1
|
Huang S, Liu D, Deng K, Shu C, Wu Y, Zhou Z. A computed tomography angiography-based radiomics model for prognostic prediction of endovascular abdominal aortic repair. Int J Cardiol 2025; 429:133138. [PMID: 40090490 DOI: 10.1016/j.ijcard.2025.133138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE This study aims to develop a radiomics machine learning (ML) model that uses preoperative computed tomography angiography (CTA) data to predict the prognosis of endovascular aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA) patients. METHODS In this retrospective study, 164 AAA patients underwent EVAR and were categorized into shrinkage (good prognosis) or stable (poor prognosis) groups based on post-EVAR sac regression. From preoperative AAA and perivascular adipose tissue (PVAT) image, radiomics features (RFs) were extracted for model creation. Patients were split into 80 % training and 20 % test sets. A support vector machine model was constructed for prediction. Accuracy is evaluated via the area under the receiver operating characteristic curve (AUC). RESULTS Demographics and comorbidities showed no significant differences between shrinkage and stable groups. The model containing 5 AAA RFs (which are original_firstorder_InterquartileRange, log-sigma-3-0-mm-3D_glrlm_GrayLevelNonUniformityNormalized, log-sigma-3-0-mm-3D_glrlm_RunPercentage, log-sigma-4-0-mm-3D_glrlm_ShortRunLowGrayLevelEmphasis, wavelet-LLH_glcm_SumEntropy) had AUCs of 0.86 (training) and 0.77 (test). The model containing 7 PVAT RFs (which are log-sigma-3-0-mm-3D_firstorder_InterquartileRange, log-sigma-3-0-mm-3D_glcm_Correlation, wavelet-LHL_firstorder_Energy, wavelet-LHL_firstorder_TotalEnergy, wavelet-LHH_firstorder_Mean, wavelet-LHH_glcm_Idmn, wavelet-LHH_glszm_GrayLevelNonUniformityNormalized) had AUCs of 0.76 (training) and 0.78 (test). Combining AAA and PVAT RFs yielded the highest accuracy: AUCs of 0.93 (training) and 0.87 (test). CONCLUSIONS Radiomics-based CTA model predicts aneurysm sac regression post-EVAR in AAA patients. PVAT RFs from preoperative CTA images were closely related to AAA prognosis after EVAR, enhancing accuracy when combined with AAA RFs. This preliminary study explores a predictive model designed to assist clinicians in optimizing therapeutic strategies during clinical decision-making processes.
Collapse
Affiliation(s)
- Shanya Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dingxiao Liu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Kai Deng
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan Wu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Safarian A, Mirshahvalad SA, Farbod A, Nasrollahi H, Pirich C, Beheshti M. Artificial intelligence for tumor [ 18F]FDG-PET imaging: Advancement and future trends-part I. Semin Nucl Med 2025; 55:328-344. [PMID: 40158896 DOI: 10.1053/j.semnuclmed.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
The advent of sophisticated image analysis techniques has facilitated the extraction of increasingly complex data, such as radiomic features, from various imaging modalities, including [18F]FDG PET/CT, a well-established cornerstone of oncological imaging. Furthermore, the use of artificial intelligence (AI) algorithms has shown considerable promise in enhancing the interpretation of these quantitative parameters. Additionally, AI-driven models enable the integration of parameters from multiple imaging modalities along with clinical data, facilitating the development of comprehensive models with significant clinical impact. However, challenges remain regarding standardization and validation of the AI-powered models, as well as their implementation in real-world clinical practice. The variability in imaging acquisition protocols, segmentation methods, and feature extraction approaches across different institutions necessitates robust harmonization efforts to ensure reproducibility and clinical utility. Moreover, the successful translation of AI models into clinical practice requires prospective validation in large cohorts, as well as seamless integration into existing workflows to assess their ability to enhance clinicians' performance. This review aims to provide an overview of the literature and highlight three key applications: diagnostic impact, prediction of treatment response, and long-term patient prognostication. In the first part, we will focus on head and neck, lung, breast, gastroesophageal, colorectal, and gynecological malignancies.
Collapse
Affiliation(s)
- Alireza Safarian
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Rajaie Cardiovascular Medical and Research Center, Rajaie Cardiovascular Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Nasrollahi
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
3
|
Xiao L, Wang Y, Shi X, Pang H, Li Y. Computed tomography-based radiomics modeling to predict patient overall survival in cervical cancer with intensity-modulated radiotherapy combined with concurrent chemotherapy. J Int Med Res 2025; 53:3000605251325996. [PMID: 40119689 PMCID: PMC11938878 DOI: 10.1177/03000605251325996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/24/2025] Open
Abstract
ObjectiveThe objective of this study was to develop a predictive model combining radiomic characteristics and clinical features to forecast overall survival in cervical cancer patients treated with intensity-modulated radiotherapy and concurrent chemotherapy.MethodsIn this retrospective observational study, 159 patients were divided into a training group (n = 95) and a validation group (n = 64). Radiomic characteristics were extracted from contrast-enhanced computed tomography scans. The least absolute shrinkage and selection operator regression analysis was used to filter the extracted radiomic characteristics and reduce the dimensionality of the data. A radiomic score was calculated from the selected features, and multivariate Cox regression models were established to analyze overall survival. A nomogram combining radiomic score and clinical features was developed, and its reliability was assessed using the area under the receiver operating characteristic curve.ResultsFour radiomic characteristics and two clinical features were extracted for overall survival analysis. A nomogram combining these factors was developed and validated, showing good performance with a high C-index. Patients were categorized as low-risk or high-risk for overall survival based on a cut-off value.ConclusionsOur model combining computed tomography-extracted radiomic characteristics and clinical features shows good potential for evaluating overall survival in cervical cancer patients treated with intensity-modulated radiotherapy and concurrent chemotherapy.
Collapse
Affiliation(s)
- Lihong Xiao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Wang
- Department of Oncology, Gulin County People’s Hospital, Luzhou, Sichuan, China
| | - Xiangxiang Shi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yunfei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Jiang CQ, Li XJ, Zhou ZY, Xin Q, Yu L. Imaging based artificial intelligence for predicting lymph node metastasis in cervical cancer patients: a systematic review and meta-analysis. Front Oncol 2025; 15:1532698. [PMID: 40094016 PMCID: PMC11906327 DOI: 10.3389/fonc.2025.1532698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose This meta-analysis was conducted to assess the diagnostic performance of artificial intelligence (AI) based on imaging for detecting lymph node metastasis (LNM) among cervical cancer patients and to compare its performance with that of radiologists. Methods A comprehensive literature search was conducted across PubMed, Embase, and Web of Science to identify relevant studies published up to October 2024. The search followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) guidelines. Studies evaluating the accuracy of AI models in detecting LNM in cervical cancer through computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) were included. Pathology served as the reference standard for validation. A bivariate random-effects model was employed to estimate pooled sensitivity and specificity, both presented alongside 95% confidence intervals (CIs). Bias was assessed with the revised Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Study heterogeneity was examined through the I2 statistic. Meta-regression was conducted when significant heterogeneity (I2 > 50%) was observed. Results A total of 23 studies were included in this meta-analysis. The quality and bias of the included studies were acceptable. However, substantial heterogeneity was observed among the included studies. Internal validation sets comprised 23 studies and 1,490 patients. The pooled sensitivity, specificity, and the area under the curve (AUC) for detecting LNM in cervical cancer were 0.83 (95% CI: 0.78-0.87), 0.78 (95% CI: 0.74-0.82) and 0.87 (95% CI: 0.84-0.90), respectively. External validation sets comprised six studies and 298 patients. The pooled sensitivity, specificity, and AUC for detecting LNM were 0.70 (95% CI: 0.56-0.81), 0.85 (95% CI: 0.66-0.95) and 0.76 (95% CI: 0.72-0.79), respectively. For radiologists, eight studies and 644 patients were included; the pooled sensitivity, specificity, and AUC for detecting LNM were 0.54 (95% CI: 0.42-0.66), 0.79 (95% CI: 0.59-0.91) and 0.65 (95% CI: 0.60-0.69), respectively. Conclusions Imaging-based AI demonstrates higher diagnostic performance than radiologists. Prospective studies with rigorous standardization as well as further research with external validation datasets, are necessary to confirm the results and assess their practical clinical applicability. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024607074.
Collapse
Affiliation(s)
- Chu-Qian Jiang
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiu-Juan Li
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yi Zhou
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Qing Xin
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Lin Yu
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Li Y, Zhou X, Zhang X, Zhang M, Sun S, Gai X, Li G. Bi-parametric MRI radiomic model for prostate cancer diagnosis: value of intralesional and perilesional radiomics. Acta Radiol 2025:2841851251317646. [PMID: 39967033 DOI: 10.1177/02841851251317646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignant tumor that endangers the life and health of middle-aged and elderly men. PURPOSE To evaluate the significance of radiomic features from intralesional and perilesional regions in bi-parametric magnetic resonance imaging (MRI) for diagnosing PCa. MATERIAL AND METHODS A total of 211 patients with suspected PCa who accepted prostate MRI scans were enrolled in this study. The region of interest (ROI) corresponding to the original lesion was manually delineated to define the intralesional ROI on bp-MRI maps. The original lesion ROI was then expanded by 2 mm, 4 mm, 6 mm, and 8 mm, while excluding the intralesional area to create the perilesional ROI. Features were extracted from each ROI, and a radiomics model was developed using logistic regression. The combined model integrated features from both intralesional and perilesional regions. Its predictive performance was assessed using receiver operating characteristic (ROC) curves and area under the curve (AUC) to evaluate its diagnostic efficacy for PCa. RESULTS The comparison revealed that perilesional 4 mm model had the best performance among all perilesional models, its AUCs of 0.934 and 0.894 in the training testing set, respectively, outperformed the combined model of other regions. The clinical model, combined model for intralesional regions, and INTRAPERI model achieved AUCs of 0.911, 0.925, 0.931 in the training sets and 0.770, 0.867, 0.905 in the testing sets. The predictive performance of the INTRAPERI model is better than the clinical model and intralesional model. CONCLUSION The radiomic model combining intralesional and perilesional features from bi-parametric MRI shows strong predictive value for PCa and may enhance clinical decision-making.
Collapse
Affiliation(s)
- Yida Li
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, PR China
| | - Xin Zhou
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, PR China
| | - Xinyuan Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, PR China
| | - Mengmeng Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, PR China
| | - Shengjian Sun
- Department of Radiology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, PR China
| | - Xue Gai
- Department of Radiology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, PR China
| | - Guohua Li
- Department of Radiology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, PR China
| |
Collapse
|
6
|
Hotton J, Beddok A, Moubtakir A, Papathanassiou D, Morland D. [ 18F]FDG PET/CT Radiomics in Cervical Cancer: A Systematic Review. Diagnostics (Basel) 2024; 15:65. [PMID: 39795593 PMCID: PMC11720459 DOI: 10.3390/diagnostics15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Cervical cancer is a significant global health concern, with high incidence and mortality rates, especially in less-developed regions. [18F]FDG PET/CT is now indicated at various stages of management, but its analysis is essentially based on SUVmax, a measure of [18F]FDG uptake. Radiomics, by extracting a multitude of parameters, promises to improve the diagnostic and prognostic performance of the examination. However, studies remain heterogeneous, both in terms of patient numbers and methods, so a synthesis is needed. Methods: This systematic review was conducted following PRISMA-P guidelines and registered in PROSPERO (CRD42024584123). Eligible studies on PET/CT radiomics in cervical cancer were identified through PubMed and Scopus and assessed for quality using the Radiomics Quality Score (RQS v2.0), with data extraction focusing on study design, population characteristics, radiomic methods, and model performances. Results: The review identified 22 studies on radiomics in cervical cancer, 19 of which focused specifically on locally advanced cervical cancer (LACC) and assessed various clinical outcomes, such as survival, relapse, treatment response, and lymph node involvement prediction. They reported significant associations between prognostic indicators and radiomic features, indicating the potential of radiomics to improve the predictive accuracy for patient outcomes in LACC; however, the overall quality of the studies was relatively moderate, with a median RQS of 12/36. Conclusions: While radiomic analysis in cervical cancer presents promising opportunities for survival prediction and personalized care, further well-designed studies are essential to provide stronger evidence for its clinical utility.
Collapse
Affiliation(s)
- Judicael Hotton
- Department of Surgical Oncology, Institut Godinot, 51100 Reims, France
- CReSTIC, UR 3804, Université de Reims Champagne-Ardenne, 51687 Reims, France; (A.B.); (D.P.); (D.M.)
| | - Arnaud Beddok
- CReSTIC, UR 3804, Université de Reims Champagne-Ardenne, 51687 Reims, France; (A.B.); (D.P.); (D.M.)
- Department of Radiation Therapy, Institut Godinot, 51100 Reims, France
| | | | - Dimitri Papathanassiou
- CReSTIC, UR 3804, Université de Reims Champagne-Ardenne, 51687 Reims, France; (A.B.); (D.P.); (D.M.)
- Department of Nuclear Medicine, Institut Godinot, 51100 Reims, France;
| | - David Morland
- CReSTIC, UR 3804, Université de Reims Champagne-Ardenne, 51687 Reims, France; (A.B.); (D.P.); (D.M.)
- Department of Nuclear Medicine, Institut Godinot, 51100 Reims, France;
| |
Collapse
|
7
|
Tian C, Hu Y, Li S, Zhang X, Wei Q, Li K, Chen X, Zheng L, Yang X, Qin Y, Bian Y. Peri- and intra-nodular radiomic features based on 18F-FDG PET/CT to distinguish lung adenocarcinomas from pulmonary granulomas. Front Med (Lausanne) 2024; 11:1453421. [PMID: 39175818 PMCID: PMC11339787 DOI: 10.3389/fmed.2024.1453421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Objective To compare the effectiveness of radiomic features based on 18F-FDG PET/CT images within (intranodular) and around (perinodular) lung nodules/masses in distinguishing between lung adenocarcinoma and pulmonary granulomas. Methods For this retrospective study, 18F-FDG PET/CT images were collected for 228 patients. Patients diagnosed with lung adenocarcinoma (n = 156) or granulomas (n = 72) were randomly assigned to a training (n = 159) and validation (n = 69) groups. The volume of interest (VOI) of intranodular, perinodular (1-5 voxels, termed Lesion_margin1 to Lesion_margin5) and total area (intra- plus perinodular region, termed Lesion_total1 to Lesion_total5) on PET/CT images were delineated using PETtumor and Marge tool of segmentation editor. A total of 1,037 radiomic features were extracted separately from PET and CT images, and the optimal features were selected to develop radiomic models. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). Results Good and acceptable performance was, respectively, observed in the training (AUC = 0.868, p < 0.001) and validation (AUC = 0.715, p = 0.004) sets for the intranodular radiomic model. Among the perinodular models, the Lesion_margin2 model demonstrated the highest AUC in both sets (0.883 and 0.616, p < 0.001 and p = 0.122). Similarly, in terms of total models, Lesion_total2 model was found to outperform others in the training (AUC = 0.879, p < 0.001) and validation (AUC = 0.742, p = 0.001) sets, slightly surpassing the intranodular model. Conclusion When intra- and perinodular radiomic features extracted from the immediate vicinity of the nodule/mass up to 2 voxels distance on 18F-FDG PET/CT imaging are combined, improved differential diagnostic performance in distinguishing between lung adenocarcinomas and granulomas is achieved compared to the intra- and perinodular radiomic features alone.
Collapse
Affiliation(s)
- Congna Tian
- Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yujing Hu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuheng Li
- Department of Nuclear Medicine, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Xinchao Zhang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qiang Wei
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Kang Li
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Zheng
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xin Yang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanan Qin
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanzhu Bian
- Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Feng JW, Liu SQ, Qi GF, Ye J, Hong LZ, Wu WX, Jiang Y. Development and Validation of Clinical-Radiomics Nomogram for Preoperative Prediction of Central Lymph Node Metastasis in Papillary Thyroid Carcinoma. Acad Radiol 2024; 31:2292-2305. [PMID: 38233259 DOI: 10.1016/j.acra.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND This investigation sought to create and verify a nomogram utilizing ultrasound radiomics and crucial clinical features to preoperatively identify central lymph node metastasis (CLNM) in patients diagnosed with papillary thyroid carcinoma (PTC). METHODS We enrolled 1069 patients with PTC between January 2022 and January 2023. All patients were randomly divided into a training cohort (n = 748) and a validation cohort (n = 321). We extracted 129 radiomics features from the original gray-scale ultrasound image. Then minimum Redundancy-Maximum Relevance and Least Absolute Shrinkage and Selection Operator regression were used to select the CLNM-related features and calculate the radiomic signature. Incorporating the radiomic signature and clinical risk factors, a clinical-radiomics nomogram was constructed using multivariable logistic regression. The predictive performance of clinical-radiomics nomogram was evaluated by calibration, discrimination, and clinical utility in the training and validation cohorts. RESULTS The clinical-radiomics nomogram which consisted of five predictors (age, tumor size, margin, lateral lymph node metastasis, and radiomics signature), showed good calibration and discrimination in both the training (AUC 0.960; 95% CI, 0.947-0.972) and the validation (AUC 0.925; 95% CI, 0.895-0.955) cohorts. Discrimination of the clinical-radiomics nomogram showed better discriminative ability than the clinical signature, radiomics signature, and conventional ultrasound model in both the training and validation cohorts. Decision curve analysis showed satisfactory clinical utility of the nomogram. CONCLUSION The clinical-radiomics nomogram incorporating radiomic signature and key clinical features was efficacious in predicting CLNM in PTC patients.
Collapse
Affiliation(s)
- Jia-Wei Feng
- Department of thyroid surgery, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, Jiangsu, China (J.W.F., G.F.Q., J.Y., L.Z.H., W.X.W., Y.J.)
| | - Shui-Qing Liu
- Department of Ultrasound, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, Jiangsu, China (S.Q.L.)
| | - Gao-Feng Qi
- Department of thyroid surgery, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, Jiangsu, China (J.W.F., G.F.Q., J.Y., L.Z.H., W.X.W., Y.J.)
| | - Jing Ye
- Department of thyroid surgery, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, Jiangsu, China (J.W.F., G.F.Q., J.Y., L.Z.H., W.X.W., Y.J.)
| | - Li-Zhao Hong
- Department of thyroid surgery, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, Jiangsu, China (J.W.F., G.F.Q., J.Y., L.Z.H., W.X.W., Y.J.)
| | - Wan-Xiao Wu
- Department of thyroid surgery, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, Jiangsu, China (J.W.F., G.F.Q., J.Y., L.Z.H., W.X.W., Y.J.)
| | - Yong Jiang
- Department of thyroid surgery, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, Jiangsu, China (J.W.F., G.F.Q., J.Y., L.Z.H., W.X.W., Y.J.).
| |
Collapse
|
9
|
Huang W, Son MH, Ha LN, Kang L, Cai W. More than meets the eye: 2-[ 18F]FDG PET-based radiomics predicts lymph node metastasis in colorectal cancer patients to enable precision medicine. Eur J Nucl Med Mol Imaging 2024; 51:1725-1728. [PMID: 38424238 PMCID: PMC11042987 DOI: 10.1007/s00259-024-06664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No.8 Xishiku Str, Xicheng District, Beijing, 100034, China
| | - Mai Hong Son
- Department of Nuclear Medicine, Hospital 108, Hanoi, Vietnam
| | - Le Ngoc Ha
- Department of Nuclear Medicine, Hospital 108, Hanoi, Vietnam
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No.8 Xishiku Str, Xicheng District, Beijing, 100034, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA.
| |
Collapse
|
10
|
Pei J, Yu J, Ge P, Bao L, Pang H, Zhang H. Constructing a Classification Model for Cervical Cancer Tumor Tissue and Normal Tissue Based on CT Radiomics. Technol Cancer Res Treat 2024; 23:15330338241298554. [PMID: 39539120 PMCID: PMC11562001 DOI: 10.1177/15330338241298554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to develop an automated classification framework for distinguishing between cervical cancer tumor and normal uterine tissue, leveraging CT images for radiomics feature extraction. We retrospectively analyzed CT images from 117 cervical cancer patients. To distinguish between cancerous and healthy tissue, we segmented gross tumor volume and normal uterine tissue as distinct regions of interest (ROIs) using manual segmentation techniques. Key radiomic parameters were extracted from these ROIs. To bolster model's predictive capability, the data was stratified into train data (70%) and validation data (30%). During feature selection phase, we applied Least Absolute Shrinkage and Selection Operator regression algorithm to identify most relevant features. Subsequently, we built classification models using five state-of-the-art machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), and Decision Tree (DT). Ultimately, the performance of each model was evaluated. Through stringent feature selection process, we identified 18 pivotal radiomic features for classification of cervical cancer and normal uterine tissue. When applied to test data, all five models achieved excellent performance, with area under the curve (AUC) values ranging from 0.8866 to 0.9190 (SVM: 0.9144, RF: 0.9078, KNN: 0.9051, DT: 0.8866, XGBoost: 0.9190), all surpassing threshold of 0.8. In terms of test data, all five models had high sensitivity; accuracy of SVM, RF, and XGBoost models was comparable; and specificity of five models was similar. XGBoost model outperformed the others in terms of diagnostic accuracy, achieving an AUC of 0.8737 (95% CI: 0.8198-0.9277) for train data and 0.9190 (95% CI: 0.8525-0.9854) for test data. Our findings underscore the potential of CT radiomics combined with machine learning algorithms for accurately classifying cervical cancer tumors and normal uterine tissue with high recognition capabilities. This approach holds significant promise for clinical diagnostics.
Collapse
Affiliation(s)
- Jinghong Pei
- Nursing Department, The Second People's Hospital of Jingdezhen, Jingdezhen, China
| | - Jing Yu
- Department of Oncology, The Second People's Hospital of Jingdezhen, Jingdezhen, China
| | - Ping Ge
- Department of General Practice Medicine, The Second People's Hospital of Jingdezhen, Jingdezhen, China
| | - Liman Bao
- Department of Public Health, The Second People's Hospital of Jingdezhen, Jingdezhen, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Huaiwen Zhang
- Department of Radiotherapy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, China
| |
Collapse
|
11
|
Feng L, Zhang S, Wang C, Li S, Kan Y, Wang C, Zhang H, Wang W, Yang J. Axial Skeleton Radiomics of 18F-FDG PET/CT: Impact on Event-Free Survival Prediction in High-Risk Pediatric Neuroblastoma. Acad Radiol 2023; 30:2487-2496. [PMID: 36828720 DOI: 10.1016/j.acra.2023.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES To construct and validate a combined model based on axial skeleton radiomics of 18F-FDG PET/CT for predicting event-free survival in high-risk pediatric neuroblastoma patients. MATERIALS AND METHODS Eighty-seven high-risk neuroblastoma patients were retrospectively enrolled in this study and randomized in a 7:3 ratio to the training and validation cohorts. The radiomics model was constructed using radiomics features that were extracted from the axial skeleton. A univariate Cox regression analysis was then performed to screen clinical risk factors associated with event-free survival for building clinical model. Radiomics features and clinical risk factors were incorporated to construct the combined model for predicting the event-free survival in high-risk neuroblastoma patients. The performance of the models was evaluated by the C-index. RESULTS Eighteen radiomics features were selected to build the radiomics model. The radiomics model achieved better event-free survival prediction than the clinical model in the training cohort (C-index: 0.846 vs. 0.612) and validation cohort (C-index: 0.754 vs. 0.579). The combined model achieved the best prognostic prediction performance with a C-index of 0.863 and 0.799 in the training and validation cohorts, respectively. CONCLUSION The combined model integrating radiomics features and clinical risk factors showed more accurate predictive performance for event-free survival in high-risk pediatric neuroblastoma patients, which helps to design individualized treatment strategies and regular follow-ups.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Shuxin Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Chaoran Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Siqi Li
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Ying Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Chao Wang
- SinoUnion Healthcare Inc., Beijing, China
| | - Hui Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| |
Collapse
|
12
|
Vural Topuz Ö, Aksu A, Yılmaz Özgüven MB. A different perspective on 18F-FDG PET radiomics in colorectal cancer patients: The relationship between intra & peritumoral analysis and pathological findings. Rev Esp Med Nucl Imagen Mol 2023; 42:359-366. [PMID: 37088299 DOI: 10.1016/j.remnie.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVE We aimed to determine the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) based primary tumoral and peritumoral radiomics in the prediction of tumor deposits (TDs), tumor budding (TB) and extramural venous invasion (EMVI) of colorectal cancer (CRC). METHODS Our retrospective study included 77 CRC patients who had preoperative 18F-FDG PET/CT between June 2020 and February 2022. A total of 131 radiomic features were extracted from primary tumors and peritumoral areas on PET/CT fusion images. The relationship between TDs, TB, EMVI and T stage in the postoperative pathology of the tumors and radiomic features was investigated. Features with a correlation coefficient (CC) less than 0.8 were analyzed by logistic regression. The area under curve (AUC) obtained from the receiver operating characteristic analysis was used to measure the model performance. RESULTS A model was developed from primary tumoral and peritumoral radiomics data to predict T stage (AUC 0.931), and also a predictive model was constructed from primary tumor derived radiomics to predict EMVI (AUC 0.739). Radiomic data derived from the primary tumor was obtained as a predictive prognostic factor in predicting TDs and a peritumoral feature was found to be a prognostic factor in predicting TB. CONCLUSIONS Intratumoral and peritumoral radiomics derived from 18F-FDG PET/CT are useful for non-invasive early prediction of pathological features that have important implications in the management of CRC.
Collapse
Affiliation(s)
- Özge Vural Topuz
- University of Health Sciences, Başakşehir Cam and Sakura City Hospital, Department of Nuclear Medicine, Istanbul, Turkey.
| | - Ayşegül Aksu
- İzmir Katip Çelebi University, Atatürk Training and Research Hospital, Department of Nuclear Medicine, İzmir, Turkey
| | - Müveddet Banu Yılmaz Özgüven
- University of Health Sciences, Başakşehir Cam and Sakura City Hospital, Department of Pathology, Istanbul, Turkey
| |
Collapse
|
13
|
Qiu Y, Liu YF, Shu X, Qiao XF, Ai GY, He XJ. Peritumoral Radiomics Strategy Based on Ensemble Learning for the Prediction of Gleason Grade Group of Prostate Cancer. Acad Radiol 2023; 30 Suppl 1:S1-S13. [PMID: 37393175 DOI: 10.1016/j.acra.2023.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
RATIONALE AND OBJECTIVES To develop and evaluate a peritumoral radiomic-based machine learning model to differentiate low-Gleason grade group (L-GGG) and high-GGG (H-GGG) prostate lesions. MATERIALS AND METHODS In this retrospective study, a total of 175 patients with prostate cancer (PCa) confirmed by puncture biopsy were recruited and included 59 patients with L-GGG and 116 patients with H-GGG. The original PCa regions of interest (ROIs) were delineated on T2-weighted (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps, and then centra-tumoral and peritumoral ROIs were defined. Features were meticulously extracted from each ROI to establish radiomics models, employing distinct sequence datasets. Peritumoral radiomics models were specifically developed for both the peripheral zone (PZ) and transitional zone (TZ), utilizing dedicated PZ and TZ datasets, respectively. The performances of the models were evaluated by using the receiver operating characteristic (ROC) curve and precision-recall curve. RESULTS The classification model with combined peritumoral features based on T2 + DWI + ADC sequence dataset demonstrated superior performance compared to the original tumor and centra-tumoral classification models. It achieved an area under the ROC curve (AUC) of 0.850 [95% confidence interval, 0.849, 0.860] and an average accuracy of 0.950. The combined peritumoral model outperformed the regional peritumoral models with AUC of 0.85 versus 0.75 for PZ lesions and 0.88 versus 0.69 for TZ lesions, respectively. The peritumoral classification models exhibit greater efficacy in predicting PZ lesions as opposed to TZ lesions. CONCLUSION The peritumoral radiomics features showed excellent performance in predicting GGG in PCa patients and might be a valuable addition to the non-invasive assessment of PCa aggressiveness.
Collapse
Affiliation(s)
- Yang Qiu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yun-Fan Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xin Shu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiao-Feng Qiao
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guang-Yong Ai
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiao-Jing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Lucia F, Bourbonne V, Pleyers C, Dupré PF, Miranda O, Visvikis D, Pradier O, Abgral R, Mervoyer A, Classe JM, Rousseau C, Vos W, Hermesse J, Gennigens C, De Cuypere M, Kridelka F, Schick U, Hatt M, Hustinx R, Lovinfosse P. Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer. Eur J Nucl Med Mol Imaging 2023; 50:2514-2528. [PMID: 36892667 DOI: 10.1007/s00259-023-06180-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using 18F-FDG PET/CT and MRI radiomics combined with clinical parameters. METHODS We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital 18F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. RESULTS In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. CONCLUSIONS Radiomic features extracted from pre-CRT analog and digital 18F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital, Brest, France.
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France.
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium.
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Clémence Pleyers
- Department of Radiotherapy Oncology, University Hospital of Liège, Liège, Belgium
| | | | - Omar Miranda
- Radiation Oncology Department, University Hospital, Brest, France
| | | | - Olivier Pradier
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Ronan Abgral
- Nuclear Medicine Department, University Hospital, Brest, France
- EA GETBO 3878, IFR 148, University of Brest, UBO, Brest, France
| | - Augustin Mervoyer
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest Centre René Gauducheau, Saint Herblain, France
| | - Jean-Marc Classe
- Department of Surgical Oncology, Institut de Cancérologie de l'Ouest Centre René Gauducheau, Saint Herblain, France
| | - Caroline Rousseau
- Université de Nantes, CNRS, Inserm, CRCINA, F-44000, Nantes, France
- ICO René Gauducheau, F-44800, Saint-Herblain, France
| | - Wim Vos
- Radiomics SA, Liège, Belgium
| | - Johanne Hermesse
- Department of Radiotherapy Oncology, University Hospital of Liège, Liège, Belgium
| | - Christine Gennigens
- Department of Medical Oncology, University Hospital of Liège, Liège, Belgium
| | | | - Frédéric Kridelka
- Department of Gynecology, University Hospital of Liège, Liège, Belgium
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Mathieu Hatt
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium
| | - Pierre Lovinfosse
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
15
|
Dai J, Wang H, Xu Y, Chen X, Tian R. Clinical application of AI-based PET images in oncological patients. Semin Cancer Biol 2023; 91:124-142. [PMID: 36906112 DOI: 10.1016/j.semcancer.2023.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra- and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.
Collapse
Affiliation(s)
- Jiaona Dai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City 421001, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Jiang L, Zhang Z, Guo S, Zhao Y, Zhou P. Clinical-Radiomics Nomogram Based on Contrast-Enhanced Ultrasound for Preoperative Prediction of Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma. Cancers (Basel) 2023; 15:cancers15051613. [PMID: 36900404 PMCID: PMC10001290 DOI: 10.3390/cancers15051613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
This study aimed to establish a new clinical-radiomics nomogram based on ultrasound (US) for cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC). We collected 211 patients with PTC between June 2018 and April 2020, then we randomly divided these patients into the training set (n = 148) and the validation set (n = 63). 837 radiomics features were extracted from B-mode ultrasound (BMUS) images and contrast-enhanced ultrasound (CEUS) images. The maximum relevance minimum redundancy (mRMR) algorithm, least absolute shrinkage and selection operator (LASSO) algorithm, and backward stepwise logistic regression (LR) were applied to select key features and establish a radiomics score (Radscore), including BMUS Radscore and CEUS Radscore. The clinical model and clinical-radiomics model were established using the univariate analysis and multivariate backward stepwise LR. The clinical-radiomics model was finally presented as a clinical-radiomics nomogram, the performance of which was evaluated by the receiver operating characteristic curves, Hosmer-Lemeshow test, calibration curves, and decision curve analysis (DCA). The results show that the clinical-radiomics nomogram was constructed by four predictors, including gender, age, US-reported LNM, and CEUS Radscore. The clinical-radiomics nomogram performed well in both the training set (AUC = 0.820) and the validation set (AUC = 0.814). The Hosmer-Lemeshow test and the calibration curves demonstrated good calibration. The DCA showed that the clinical-radiomics nomogram had satisfactory clinical utility. The clinical-radiomics nomogram constructed by CEUS Radscore and key clinical features can be used as an effective tool for individualized prediction of cervical LNM in PTC.
Collapse
Affiliation(s)
- Liqing Jiang
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China; (L.J.); (S.G.); (Y.Z.)
| | - Zijian Zhang
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Shiyan Guo
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China; (L.J.); (S.G.); (Y.Z.)
| | - Yongfeng Zhao
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China; (L.J.); (S.G.); (Y.Z.)
| | - Ping Zhou
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha 410013, China; (L.J.); (S.G.); (Y.Z.)
- Correspondence:
| |
Collapse
|
17
|
Wang F, Cheng M, Du B, Li LM, Huang WP, Gao JB. Use of radiomics containing an effective peritumoral area to predict early recurrence of solitary hepatocellular carcinoma ≤5 cm in diameter. Front Oncol 2022; 12:1032115. [PMID: 36387096 PMCID: PMC9650218 DOI: 10.3389/fonc.2022.1032115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 01/27/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth leading type of cancer worldwide. We aimed to develop a preoperative predictive model of the risk of early tumor recurrence after HCC treatment based on radiomic features of the peritumoral region and evaluate the performance of this model against postoperative pathology. Method Our model was developed using a retrospective analysis of imaging and clinicopathological data of 175 patients with an isolated HCC ≤5 cm in diameter; 117 patients were used for model training and 58 for model validation. The peritumoral area was delineated layer-by-layer for the arterial and portal vein phase on preoperative dynamic enhanced computed tomography images. The volume area of interest was expanded by 5 and 10 mm and the radiomic features of these areas extracted. Lasso was used to select the most stable features. Results The radiomic features of the 5-mm area were sufficient for prediction of early tumor recurrence, with an area under the curve (AUC) value of 0.706 for the validation set and 0.837 for the training set using combined images. The AUC of the model using clinicopathological information alone was 0.753 compared with 0.786 for the preoperative radiomics model (P >0.05). Conclusions Radiomic features of a 5-mm peritumoral region may provide a non-invasive biomarker for the preoperative prediction of the risk of early tumor recurrence for patients with a solitary HCC ≤5 cm in diameter. A fusion model that combines the radiomic features of the peritumoral region and postoperative pathology could contribute to individualized treatment of HCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Cheng
- Information Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Du
- Vasculocardiology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-ming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-peng Huang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian-bo Gao,
| |
Collapse
|
18
|
Zhang Z, Li X, Sun H. Development of machine learning models integrating PET/CT radiomic and immunohistochemical pathomic features for treatment strategy choice of cervical cancer with negative pelvic lymph node by mediating COX-2 expression. Front Physiol 2022; 13:994304. [PMID: 36311222 PMCID: PMC9614332 DOI: 10.3389/fphys.2022.994304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives: We aimed to establish machine learning models based on texture analysis predicting pelvic lymph node metastasis (PLNM) and expression of cyclooxygenase-2 (COX-2) in cervical cancer with PET/CT negative pelvic lymph node (PLN). Methods: Eight hundred and thirty-seven texture features were extracted from PET/CT images of 148 early-stage cervical cancer patients with negative PLN. The machine learning models were established by logistic regression from selected features and evaluated by the area under the curve (AUC). The correlation of selected PET/CT texture features predicting PLNM or COX-2 expression and the corresponding immunohistochemical (IHC) texture features was analyzed by the Spearman test. Results: Fourteen texture features were reserved to calculate the Rad-score for PLNM and COX-2. The PLNM model predicting PLNM showed good prediction accuracy in the training and testing dataset (AUC = 0.817, p < 0.001; AUC = 0.786, p < 0.001, respectively). The COX-2 model also behaved well for predicting COX-2 expression levels in the training and testing dataset (AUC = 0.814, p < 0.001; AUC = 0.748, p = 0.001). The wavelet-LHH-GLCM ClusterShade of the PET image selected to predict PLNM was slightly correlated with the corresponding feature of the IHC image (r = −0.165, p < 0.05). There was a weak correlation of wavelet-LLL-GLRLM LongRunEmphasis of the PET image selected to predict COX-2 correlated with the corresponding feature of the IHC image (r = 0.238, p < 0.05). The correlation between PET image selected to predict COX-2 and the corresponding feature of the IHC image based on wavelet-LLL-GLRLM LongRunEmphasis is considered weak positive (r = 0.238, p=<0.05). Conclusion: This study underlined the significant application of the machine learning models based on PET/CT texture analysis for predicting PLNM and COX-2 expression, which could be a novel tool to assist the clinical management of cervical cancer with negative PLN on PET/CT images.
Collapse
|
19
|
Feng L, Yang X, Lu X, Kan Y, Wang C, Zhang H, Wang W, Yang J. Diagnostic Value of 18F-FDG PET/CT-Based Radiomics Nomogram in Bone Marrow Involvement of Pediatric Neuroblastoma. Acad Radiol 2022; 30:940-951. [PMID: 36117128 DOI: 10.1016/j.acra.2022.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To develop and validate an 18F-FDG PET/CT-based radiomics nomogram and evaluate the value of the 18F-FDG PET/CT-based radiomics nomogram for the diagnosis of bone marrow involvement (BMI) in pediatric neuroblastoma. MATERIALS AND METHODS A total of 144 patients with neuroblastoma (100 in the training cohort and 44 in the validation cohort) were retrospectively included. The PET/CT images of patients were visually assessed. The results of bone marrow aspirates or biopsies were used as the gold standard for BMI. Radiomics features and conventional PET parameters were extracted using the 3D slicer. Features were selected by the least absolute shrinkage and selection operator regression, and radiomics signature was constructed. Univariate and multivariate logistic regression analyses were applied to identify the independent clinical risk factors and construct the clinical model. Other different models, including the conventional PET model, combined PET-clinical model and combined radiomics model, were built using logistic regression. The combined radiomics model was based on clinical factors, conventional PET parameters and radiomics signature, which was presented as a radiomics nomogram. The diagnostic performance of the different models was evaluated by receiver operating characteristic (ROC) curves and decision curve analysis (DCA). RESULTS By visual assessment, BMI was observed in 80 patients. Four conventional PET parameters (SUVmax, SUVmean, metabolic tumor volume, and total lesion glycolysis) were extracted. And 15 radiomics features were selected to build the radiomics signature. The 11q aberration, neuron-specific enolase and vanillylmandelic acid were identified as the independent clinical risk factors to establish the clinical model. The radiomics nomogram incorporating the radiomics signature, the independent clinical risk factors and SUVmean demonstrated the best diagnostic value for identifying BMI, with an area under the curve (AUC) of 0.963 and 0.931 in the training and validation cohorts, respectively. And the DCA demonstrated that the radiomics nomogram was clinically useful. CONCLUSION The 18F-FDG PET/CT-based radiomics nomogram which incorporates radiomics signature, independent clinical risk factors and conventional PET parameters could improve the diagnostic performance for BMI of pediatric neuroblastoma without additional medical costs and radiation exposure.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Xu Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Ying Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Chao Wang
- Sinounion Medical Technology (Beijing) Co., Ltd. Beijing, China
| | - Hui Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| |
Collapse
|
20
|
Shrestha P, Poudyal B, Yadollahi S, E. Wright D, V. Gregory A, D. Warner J, Korfiatis P, C. Green I, L. Rassier S, Mariani A, Kim B, K. Laughlin-Tommaso S, L. Kline T. A systematic review on the use of artificial intelligence in gynecologic imaging – Background, state of the art, and future directions. Gynecol Oncol 2022; 166:596-605. [PMID: 35914978 DOI: 10.1016/j.ygyno.2022.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Machine learning, deep learning, and artificial intelligence (AI) are terms that have made their way into nearly all areas of medicine. In the case of medical imaging, these methods have become the state of the art in nearly all areas from image reconstruction to image processing and automated analysis. In contrast to other areas, such as brain and breast imaging, the impacts of AI have not been as strongly felt in gynecologic imaging. In this review article, we: (i) provide a background of clinically relevant AI concepts, (ii) describe methods and approaches in computer vision, and (iii) highlight prior work related to image classification tasks utilizing AI approaches in gynecologic imaging. DATA SOURCES A comprehensive search of several databases from each database's inception to March 18th, 2021, English language, was conducted. The databases included Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, and Daily, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, and Ovid Cochrane Database of Systematic Reviews and ClinicalTrials.gov. METHODS OF STUDY SELECTION We performed an extensive literature review with 61 articles curated by three reviewers and subsequent sorting by specialists using specific inclusion and exclusion criteria. TABULATION, INTEGRATION, AND RESULTS We summarize the literature grouped by each of the three most common gynecologic malignancies: endometrial, cervical, and ovarian. For each, a brief introduction encapsulating the AI methods, imaging modalities, and clinical parameters in the selected articles is presented. We conclude with a discussion of current developments, trends and limitations, and suggest directions for future study. CONCLUSION This review article should prove useful for collaborative teams performing research studies targeted at the incorporation of radiological imaging and AI methods into gynecological clinical practice.
Collapse
|
21
|
Chen C, Cao Y, Li W, Liu Z, Liu P, Tian X, Sun C, Wang W, Gao H, Kang S, Wang S, Jiang J, Chen C, Tian J. The pathological risk score: A new deep learning-based signature for predicting survival in cervical cancer. Cancer Med 2022; 12:1051-1063. [PMID: 35762423 PMCID: PMC9883425 DOI: 10.1002/cam4.4953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To develop and validate a deep learning-based pathological risk score (RS) with an aim of predicting patients' prognosis to investigate the potential association between the information within the whole slide image (WSI) and cervical cancer prognosis. METHODS A total of 251 patients with the International Federation of Gynecology and Obstetrics (FIGO) Stage IA1-IIA2 cervical cancer who underwent surgery without any preoperative treatment were enrolled in this study. Both the clinical characteristics and WSI of each patient were collected. To construct a prognosis-associate RS, high-dimensional pathological features were extracted using a convolutional neural network with an autoencoder. With the score threshold selected by X-tile, Kaplan-Meier survival analysis was applied to verify the prediction performance of RS in overall survival (OS) and disease-free survival (DFS) in both the training and testing datasets, as well as different clinical subgroups. RESULTS For the OS and DFS prediction in the testing cohort, RS showed a Harrell's concordance index of higher than 0.700, while the areas under the curve (AUC) achieved up to 0.800 in the same cohort. Furthermore, Kaplan-Meier survival analysis demonstrated that RS was a potential prognostic factor, even in different datasets or subgroups. It could further distinguish the survival differences after clinicopathological risk stratification. CONCLUSION In the present study, we developed an effective signature in cervical cancer for prognosis prediction and patients' stratification in OS and DFS.
Collapse
Affiliation(s)
- Chi Chen
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of Medicine and EngineeringBeihang UniversityBeijingChina,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex SystemsInstitute of Automation, Chinese Academy of SciencesBeijingChina
| | - Yuye Cao
- Department of Obstetrics and GynecologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Weili Li
- Department of Obstetrics and GynecologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex SystemsInstitute of Automation, Chinese Academy of SciencesBeijingChina,School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Ping Liu
- Department of Obstetrics and GynecologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Xin Tian
- Department of Obstetrics and GynecologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Caixia Sun
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of Medicine and EngineeringBeihang UniversityBeijingChina,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex SystemsInstitute of Automation, Chinese Academy of SciencesBeijingChina
| | - Wuliang Wang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of He' nan Medical UniversityZhengzhouChina
| | - Han Gao
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of Medicine and EngineeringBeihang UniversityBeijingChina,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex SystemsInstitute of Automation, Chinese Academy of SciencesBeijingChina
| | - Shan Kang
- Department of GynecologyFourth Hospital Hebei Medical UniversityShijiazhuangChina
| | - Shaoguang Wang
- Department of GynecologyYantai Yuhuangding HospitalYantaiChina
| | - Jingying Jiang
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of Medicine and EngineeringBeihang UniversityBeijingChina,Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
| | - Chunlin Chen
- Department of Obstetrics and GynecologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of Medicine and EngineeringBeihang UniversityBeijingChina,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex SystemsInstitute of Automation, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
22
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
23
|
Zhang L, Zhang B. Adding non-tumor radiomic features to the prognostic model is bothersome but useful. J Nucl Med 2021; 63:494-495. [PMID: 34916244 DOI: 10.2967/jnumed.121.263479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Lu Zhang
- the First Affiliated Hospital of Jinan University, China
| | - Bin Zhang
- the First Affiliated Hospital of Jinan University, China
| |
Collapse
|
24
|
Zhang C, Gu J, Zhu Y, Meng Z, Tong T, Li D, Liu Z, Du Y, Wang K, Tian J. AI in spotting high-risk characteristics of medical imaging and molecular pathology. PRECISION CLINICAL MEDICINE 2021; 4:271-286. [PMID: 35692858 PMCID: PMC8982528 DOI: 10.1093/pcmedi/pbab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Medical imaging provides a comprehensive perspective and rich information for disease diagnosis. Combined with artificial intelligence technology, medical imaging can be further mined for detailed pathological information. Many studies have shown that the macroscopic imaging characteristics of tumors are closely related to microscopic gene, protein and molecular changes. In order to explore the function of artificial intelligence algorithms in in-depth analysis of medical imaging information, this paper reviews the articles published in recent years from three perspectives: medical imaging analysis method, clinical applications and the development of medical imaging in the direction of pathological molecular prediction. We believe that AI-aided medical imaging analysis will be extensively contributing to precise and efficient clinical decision.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Big Data Management and Application, School of International Economics and Management, Beijing Technology and Business University, Beijing 100048, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jionghui Gu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Zhu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheling Meng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Tong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongyang Li
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
25
|
Chong GO, Park SH, Jeong SY, Kim SJ, Park NJY, Lee YH, Lee SW, Hong DG, Park JY, Han HS. Prediction Model for Tumor Budding Status Using the Radiomic Features of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Cervical Cancer. Diagnostics (Basel) 2021; 11:1517. [PMID: 34441452 PMCID: PMC8392321 DOI: 10.3390/diagnostics11081517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To compare the radiomic features of F-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and intratumoral heterogeneity according to tumor budding (TB) status and to develop a prediction model for the TB status using the radiomic feature of 18F-FDG PET/CT in patients with cervical cancer. MATERIALS AND METHODS Seventy-six patients with cervical cancer who underwent radical hysterectomy and preoperative 18F-FDG PET/CT were included. We assessed the status of intratumoral budding (ITP) and peritumoral budding (PTB) in all available hematoxylin and eosin-stained specimens. Three conventional metabolic parameters and fifty-nine features were extracted and analyzed. Univariate analysis was used to identify significant metabolic parameters and radiomic findings for TB status. The prediction model for TB status was built using 3 machine learning classifiers (random forest, support vector machine, and neural network). RESULTS Univariate analysis led to the identification of 2 significant metabolic parameters and 12 significant radiomic features according to intratumoral budding (ITB) status. Among these parameters, following multivariate analysis for the ITB status, only compacity remained significant (odds ratio, 5.0047; 95% confidence interval, 1.1636-21.5253; p = 0.0305). Two conventional metabolic parameters and 25 radiomic features were selected by the Lasso regularization, and the prediction model for the ITB status had a mean area under the curve of 0.762 in the test dataset. CONCLUSION Radiomic features of 18F-FDG PET/CT were associated with the ITB status. The prediction model using radiomic features successfully predicted the TB status in patients with cervical cancer. The prediction models for the ITB status may contribute to personalized medicine in the management of patients with cervical cancer.
Collapse
Affiliation(s)
- Gun Oh Chong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (G.O.C.); (S.J.K.); (Y.H.L.); (D.G.H.)
- Department of Obstetrics and Gynecology, Chilgok Hospital, Kyungpook National University, Daegu 41404, Korea
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (N.J.-Y.P.); (H.S.H.)
| | - Shin-Hyung Park
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, Chilgok Hospital, Kyungpook National University Daegu, Daegu 41404, Korea
| | - Su Jeong Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (G.O.C.); (S.J.K.); (Y.H.L.); (D.G.H.)
- Department of Obstetrics and Gynecology, Chilgok Hospital, Kyungpook National University, Daegu 41404, Korea
| | - Nora Jee-Young Park
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (N.J.-Y.P.); (H.S.H.)
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Yoon Hee Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (G.O.C.); (S.J.K.); (Y.H.L.); (D.G.H.)
- Department of Obstetrics and Gynecology, Chilgok Hospital, Kyungpook National University, Daegu 41404, Korea
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (N.J.-Y.P.); (H.S.H.)
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, Chilgok Hospital, Kyungpook National University Daegu, Daegu 41404, Korea
| | - Dae Gy Hong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (G.O.C.); (S.J.K.); (Y.H.L.); (D.G.H.)
- Department of Obstetrics and Gynecology, Chilgok Hospital, Kyungpook National University, Daegu 41404, Korea
| | - Ji Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Hyung Soo Han
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (N.J.-Y.P.); (H.S.H.)
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|