM (CNS5). A six-features radiomics prognostic model was created to calculate the radiomics score (RS). High RS (HR = 3.718, 95%CI: 2.222 - 6.220, P < 0.001) was an independent risk factor for overall survival (OS). The correlation between RS and OS was externally verified based on the First Affiliated Hospital of Fujian Medical University cohorts (n = 93; HR = 2.015, 95% CI: 1.079 - 3.762, P = 0.028) and the Second Affiliated Hospital of Zhejiang University School of Medicine cohorts (n = 126; HR = 1.779, 95% CI: 1.023 - 3.091, P = 0.041). Through biological significance exploration, RS was found to be significantly correlated with DNA repair (P = 0.009) and glycolysis (P = 0.001) pathway enrichment scores. RS was associated with γδT cell infiltration and the expression of LAG3. The MRI CE-T1 based radiomics models can predict GBM (CNS5) prognosis noninvasively. RS is relevant to DNA repair, and may guide the screening of radiosensitive populations.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoxia Li
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Yang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shan Li
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Qiuyuan Yue
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, Fujian, China.
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Wisnu Wardhana DP, Maliawan S, Mahadewa TGB, Rosyidi RM, Wiranata S. Radiomic Features as Artificial Intelligence Prognostic Models in Glioblastoma: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2024; 14:2354. [PMID: 39518322 PMCID: PMC11545697 DOI: 10.3390/diagnostics14212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Glioblastoma, the predominant primary tumor among all central nervous systems, accounts for around 80% of cases. Prognosis in neuro-oncology involves assessing the disease's progression in different individuals, considering the time between the initial pathological diagnosis and the time until the disease worsens. A noninvasive therapeutic approach called radiomic features (RFs), which involves the application of artificial intelligence in MRI, has been developed to address this issue. This study aims to systematically gather evidence and evaluate the prognosis significance of radiomics in glioblastoma using RFs. METHODS We conducted an extensive search across the PubMed, ScienceDirect, EMBASE, Web of Science, and Cochrane databases to identify relevant original studies examining the use of RFs to evaluate the prognosis of patients with glioblastoma. This thorough search was completed on 25 July 2024. Our search terms included glioblastoma, MRI, magnetic resonance imaging, radiomics, and survival or prognosis. We included only English-language studies involving human subjects, excluding case reports, case series, and review studies. The studies were classified into two quality categories: those rated 4-6 were considered moderate-, whereas those rated 7-9 were high-quality using the Newcastle-Ottawa Scale (NOS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) for OS and PFS were combined using random effects models. RESULTS In total, 253 studies were found in the initial search across the five databases. After screening the articles, 40 were excluded due to not meeting the eligibility criteria, and we included only 14 studies. All twelve OS and eight PFS trials were considered, involving 1.639 and 747 patients, respectively. The random effects model was used to calculate the pooled HRs for OS and PFS. The HR for OS was 3.59 (95% confidence interval [CI], 1.80-7.17), while the HR for PFS was 4.20 (95% CI, 1.02-17.32). CONCLUSIONS An RF-AI-based approach offers prognostic significance for OS and PFS in patients with glioblastoma.
Collapse
Affiliation(s)
- Dewa Putu Wisnu Wardhana
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Udayana University Hospital, Denpasar 80361, Indonesia
| | - Sri Maliawan
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Prof. Dr. IGNG Ngoerah General Hospital, Denpasar 80113, Indonesia
| | - Tjokorda Gde Bagus Mahadewa
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Prof. Dr. IGNG Ngoerah General Hospital, Denpasar 80113, Indonesia
| | - Rohadi Muhammad Rosyidi
- Department of Neurosurgery, Medical Faculty of Mataram University, West Nusa Tenggara General Hospital, Mataram 84371, Indonesia
| | - Sinta Wiranata
- Faculty of Medicine, Universitas Udayana, Denpasar 80232, Indonesia
| |
Collapse
|
6
|
Librizzi G, Lombardi G, Bertoldo A, Manara R. Perioperative imaging predictors of tumor progression and pseudoprogression: A systematic review. Crit Rev Oncol Hematol 2024; 202:104445. [PMID: 38992848 DOI: 10.1016/j.critrevonc.2024.104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024] Open
Abstract
In high-grade gliomas, pseudoprogression after radiation treatment might dramatically impact patient's management. We searched for perioperative imaging predictors of pseudoprogression in high-grade gliomas according to PRISMA guidelines, using MEDLINE/Pubmed and Embase (until January 2024). Study design, sample size, setting, diagnostic gold standard, imaging modalities and contrasts, and differences among variables or measures of diagnostic accuracy were recorded. Study quality was assessed through the QUADAS-2 tool. Twelve studies (11 with MRI, one with PET; 1058 patients) were reviewed. Most studies used a retrospective design (9/12), and structural MRI (7/12). Studies were heterogeneous in metrics and diagnostic reference standards; patient selection bias was a frequent concern. Pseudoprogression and progression showed some significant group differences in perioperative imaging metrics, although often with substantial overlap. Radiomics showed moderate accuracy but requires further validation. Current literature is scarce and limited by methodological concerns, highlighting the need of new predictors and multiparametric approaches.
Collapse
Affiliation(s)
- Giovanni Librizzi
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; Neuroradiology Unit, Padova University Hospital, Padova, Italy.
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Alessandra Bertoldo
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; Department of Information Engineering, University of Padova, Padova, Italy.
| | - Renzo Manara
- Neuroradiology Unit, Padova University Hospital, Padova, Italy; DIMED, University of Padova, Padova, Italy.
| |
Collapse
|
7
|
Luan J, Zhang D, Liu B, Yang A, Lv K, Hu P, Yu H, Shmuel A, Zhang C, Ma G. Exploring the prognostic value and biological pathways of transcriptomics and radiomics patterns in glioblastoma multiforme. Heliyon 2024; 10:e33760. [PMID: 39071633 PMCID: PMC11283067 DOI: 10.1016/j.heliyon.2024.e33760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES To develop a multi-omics prognostic model integrating transcriptomics and radiomics for predicting overall survival in patients with glioblastoma multiforme (GBM), and investigate the biological pathways of radiomics patterns. MATERIALS AND METHODS Transcription profiles of GBM patients and normal controls were used to obtain differentially expressed mRNAs and long non-coding RNAs (lncRNAs). Radiomics features were extracted from magnetic resonance imaging (MRI). Least absolute shrinkage and selection operator (LASSO) Cox regression was employed to select survival-associated features for the construction of transcriptomics and radiomics signatures. Genes associated with GBM prognosis were identified through the analysis of lncRNA-mRNA co-expression networks and Weighted Gene Co-expression Network Analysis (WGCNA), and their biological pathways were investigated using Genomes enrichment analysis. Transcriptomics, radiomics, and clinical data were integrated to evaluate the multi-omics prognostic model's performance. RESULTS LASSO Cox regression yielded 21 survival-related features, including 19 transcriptomics features and 2 radiomics features. Based on transcriptomics and radiomics signature, GBM patients were classified as high-risk or low-risk. The genes obtained from the co-expression network screen were associated with microtubule binding, while those from the WGCNA screen were associated with growth factor receptor binding. In the training set, the AUC values for the multi-omics model and clinical model were 0.964 and 0.830, respectively, while in the validation set, they were 0.907 and 0.787. The multi-omics prognostic model outperformed the clinical prognostic model. CONCLUSIONS The co-expression network and WGCNA methods revealed genes associated with multiple biological pathways in GBM. The multi-omics prognostic model demonstrated excellent performance and indicated significant potential for clinical application.
Collapse
Affiliation(s)
- Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Liang Q, Jing H, Shao Y, Wang Y, Zhang H. Artificial Intelligence Imaging for Predicting High-risk Molecular Markers of Gliomas. Clin Neuroradiol 2024; 34:33-43. [PMID: 38277059 DOI: 10.1007/s00062-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers a non-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as a noninvasive and efficient method for identifying high-risk molecular markers in gliomas, a recent focus of research. This review presents a comprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.
Collapse
Affiliation(s)
- Qian Liang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Jing
- Department of MRI, The Sixth Hospital, Shanxi Medical University, 030008, Taiyuan, Shanxi Province, China
| | - Yingbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Yinhua Wang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
| |
Collapse
|
9
|
Choi Y, Jang J, Kim BS, Ahn KJ. Pretreatment MR-based radiomics in patients with glioblastoma: A systematic review and meta-analysis of prognostic endpoints. Eur J Radiol 2023; 168:111130. [PMID: 37827087 DOI: 10.1016/j.ejrad.2023.111130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Recent studies have shown promise of MR-based radiomics in predicting the survival of patients with untreated glioblastoma. This study aimed to comprehensively collate evidence to assess the prognostic value of radiomics in glioblastoma. METHODS PubMed-MEDLINE, Embase, and Web of Science were searched to find original articles investigating the prognostic value of MR-based radiomics in glioblastoma published up to July 14, 2023. Concordance indexes (C-indexes) and Cox proportional hazards ratios (HRs) of overall survival (OS) and progression-free survival (PFS) were pooled via random-effects modeling. For studies aimed at classifying long-term and short-term PFS, a hierarchical regression model was used to calculate pooled sensitivity and specificity. Between-study heterogeneity was assessed using the Higgin inconsistency index (I2). Subgroup regression analysis was performed to find potential factors contributing to heterogeneity. Publication bias was assessed via funnel plots and the Egger test. RESULTS Among 1371 abstracts, 18 and 17 studies were included for qualitative and quantitative data synthesis, respectively. Respective pooled C-indexes and HRs for OS were 0.65 (95 % confidence interval [CI], 0.58-0.72) and 2.88 (95 % CI, 2.28-3.64), whereas those for PFS were 0.61 (95 % CI, 0.55-0.66) and 2.78 (95 % CI, 1.91-4.03). Among 4 studies that predicted short-term PFS, the pooled sensitivity and specificity were 0.77 (95 % CI, 0.58-0.89) and 0.60 (95 % CI, 0.45-0.73), respectively. There was a substantial between-study heterogeneity among studies with the survival endpoint of OS C-index (n = 9, I2 = 83.8 %). Publication bias was not observed overall. CONCLUSION Pretreatment MR-based radiomics provided modest prognostic value in both OS and PFS in patients with glioblastoma.
Collapse
Affiliation(s)
- Yangsean Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea; Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Republic of Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Bum-Soo Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Kook-Jin Ahn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
10
|
Le VH, Minh TNT, Kha QH, Le NQK. A transfer learning approach on MRI-based radiomics signature for overall survival prediction of low-grade and high-grade gliomas. Med Biol Eng Comput 2023; 61:2699-2712. [PMID: 37432527 DOI: 10.1007/s11517-023-02875-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Lower-grade gliomas (LGG) can eventually progress to glioblastoma (GBM) and death. In the context of the transfer learning approach, we aimed to train and test an MRI-based radiomics model for predicting survival in GBM patients and validate it in LGG patients. From each patient's 704 MRI-based radiomics features, we chose seventeen optimal radiomics signatures in the GBM training set (n = 71) and used these features in both the GBM testing set (n = 31) and LGG validation set (n = 107) for further analysis. Each patient's risk score, calculated based on those optimal radiomics signatures, was chosen to represent the radiomics model. We compared the radiomics model with clinical, gene status models, and combined model integrating radiomics, clinical, and gene status in predicting survival. The average iAUCs of combined models in training, testing, and validation sets were respectively 0.804, 0.878, and 0.802, and those of radiomics models were 0.798, 0.867, and 0.717. The average iAUCs of gene status and clinical models ranged from 0.522 to 0.735 in all three sets. The radiomics model trained in GBM patients can effectively predict the overall survival of GBM and LGG patients, and the combined model improved this ability.
Collapse
Affiliation(s)
- Viet Huan Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang City, 65000, Vietnam
| | - Tran Nguyen Tuan Minh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Quang Hien Kha
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
11
|
Wu Z, Yang Y, Zha Y. Radiomics Features on Magnetic Resonance Images Can Predict C5aR1 Expression Levels and Prognosis in High-Grade Glioma. Cancers (Basel) 2023; 15:4661. [PMID: 37760630 PMCID: PMC10527364 DOI: 10.3390/cancers15184661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The complement component C5a receptor 1 (C5aR1) regulates cancer immunity. This retrospective study aimed to assess its prognostic value in high-grade glioma (HGG) and predict C5aR1 expression using a radiomics approach. METHODS Among 298 patients with HGG, 182 with MRI data were randomly divided into training and test groups for radiomics analysis. We examined the association between C5aR1 expression and prognosis through Kaplan-Meier and Cox regression analyses. We used maximum relevance-minimum redundancy and recursive feature elimination algorithms for radiomics feature selection. We then built a support vector machine (SVM) and a logistic regression model, investigating their performances using receiver operating characteristic, calibration curves, and decision curves. RESULTS C5aR1 expression was elevated in HGG and was an independent prognostic factor (hazard ratio = 3.984, 95% CI: 2.834-5.607). Both models presented with >0.8 area under the curve values in the training and test datasets, indicating efficient discriminatory ability, with SVM performing marginally better. The radiomics score calculated using the SVM model correlated significantly with overall survival (p < 0.01). CONCLUSIONS Our results highlight C5aR1's role in HGG development and prognosis, supporting its potential as a prognostic biomarker. Our radiomics model can noninvasively and effectively predict C5aR1 expression and patient prognosis in HGG.
Collapse
Affiliation(s)
| | | | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430000, China; (Z.W.); (Y.Y.)
| |
Collapse
|
12
|
Chen C, Du X, Yang L, Liu H, Li Z, Gou Z, Qi J. Research on application of radiomics in glioma: a bibliometric and visual analysis. Front Oncol 2023; 13:1083080. [PMID: 37771434 PMCID: PMC10523166 DOI: 10.3389/fonc.2023.1083080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Background With the continuous development of medical imaging informatics technology, radiomics has become a new and evolving field in medical applications. Radiomics aims to be an aid to support clinical decision making by extracting quantitative features from medical images and has a very wide range of applications. The purpose of this study was to perform a bibliometric and visual analysis of scientific results and research trends in the research application of radiomics in glioma. Methods We searched the Web of Science Core Collection (WOScc) for publications related to glioma radiomics. A bibliometric and visual analysis of online publications in this field related to countries/regions, authors, journals, references and keywords was performed using CiteSpace and R software. Results A total of 587 relevant literature published from 2012 to September 2022 were retrieved in WOScc, and finally a total of 484 publications were obtained according to the filtering criteria, including 393 (81.20%) articles and 91 (18.80%) reviews. The number of relevant publications increases year by year. The highest number of publications was from the USA (171 articles, 35.33%) and China (170 articles, 35.12%). The research institution with the highest number of publications was Chinese Acad Sci (24), followed by Univ Penn (22) and Fudan Univ (21). WANG Y (27) had the most publications, followed by LI Y (22), and WANG J (20). Among the 555 co-cited authors, LOUIS DN (207) and KICKINGEREDER P (207) were the most cited authors. FRONTIERS IN ONCOLOGY (42) was the most published journal and NEURO-ONCOLOGY (412) was the most co-cited journal. The most frequent keywords in all publications included glioblastoma (187), survival (136), classification (131), magnetic resonance imaging (113), machine learning (100), tumor (82), and feature (79), central nervous system (66), IDH (57), and radiomics (55). Cluster analysis was performed on the basis of keyword co-occurrence, and a total of 16 clusters were formed, indicating that these directions are the current hotspots of radiomics research applications in glioma and may be the future directions of continuous development. Conclusion In the past decade, radiomics has received much attention in the medical field and has been widely used in clinical research applications. Cooperation and communication between countries/regions need to be enhanced in future research to promote the development of radiomics in the field of medicine. In addition, the application of radiomics has improved the accuracy of pre-treatment diagnosis, efficacy prediction and prognosis assessment of glioma and helped to promote the development into precision medicine, the future still faces many challenges.
Collapse
Affiliation(s)
- Chunbao Chen
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Du
- Department of Oncology, The People's Hospital of Hechuan, Chongqing, China
- Department of Oncology, North Sichuan Medical College, Nanchong, China
| | - Lu Yang
- Department of Oncology, Suining Central Hospital, Suining, China
| | - Hongjun Liu
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhou Li
- Department of Neurosurgery, Nanchong Central Hospital, The Afiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhangyang Gou
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian Qi
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
13
|
Jiang T, Zhao Z, Liu X, Shen C, Mu M, Cai Z, Zhang B. Methodological quality of radiomic-based prognostic studies in gastric cancer: a cross-sectional study. Front Oncol 2023; 13:1161237. [PMID: 37731636 PMCID: PMC10507631 DOI: 10.3389/fonc.2023.1161237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Machine learning radiomics models are increasingly being used to predict gastric cancer prognoses. However, the methodological quality of these models has not been evaluated. Therefore, this study aimed to evaluate the methodological quality of radiomics studies in predicting the prognosis of gastric cancer, summarize their methodological characteristics and performance. METHODS The PubMed and Embase databases were searched for radiomics studies used to predict the prognosis of gastric cancer published in last 5 years. The characteristics of the studies and the performance of the models were extracted from the eligible full texts. The methodological quality, reporting completeness and risk of bias of the included studies were evaluated using the RQS, TRIPOD and PROBAST. The discrimination ability scores of the models were also compared. RESULTS Out of 283 identified records, 22 studies met the inclusion criteria. The study endpoints included survival time, treatment response, and recurrence, with reported discriminations ranging between 0.610 and 0.878 in the validation dataset. The mean overall RQS value was 15.32 ± 3.20 (range: 9 to 21). The mean adhered items of the 35 item of TRIPOD checklist was 20.45 ± 1.83. The PROBAST showed all included studies were at high risk of bias. CONCLUSION The current methodological quality of gastric cancer radiomics studies is insufficient. Large and reasonable sample, prospective, multicenter and rigorously designed studies are required to improve the quality of radiomics models for gastric cancer prediction. STUDY REGISTRATION This protocol was prospectively registered in the Open Science Framework Registry (https://osf.io/ja52b).
Collapse
Affiliation(s)
- Tianxiang Jiang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Zhao
- Department of Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueting Liu
- Department of Medical Discipline Construction, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyong Shen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingchun Mu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaolun Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Le VH, Kha QH, Minh TNT, Nguyen VH, Le VL, Le NQK. Development and Validation of CT-Based Radiomics Signature for Overall Survival Prediction in Multi-organ Cancer. J Digit Imaging 2023; 36:911-922. [PMID: 36717518 PMCID: PMC10287593 DOI: 10.1007/s10278-023-00778-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
The malignant tumors in nature share some common morphological characteristics. Radiomics is not only images but also data; we think that a probability exists in a set of radiomics signatures extracted from CT scan images of one cancer tumor in one specific organ also be utilized for overall survival prediction in different types of cancers in different organs. The retrospective study enrolled four data sets of cancer patients in three different organs (420, 157, 137, and 191 patients for lung 1 training, lung 2 testing, and two external validation set: kidney and head and neck, respectively). In the training set, radiomics features were obtained from CT scan images, and essential features were chosen by LASSO algorithm. Univariable and multivariable analyses were then conducted to find a radiomics signature via Cox proportional hazard regression. The Kaplan-Meier curve was performed based on the risk score. The integrated time-dependent area under the ROC curve (iAUC) was calculated for each predictive model. In the training set, Kaplan-Meier curve classified patients as high or low-risk groups (p-value < 0.001; log-rank test). The risk score of radiomics signature was locked and independently evaluated in the testing set, and two external validation sets showed significant differences (p-value < 0.05; log-rank test). A combined model (radiomics + clinical) showed improved iAUC in lung 1, lung 2, head and neck, and kidney data set are 0.621 (95% CI 0.588, 0.654), 0.736 (95% CI 0.654, 0.819), 0.732 (95% CI 0.655, 0.809), and 0.834 (95% CI 0.722, 0.946), respectively. We believe that CT-based radiomics signatures for predicting overall survival in various cancer sites may exist.
Collapse
Affiliation(s)
- Viet Huan Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang, 65000, Vietnam
| | - Quang Hien Kha
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Tran Nguyen Tuan Minh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Van Hiep Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Oncology Center, Bai Chay Hospital, Quang Ninh, 20000, Vietnam
| | - Van Long Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Anesthesiology and Critical Care, Hue University of Medicine and Pharmacy, Hue University, Hue City, 52000, Vietnam
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 106, Taiwan.
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, 106, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
15
|
Salome P, Sforazzini F, Grugnara G, Kudak A, Dostal M, Herold-Mende C, Heiland S, Debus J, Abdollahi A, Knoll M. MR Intensity Normalization Methods Impact Sequence Specific Radiomics Prognostic Model Performance in Primary and Recurrent High-Grade Glioma. Cancers (Basel) 2023; 15:cancers15030965. [PMID: 36765922 PMCID: PMC9913466 DOI: 10.3390/cancers15030965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study investigates the impact of different intensity normalization (IN) methods on the overall survival (OS) radiomics models' performance of MR sequences in primary (pHGG) and recurrent high-grade glioma (rHGG). METHODS MR scans acquired before radiotherapy were retrieved from two independent cohorts (rHGG C1: 197, pHGG C2: 141) from multiple scanners (15, 14). The sequences are T1 weighted (w), contrast-enhanced T1w (T1wce), T2w, and T2w-FLAIR. Sequence-specific significant features (SF) associated with OS, extracted from the tumour volume, were derived after applying 15 different IN methods. Survival analyses were conducted using Cox proportional hazard (CPH) and Poisson regression (POI) models. A ranking score was assigned based on the 10-fold cross-validated (CV) concordance index (C-I), mean square error (MSE), and the Akaike information criterion (AICs), to evaluate the methods' performance. RESULTS Scatter plots of the 10-CV C-I and MSE against the AIC showed an impact on the survival predictions between the IN methods and MR sequences (C1/C2 C-I range: 0.62-0.71/0.61-0.72, MSE range: 0.20-0.42/0.13-0.22). White stripe showed stable results for T1wce (C1/C2 C-I: 0.71/0.65, MSE: 0.21/0.14). Combat (0.68/0.62, 0.22/0.15) and histogram matching (HM, 0.67/0.64, 0.22/0.15) showed consistent prediction results for T2w models. They were also the top-performing methods for T1w in C2 (Combat: 0.67, 0.13; HM: 0.67, 0.13); however, only HM achieved high predictions in C1 (0.66, 0.22). After eliminating IN impacted SF using Spearman's rank-order correlation coefficient, a mean decrease in the C-I and MSE of 0.05 and 0.03 was observed in all four sequences. CONCLUSION The IN method impacted the predictive power of survival models; thus, performance is sequence-dependent.
Collapse
Affiliation(s)
- Patrick Salome
- Clinical Cooperation Unit (CCU) Radiation Oncology, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
- Heidelberg Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Correspondence: (P.S.); (M.K.)
| | - Francesco Sforazzini
- Clinical Cooperation Unit (CCU) Radiation Oncology, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
- Heidelberg Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
| | - Gianluca Grugnara
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Andreas Kudak
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- CCU Radiation Therapy, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
| | - Matthias Dostal
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- CCU Radiation Therapy, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Brain Tumour Group, European Organization for Research and Treatment of Cancer, 1200 Brussels, Belgium
- Division of Neurosurgical Research, Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit (CCU) Radiation Oncology, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Maximilian Knoll
- Clinical Cooperation Unit (CCU) Radiation Oncology, German Cancer Research Centre, INF 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Centre Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), INF 450, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- Correspondence: (P.S.); (M.K.)
| |
Collapse
|
16
|
McCague C, Ramlee S, Reinius M, Selby I, Hulse D, Piyatissa P, Bura V, Crispin-Ortuzar M, Sala E, Woitek R. Introduction to radiomics for a clinical audience. Clin Radiol 2023; 78:83-98. [PMID: 36639175 DOI: 10.1016/j.crad.2022.08.149] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Radiomics is a rapidly developing field of research focused on the extraction of quantitative features from medical images, thus converting these digital images into minable, high-dimensional data, which offer unique biological information that can enhance our understanding of disease processes and provide clinical decision support. To date, most radiomics research has been focused on oncological applications; however, it is increasingly being used in a raft of other diseases. This review gives an overview of radiomics for a clinical audience, including the radiomics pipeline and the common pitfalls associated with each stage. Key studies in oncology are presented with a focus on both those that use radiomics analysis alone and those that integrate its use with other multimodal data streams. Importantly, clinical applications outside oncology are also presented. Finally, we conclude by offering a vision for radiomics research in the future, including how it might impact our practice as radiologists.
Collapse
Affiliation(s)
- C McCague
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - S Ramlee
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - M Reinius
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - I Selby
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - D Hulse
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - P Piyatissa
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - V Bura
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Radiology and Medical Imaging, County Clinical Emergency Hospital, Cluj-Napoca, Romania
| | - M Crispin-Ortuzar
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK
| | - E Sala
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - R Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Research Centre for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| |
Collapse
|
17
|
Alleman K, Knecht E, Huang J, Zhang L, Lam S, DeCuypere M. Multimodal Deep Learning-Based Prognostication in Glioma Patients: A Systematic Review. Cancers (Basel) 2023; 15:cancers15020545. [PMID: 36672494 PMCID: PMC9856816 DOI: 10.3390/cancers15020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
Malignant brain tumors pose a substantial burden on morbidity and mortality. As clinical data collection improves, along with the capacity to analyze it, novel predictive clinical tools may improve prognosis prediction. Deep learning (DL) holds promise for integrating clinical data of various modalities. A systematic review of the DL-based prognostication of gliomas was performed using the Embase (Elsevier), PubMed MEDLINE (National library of Medicine), and Scopus (Elsevier) databases, in accordance with PRISMA guidelines. All included studies focused on the prognostication of gliomas, and predicted overall survival (13 studies, 81%), overall survival as well as genotype (2 studies, 12.5%), and response to immunotherapy (1 study, 6.2%). Multimodal analyses were varied, with 6 studies (37.5%) combining MRI with clinical data; 6 studies (37.5%) integrating MRI with histologic, clinical, and biomarker data; 3 studies (18.8%) combining MRI with genomic data; and 1 study (6.2%) combining histologic imaging with clinical data. Studies that compared multimodal models to unimodal-only models demonstrated improved predictive performance. The risk of bias was mixed, most commonly due to inconsistent methodological reporting. Overall, the use of multimodal data in DL assessments of gliomas leads to a more accurate overall survival prediction. However, due to data limitations and a lack of transparency in model and code reporting, the full extent of multimodal DL as a resource for brain tumor patients has not yet been realized.
Collapse
Affiliation(s)
- Kaitlyn Alleman
- Chicago Medical School, Rosalind Franklin University of Science and Medicine, Chicago, IL 60064, USA
| | - Erik Knecht
- Chicago Medical School, Rosalind Franklin University of Science and Medicine, Chicago, IL 60064, USA
| | - Jonathan Huang
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Lu Zhang
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Sandi Lam
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael DeCuypere
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence:
| |
Collapse
|
18
|
Li Z, Holzgreve A, Unterrainer LM, Ruf VC, Quach S, Bartos LM, Suchorska B, Niyazi M, Wenter V, Herms J, Bartenstein P, Tonn JC, Unterrainer M, Albert NL, Kaiser L. Combination of pre-treatment dynamic [ 18F]FET PET radiomics and conventional clinical parameters for the survival stratification in patients with IDH-wildtype glioblastoma. Eur J Nucl Med Mol Imaging 2023; 50:535-545. [PMID: 36227357 PMCID: PMC9816231 DOI: 10.1007/s00259-022-05988-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE The aim of this study was to build and evaluate a prediction model which incorporates clinical parameters and radiomic features extracted from static as well as dynamic [18F]FET PET for the survival stratification in patients with newly diagnosed IDH-wildtype glioblastoma. METHODS A total of 141 patients with newly diagnosed IDH-wildtype glioblastoma and dynamic [18F]FET PET prior to surgical intervention were included. Patients with a survival time ≤ 12 months were classified as short-term survivors. First order, shape, and texture radiomic features were extracted from pre-treatment static (tumor-to-background ratio; TBR) and dynamic (time-to-peak; TTP) images, respectively, and randomly divided into a training (n = 99) and a testing cohort (n = 42). After feature normalization, recursive feature elimination was applied for feature selection using 5-fold cross-validation on the training cohort, and a machine learning model was constructed to compare radiomic models and combined clinical-radiomic models with selected radiomic features and clinical parameters. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were calculated to assess the predictive performance for identifying short-term survivors in both the training and testing cohort. RESULTS A combined clinical-radiomic model comprising six clinical parameters and six selected dynamic radiomic features achieved highest predictability of short-term survival with an AUC of 0.74 (95% confidence interval, 0.60-0.88) in the independent testing cohort. CONCLUSIONS This study successfully built and evaluated prediction models using [18F]FET PET-based radiomic features and clinical parameters for the individualized assessment of short-term survival in patients with a newly diagnosed IDH-wildtype glioblastoma. The combination of both clinical parameters and dynamic [18F]FET PET-based radiomic features reached highest accuracy in identifying patients at risk. Although the achieved accuracy level remained moderate, our data shows that the integration of dynamic [18F]FET PET radiomic data into clinical prediction models may improve patient stratification beyond established prognostic markers.
Collapse
Affiliation(s)
- Zhicong Li
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- Department of Neurosurgery, Sana Hospital, Duisburg, Germany
| | - Maximilian Niyazi
- Department of Radiotherapy, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
19
|
Beyond Imaging and Genetic Signature in Glioblastoma: Radiogenomic Holistic Approach in Neuro-Oncology. Biomedicines 2022; 10:biomedicines10123205. [PMID: 36551961 PMCID: PMC9775324 DOI: 10.3390/biomedicines10123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor exhibiting rapid and infiltrative growth, with less than 10% of patients surviving over 5 years, despite aggressive and multimodal treatments. The poor prognosis and the lack of effective pharmacological treatments are imputable to a remarkable histological and molecular heterogeneity of GBM, which has led, to date, to the failure of precision oncology and targeted therapies. Identification of molecular biomarkers is a paradigm for comprehensive and tailored treatments; nevertheless, biopsy sampling has proved to be invasive and limited. Radiogenomics is an emerging translational field of research aiming to study the correlation between radiographic signature and underlying gene expression. Although a research field still under development, not yet incorporated into routine clinical practice, it promises to be a useful non-invasive tool for future personalized/adaptive neuro-oncology. This review provides an up-to-date summary of the recent advancements in the use of magnetic resonance imaging (MRI) radiogenomics for the assessment of molecular markers of interest in GBM regarding prognosis and response to treatments, for monitoring recurrence, also providing insights into the potential efficacy of such an approach for survival prognostication. Despite a high sensitivity and specificity in almost all studies, accuracy, reproducibility and clinical value of radiomic features are the Achilles heel of this newborn tool. Looking into the future, investigators' efforts should be directed towards standardization and a disciplined approach to data collection, algorithms, and statistical analysis.
Collapse
|
20
|
Radiomic and Volumetric Measurements as Clinical Trial Endpoints—A Comprehensive Review. Cancers (Basel) 2022; 14:cancers14205076. [PMID: 36291865 PMCID: PMC9599928 DOI: 10.3390/cancers14205076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The extraction of quantitative data from standard-of-care imaging modalities offers opportunities to improve the relevance and salience of imaging biomarkers used in drug development. This review aims to identify the challenges and opportunities for discovering new imaging-based biomarkers based on radiomic and volumetric assessment in the single-site solid tumor sites: breast cancer, rectal cancer, lung cancer and glioblastoma. Developing approaches to harmonize three essential areas: segmentation, validation and data sharing may expedite regulatory approval and adoption of novel cancer imaging biomarkers. Abstract Clinical trials for oncology drug development have long relied on surrogate outcome biomarkers that assess changes in tumor burden to accelerate drug registration (i.e., Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria). Drug-induced reduction in tumor size represents an imperfect surrogate marker for drug activity and yet a radiologically determined objective response rate is a widely used endpoint for Phase 2 trials. With the addition of therapies targeting complex biological systems such as immune system and DNA damage repair pathways, incorporation of integrative response and outcome biomarkers may add more predictive value. We performed a review of the relevant literature in four representative tumor types (breast cancer, rectal cancer, lung cancer and glioblastoma) to assess the preparedness of volumetric and radiomics metrics as clinical trial endpoints. We identified three key areas—segmentation, validation and data sharing strategies—where concerted efforts are required to enable progress of volumetric- and radiomics-based clinical trial endpoints for wider clinical implementation.
Collapse
|
21
|
Pre-operative MRI radiomics model non-invasively predicts key genomic markers and survival in glioblastoma patients. J Neurooncol 2022; 160:253-263. [DOI: 10.1007/s11060-022-04150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
|
22
|
Kihira S, Mei X, Mahmoudi K, Liu Z, Dogra S, Belani P, Tsankova N, Hormigo A, Fayad ZA, Doshi A, Nael K. U-Net Based Segmentation and Characterization of Gliomas. Cancers (Basel) 2022; 14:4457. [PMID: 36139616 PMCID: PMC9496685 DOI: 10.3390/cancers14184457] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
(1) Background: Gliomas are the most common primary brain neoplasms accounting for roughly 40−50% of all malignant primary central nervous system tumors. We aim to develop a deep learning-based framework for automated segmentation and prediction of biomarkers and prognosis in patients with gliomas. (2) Methods: In this retrospective two center study, patients were included if they (1) had a diagnosis of glioma with known surgical histopathology and (2) had preoperative MRI with FLAIR sequence. The entire tumor volume including FLAIR hyperintense infiltrative component and necrotic and cystic components was segmented. Deep learning-based U-Net framework was developed based on symmetric architecture from the 512 × 512 segmented maps from FLAIR as the ground truth mask. (3) Results: The final cohort consisted of 208 patients with mean ± standard deviation of age (years) of 56 ± 15 with M/F of 130/78. DSC of the generated mask was 0.93. Prediction for IDH-1 and MGMT status had a performance of AUC 0.88 and 0.62, respectively. Survival prediction of <18 months demonstrated AUC of 0.75. (4) Conclusions: Our deep learning-based framework can detect and segment gliomas with excellent performance for the prediction of IDH-1 biomarker status and survival.
Collapse
Affiliation(s)
- Shingo Kihira
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90033, USA
| | - Xueyan Mei
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keon Mahmoudi
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90033, USA
| | - Zelong Liu
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siddhant Dogra
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Puneet Belani
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nadejda Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adilia Hormigo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zahi A. Fayad
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amish Doshi
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kambiz Nael
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Adding radiomics to the 2021 WHO updates may improve prognostic prediction for current IDH-wildtype histological lower-grade gliomas with known EGFR amplification and TERT promoter mutation status. Eur Radiol 2022; 32:8089-8098. [PMID: 35763095 DOI: 10.1007/s00330-022-08941-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To assess whether radiomic features could improve the accuracy of survival predictions of IDH-wildtype (IDHwt) histological lower-grade gliomas (LGGs) over clinicopathological features. METHODS Preoperative MRI data of 61 patients with IDHwt histological LGGs were included as the institutional training set. The test set consisted of 32 patients from The Cancer Genome Atlas. Radiomic features (n = 186) were extracted using conventional MRIs. The radiomics risk score (RRS) for overall survival (OS) was derived from the elastic net. Multivariable Cox regression analyses with clinicopathological features (including epidermal growth factor receptor [EGFR] amplification and telomerase reverse transcriptase promoter [TERTp] mutation status) and the RRS were performed. The integrated area under the receiver operating curves (iAUCs) from the models with and without the RRS were compared. The net reclassification index (NRI) for 1-year OS was also calculated. The prognostic value of the RRS was evaluated using the external validation set. RESULTS The RRS independently predicted OS (hazard ratio = 48.08; p = 0.001). Compared with the clinicopathological model alone, adding the RRS had a better OS prediction performance (iAUCs 0.775 vs. 0.910), which was internally validated (iAUCs 0.726 vs. 0.884, 1-year OS NRI = 0.497), and a similar trend was found on external validation (iAUCs 0.683 vs. 0.705, 1-year OS NRI = 0.733). The prognostic significance of the RRS was confirmed in the external validation set (p = 0.001). CONCLUSIONS Integrating radiomics with clinicopathological features (including EGFR amplification and TERTp mutation status) can improve survival prediction in patients with IDHwt LGGs. KEY POINTS • Radiomics risk score has the potential to improve survival prediction when added to clinicopathological features (iAUCs increased from 0.775 to 0.910). • NRIs for 1-year OS showed that the radiomics risk score had incremental value over the clinicopathological model. • The prognostic significance of the radiomics risk score was confirmed in the external validation set (p = 0.001).
Collapse
|
24
|
Zhou Q, Xue C, Ke X, Zhou J. Treatment Response and Prognosis Evaluation in High-Grade Glioma: An Imaging Review Based on MRI. J Magn Reson Imaging 2022; 56:325-340. [PMID: 35129845 DOI: 10.1002/jmri.28103] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, the development of advanced magnetic resonance imaging (MRI) technology and machine learning (ML) have created new tools for evaluating treatment response and prognosis of patients with high-grade gliomas (HGG); however, patient prognosis has not improved significantly. This is mainly due to the heterogeneity between and within HGG tumors, resulting in standard treatment methods not benefitting all patients. Moreover, the survival of patients with HGG is not only related to tumor cells, but also to noncancer cells in the tumor microenvironment (TME). Therefore, during preoperative diagnosis and follow-up treatment of patients with HGG, noninvasive imaging markers are needed to characterize intratumoral heterogeneity, and then to evaluate treatment response and predict prognosis, timeously adjust treatment strategies, and achieve individualized diagnosis and treatment. In this review, we summarize the research progress of conventional MRI, advanced MRI technology, and ML in evaluation of treatment response and prognosis of patients with HGG. We further discuss the significance of the TME in the prognosis of HGG patients, associate imaging features with the TME, indirectly reflecting the heterogeneity within the tumor, and shifting treatment strategies from tumor cells alone to systemic therapy of the TME, which may be a major development direction in the future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 4.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| |
Collapse
|
25
|
Aftab K, Aamir FB, Mallick S, Mubarak F, Pope WB, Mikkelsen T, Rock JP, Enam SA. Radiomics for precision medicine in glioblastoma. J Neurooncol 2022; 156:217-231. [PMID: 35020109 DOI: 10.1007/s11060-021-03933-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Being the most common primary brain tumor, glioblastoma presents as an extremely challenging malignancy to treat with dismal outcomes despite treatment. Varying molecular epidemiology of glioblastoma between patients and intra-tumoral heterogeneity explains the failure of current one-size-fits-all treatment modalities. Radiomics uses machine learning to identify salient features of the tumor on brain imaging and promises patient-specific management in glioblastoma patients. METHODS We performed a comprehensive review of the available literature on studies investigating the role of radiomics and radiogenomics models for the diagnosis, stratification, prognostication as well as treatment planning and monitoring of glioblastoma. RESULTS Classifiers based on a combination of various MRI sequences, genetic information and clinical data can predict non-invasive tumor diagnosis, overall survival and treatment response with reasonable accuracy. However, the use of radiomics for glioblastoma treatment remains in infancy as larger sample sizes, standardized image acquisition and data extraction techniques are needed to develop machine learning models that can be translated effectively into clinical practice. CONCLUSION Radiomics has the potential to transform the scope of glioblastoma management through personalized medicine.
Collapse
Affiliation(s)
- Kiran Aftab
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan
| | | | - Saad Mallick
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Fatima Mubarak
- Department of Radiology, Aga Khan University, Karachi, Pakistan
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tom Mikkelsen
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Jack P Rock
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
26
|
Huang J, Shlobin NA, DeCuypere M, Lam SK. Deep Learning for Outcome Prediction in Neurosurgery: A Systematic Review of Design, Reporting, and Reproducibility. Neurosurgery 2022; 90:16-38. [PMID: 34982868 DOI: 10.1227/neu.0000000000001736] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Deep learning (DL) is a powerful machine learning technique that has increasingly been used to predict surgical outcomes. However, the large quantity of data required and lack of model interpretability represent substantial barriers to the validity and reproducibility of DL models. The objective of this study was to systematically review the characteristics of DL studies involving neurosurgical outcome prediction and to assess their bias and reporting quality. Literature search using the PubMed, Scopus, and Embase databases identified 1949 records of which 35 studies were included. Of these, 32 (91%) developed and validated a DL model while 3 (9%) validated a pre-existing model. The most commonly represented subspecialty areas were oncology (16 of 35, 46%), spine (8 of 35, 23%), and vascular (6 of 35, 17%). Risk of bias was low in 18 studies (51%), unclear in 5 (14%), and high in 12 (34%), most commonly because of data quality deficiencies. Adherence to transparent reporting of a multivariable prediction model for individual prognosis or diagnosis reporting standards was low, with a median of 12 transparent reporting of a multivariable prediction model for individual prognosis or diagnosis items (39%) per study not reported. Model transparency was severely limited because code was provided in only 3 studies (9%) and final models in 2 (6%). With the exception of public databases, no study data sets were readily available. No studies described DL models as ready for clinical use. The use of DL for neurosurgical outcome prediction remains nascent. Lack of appropriate data sets poses a major concern for bias. Although studies have demonstrated promising results, greater transparency in model development and reporting is needed to facilitate reproducibility and validation.
Collapse
Affiliation(s)
- Jonathan Huang
- Ann and Robert H. Lurie Children's Hospital, Division of Pediatric Neurosurgery, Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
27
|
Deciphering the glioblastoma phenotype by computed tomography radiomics. Radiother Oncol 2021; 160:132-139. [PMID: 33984349 DOI: 10.1016/j.radonc.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common malignant primary brain tumour which has, despite extensive treatment, a median overall survival of 15 months. Radiomics is the high-throughput extraction of large amounts of image features from radiographic images, which allows capturing the tumour phenotype in 3D and in a non-invasive way. In this study we assess the prognostic value of CT radiomics for overall survival in patients with a GBM. MATERIALS AND METHODS Clinical data and pre-treatment CT images were obtained from 218 patients diagnosed with a GBM via biopsy who underwent radiotherapy +/- temozolomide between 2004 and 2015 treated at three independent institutes (n = 93, 62 and 63). A clinical prognostic score (CPS), a simple radiomics model consisting of volume based score (VPS), a complex radiomics prognostic score (RPS) and a combined clinical and radiomics (C + R)PS model were developed. The population was divided into three risk groups for each prognostic score and respective Kaplan-Meier curves were generated. RESULTS Patient characteristics were broadly comparable. Clinically significant differences were observed with regards to radiation dose, tumour volume and performance status between datasets. Image acquisition parameters differed between institutes. The cross-validated c-indices were moderately discriminative and for the CPS ranged from 0.63 to 0.65; the VPS c-indices ranged between 0.52 and 0.61; the RPS c-indices ranged from 0.57 to 0.64 and the combined clinical and radiomics model resulted in c-indices of 0.59-0.71. CONCLUSION In this study clinical and CT radiomics features were used to predict OS in GBM. Discrimination between low-, middle- and high-risk patients based on the combined clinical and radiomics model was comparable to previous MRI-based models.
Collapse
|
28
|
Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma. Cancers (Basel) 2021; 13:cancers13040722. [PMID: 33578746 PMCID: PMC7916478 DOI: 10.3390/cancers13040722] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most malignant primary brain tumor, for which improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic resonance imaging (MRI) in combination with machine learning offers the possibility to collect qualitative and quantitative imaging features which can be used to predict patient prognosis and relevant tumor markers which can aid in selecting the right treatment. This study showed that combining these MRI features with clinical features has the highest prognostic value for GBM patients; this model performed similarly in an independent GBM cohort, showing its reproducibility. The prediction of tumor markers showed promising results in the training set but not could be validated in the independent dataset. This study shows the potential of using MRI to predict prognosis and tumor markers, but further optimization and prospective studies are warranted. Abstract Glioblastoma (GBM) is the most malignant primary brain tumor for which no curative treatment options exist. Non-invasive qualitative (Visually Accessible Rembrandt Images (VASARI)) and quantitative (radiomics) imaging features to predict prognosis and clinically relevant markers for GBM patients are needed to guide clinicians. A retrospective analysis of GBM patients in two neuro-oncology centers was conducted. The multimodal Cox-regression model to predict overall survival (OS) was developed using clinical features with VASARI and radiomics features in isocitrate dehydrogenase (IDH)-wild type GBM. Predictive models for IDH-mutation, 06-methylguanine-DNA-methyltransferase (MGMT)-methylation and epidermal growth factor receptor (EGFR) amplification using imaging features were developed using machine learning. The performance of the prognostic model improved upon addition of clinical, VASARI and radiomics features, for which the combined model performed best. This could be reproduced after external validation (C-index 0.711 95% CI 0.64–0.78) and used to stratify Kaplan–Meijer curves in two survival groups (p-value < 0.001). The predictive models performed significantly in the external validation for EGFR amplification (area-under-the-curve (AUC) 0.707, 95% CI 0.582–8.25) and MGMT-methylation (AUC 0.667, 95% CI 0.522–0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436–0.927). The integrated clinical and imaging prognostic model was shown to be robust and of potential clinical relevance. The prediction of molecular markers showed promising results in the training set but could not be validated after external validation in a clinically relevant manner. Overall, these results show the potential of combining clinical features with imaging features for prognostic and predictive models in GBM, but further optimization and larger prospective studies are warranted.
Collapse
|