1
|
Mese I, Kocak B. ChatGPT as an effective tool for quality evaluation of radiomics research. Eur Radiol 2025; 35:2030-2042. [PMID: 39406959 DOI: 10.1007/s00330-024-11122-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 03/18/2025]
Abstract
OBJECTIVES This study aimed to evaluate the effectiveness of ChatGPT-4o in assessing the methodological quality of radiomics research using the radiomics quality score (RQS) compared to human experts. METHODS Published in European Radiology, European Radiology Experimental, and Insights into Imaging between 2023 and 2024, open-access and peer-reviewed radiomics research articles with creative commons attribution license (CC-BY) were included in this study. Pre-prints from MedRxiv were also included to evaluate potential peer-review bias. Using the RQS, each study was independently assessed twice by ChatGPT-4o and by two radiologists with consensus. RESULTS In total, 52 open-access and peer-reviewed articles were included in this study. Both ChatGPT-4o evaluation (average of two readings) and human experts had a median RQS of 14.5 (40.3% percentage score) (p > 0.05). Pairwise comparisons revealed no statistically significant difference between the readings of ChatGPT and human experts (corrected p > 0.05). The intraclass correlation coefficient for intra-rater reliability of ChatGPT-4o was 0.905 (95% CI: 0.840-0.944), and those for inter-rater reliability with human experts for each evaluation of ChatGPT-4o were 0.859 (95% CI: 0.756-0.919) and 0.914 (95% CI: 0.855-0.949), corresponding to good to excellent reliability for all. The evaluation by ChatGPT-4o took less time (2.9-3.5 min per article) compared to human experts (13.9 min per article by one reader). Item-wise reliability analysis showed ChatGPT-4o maintained consistently high reliability across almost all RQS items. CONCLUSION ChatGPT-4o provides reliable and efficient assessments of radiomics research quality. Its evaluations closely align with those of human experts and reduce evaluation time. KEY POINTS Question Is ChatGPT effective and reliable in evaluating radiomics research quality based on RQS? Findings ChatGPT-4o showed high reliability and efficiency, with evaluations closely matching human experts. It can considerably reduce the time required for radiomics research quality assessment. Clinical relevance ChatGPT-4o offers a quick and reliable automated alternative for evaluating the quality of radiomics research, with the potential to assess radiomics research at a large scale in the future.
Collapse
Affiliation(s)
- Ismail Mese
- Department of Radiology, Erenkoy Mental Health and Neurology Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Burak Kocak
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
2
|
Song S, Rhee S. CKAP4 is a potential therapeutic target to overcome resistance to EGFR-TKIs in lung adenocarcinoma. Genes Genomics 2025; 47:331-340. [PMID: 39704929 DOI: 10.1007/s13258-024-01606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are standard treatments for non-small cell lung cancer (NSCLC) patients with EGFR mutations; however, drug resistance limits their efficacy. Cytoskeleton-associated protein 4 (CKAP4) has been linked to cancer progression, but its role in EGFR-TKI resistance remains unclear. OBJECTIVE This study investigates the clinical relevance of CKAP4 as a therapeutic target to overcome EGFR-TKI resistance in lung adenocarcinoma (LUAD) patients. METHODS GEO datasets were analyzed to identify 24 differentially expressed genes associated with EGFR-TKI resistance, with CKAP4 selected via functional annotation and scoring using the VarElect tool. The prognostic significance of CKAP4 was evaluated using public databases, and its upregulation was confirmed in osimertinib-tolerant H1975 cells through quantitative reverse transcription-polymerase chain reaction. RESULTS Integrated bioinformatics analysis identified CKAP4 as strongly associated with EGFR-TKI resistance. Elevated CKAP4 expression was particularly linked to poorer clinical outcomes in LUAD patients. Notably, osimertinib-tolerant cells exhibited high CKAP4 expression, correlating positively with increased half-maximal inhibitory concentrations of EGFR-TKIs. LUAD patients with upregulated CKAP4 showed significantly reduced overall and relapse-free survival. CONCLUSION This study underscores the prognostic value of CKAP4 in EGFR-mutated LUAD and highlights its potential as a therapeutic target to counter EGFR-TKI resistance.
Collapse
Affiliation(s)
- Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Lin F, Zhu LX, Ye ZM, Peng F, Chen MC, Li XM, Zhu ZH, Zhu Y. Computed Tomography-Based Intratumor Heterogeneity Predicts Response to Immunotherapy Plus Chemotherapy in Esophageal Squamous Cell Carcinoma. Acad Radiol 2024; 31:4886-4899. [PMID: 38981774 DOI: 10.1016/j.acra.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
RATIONALE AND OBJECTIVES This study explored the intratumor heterogeneity (ITH) of esophageal squamous cell carcinoma (ESCC) using computed tomography (CT) and investigated the value of CT-based ITH in predicting the response to immune checkpoint inhibitor (ICI) plus chemotherapy in patients with ESCC. MATERIALS AND METHODS This retrospective study included 416 patients with ESCC who received ICI plus chemotherapy at two independent hospitals between January 2019 and July 2022. Multiparametric CT features were extracted from ESCC lesions and screened using hierarchical clustering and dimensionality reduction algorithms. Logistic regression and machine learning models based on selected features were developed to predict treatment response and validated in separate datasets. ITH was quantified using the score calculated by the best-performing model and visualized through feature clustering and feature contribution heatmaps. A gene set enrichment analysis (GSEA) was performed to identify the biological pathways underlying the CT-based ITH. RESULTS The extreme gradient boosting model based on CT-derived ITH had higher discriminative power, with areas under the receiver operating characteristic curve of 0.864 (95% confidence interval [CI]: 0.774-0.954) and 0.796 (95% CI: 0.698-0.893) in the internal and external validation sets. The CT-based ITH pattern differed significantly between responding and non-responding patients. The GSEA indicated that CT-based ITH was associated with immunity-, keratinization-, and epidermal cell differentiation-related pathways. CONCLUSION CT-based ITH is an effective biomarker for identifying patients with ESCC who could benefit from ICI plus chemotherapy. Immunity-, keratinization-, and epidermal cell differentiation-related pathways may influence the patient's response to ICI plus chemotherapy.
Collapse
Affiliation(s)
- Fangzeng Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.L., M.C.C., Y.Z.)
| | - Lian-Xin Zhu
- Medical College of Nanchang University, Nanchang 330000, Jiangxi Province, People's Republic of China (L.X.Z.); Queen Mary University of London, London, United Kingdom (L.X.Z.)
| | - Zi-Ming Ye
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, Guangdong Province, People's Republic of China (Z.M.Y., Z.H.Z.)
| | - Fang Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.P.)
| | - Mei-Cheng Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.L., M.C.C., Y.Z.)
| | - Xiang-Min Li
- Department of Radiology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou 516080, Guangdong Province, People's Republic of China (X.M.L.)
| | - Zhi-Hua Zhu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, Guangdong Province, People's Republic of China (Z.M.Y., Z.H.Z.)
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.L., M.C.C., Y.Z.).
| |
Collapse
|
4
|
Lan H, Wei C, Xu F, Yang E, Lu D, Feng Q, Li T. 2.5D peritumoural radiomics predicts postoperative recurrence in stage I lung adenocarcinoma. Front Oncol 2024; 14:1382815. [PMID: 39267836 PMCID: PMC11390697 DOI: 10.3389/fonc.2024.1382815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Objective Radiomics can non-invasively predict the prognosis of a tumour by applying advanced imaging feature algorithms.The aim of this study was to predict the chance of postoperative recurrence by modelling tumour radiomics and peritumour radiomics and clinical features in patients with stage I lung adenocarcinoma (LUAD). Materials and methods Retrospective analysis of 190 patients with postoperative pathologically confirmed stage I LUAD from centre 1, who were divided into training cohort and internal validation cohort, with centre 2 added as external validation cohort. To develop a combined radiation-clinical omics model nomogram incorporating clinical features based on images from low-dose lung cancer screening CT plain for predicting postoperative recurrence and to evaluate the performance of the nomogram in the training cohort, internal validation cohort and external validation cohort. Results A total of 190 patients were included in the model in centre 1 and randomised into a training cohort of 133 and an internal validation cohort of 57 in a ratio of 7:3, and 39 were included in centre 2 as an external validation cohort. In the training cohort (AUC=0.865, 95% CI 0.824-0.906), internal validation cohort (AUC=0.902, 95% CI 0.851-0.953) and external validation cohort (AUC=0.830,95% CI 0.751-0.908), the combined radiation-clinical omics model had a good predictive ability. The combined model performed significantly better than the conventional single-modality models (clinical model, radiomic model), and the calibration curve and decision curve analysis (DCA) showed high accuracy and clinical utility of the nomogram. Conclusion The combined preoperative radiation-clinical omics model provides good predictive value for postoperative recurrence in stage ILUAD and combines the model's superiority in both internal and external validation cohorts, demonstrating its potential to aid in postoperative treatment strategies.
Collapse
Affiliation(s)
- Haimei Lan
- Department of Radiology, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Chaosheng Wei
- Department of Radiology, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Fengming Xu
- Department of Radiology, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Eqing Yang
- Department of Radiology, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Dayu Lu
- Department of Radiology, Longtan Hospital, Liuzhou, Guangxi, China
| | - Qing Feng
- Department of Radiology, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Tao Li
- Department of Radiology, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
5
|
Han W, Wang Y, Li T, Dong Y, Dang Y, He L, Xu L, Zhou Y, Li Y, Wang X. A CT-based integrated model for preoperative prediction of occult lymph node metastasis in early tongue cancer. PeerJ 2024; 12:e17254. [PMID: 38685941 PMCID: PMC11057426 DOI: 10.7717/peerj.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Background Occult lymph node metastasis (OLNM) is an essential prognostic factor for early-stage tongue cancer (cT1-2N0M0) and a determinant of treatment decisions. Therefore, accurate prediction of OLNM can significantly impact the clinical management and outcomes of patients with tongue cancer. The aim of this study was to develop and validate a multiomics-based model to predict OLNM in patients with early-stage tongue cancer. Methods The data of 125 patients diagnosed with early-stage tongue cancer (cT1-2N0M0) who underwent primary surgical treatment and elective neck dissection were retrospectively analyzed. A total of 100 patients were randomly assigned to the training set and 25 to the test set. The preoperative contrast-enhanced computed tomography (CT) and clinical data on these patients were collected. Radiomics features were extracted from the primary tumor as the region of interest (ROI) on CT images, and correlation analysis and the least absolute shrinkage and selection operator (LASSO) method were used to identify the most relevant features. A support vector machine (SVM) classifier was constructed and compared with other machine learning algorithms. With the same method, a clinical model was built and the peri-tumoral and intra-tumoral images were selected as the input for the deep learning model. The stacking ensemble technique was used to combine the multiple models. The predictive performance of the integrated model was evaluated for accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC-ROC), and compared with expert assessment. Internal validation was performed using a stratified five-fold cross-validation approach. Results Of the 125 patients, 41 (32.8%) showed OLNM on postoperative pathological examination. The integrated model achieved higher predictive performance compared with the individual models, with an accuracy of 84%, a sensitivity of 100%, a specificity of 76.5%, and an AUC-ROC of 0.949 (95% CI [0.870-1.000]). In addition, the performance of the integrated model surpassed that of younger doctors and was comparable to the evaluation of experienced doctors. Conclusions The multiomics-based model can accurately predict OLNM in patients with early-stage tongue cancer, and may serve as a valuable decision-making tool to determine the appropriate treatment and avoid unnecessary neck surgery in patients without OLNM.
Collapse
Affiliation(s)
- Wei Han
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yingshu Wang
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuke Dong
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanwei Dang
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Liang He
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lianfang Xu
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuhao Zhou
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yujie Li
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
6
|
Watzenboeck ML, Beer L, Kifjak D, Röhrich S, Heidinger BH, Prayer F, Milos RI, Apfaltrer P, Langs G, Baltzer PAT, Prosch H. Contrast Agent Dynamics Determine Radiomics Profiles in Oncologic Imaging. Cancers (Basel) 2024; 16:1519. [PMID: 38672601 PMCID: PMC11049400 DOI: 10.3390/cancers16081519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The reproducibility of radiomics features extracted from CT and MRI examinations depends on several physiological and technical factors. The aim was to evaluate the impact of contrast agent timing on the stability of radiomics features using dynamic contrast-enhanced perfusion CT (dceCT) or MRI (dceMRI) in prostate and lung cancers. METHODS Radiomics features were extracted from dceCT or dceMRI images in patients with biopsy-proven peripheral prostate cancer (pzPC) or biopsy-proven non-small cell lung cancer (NSCLC), respectively. Features that showed significant differences between contrast phases were identified using linear mixed models. An L2-penalized logistic regression classifier was used to predict class labels for pzPC and unaffected prostate regions-of-interest (ROIs). RESULTS Nine pzPC and 28 NSCLC patients, who were imaged with dceCT and/or dceMRI, were included in this study. After normalizing for individual enhancement patterns by defining seven individual phases based on a reference vessel, 19, 467 and 128 out of 1204 CT features showed significant temporal dynamics in healthy prostate parenchyma, prostate tumors and lung tumors, respectively. CT radiomics-based classification accuracy of healthy and tumor ROIs was highly dependent on contrast agent phase. For dceMRI, 899 and 1027 out of 1118 features were significantly dependent on time after contrast agent injection for prostate and lung tumors. CONCLUSIONS CT and MRI radiomics features in both prostate and lung tumors are significantly affected by interindividual differences in contrast agent dynamics.
Collapse
Affiliation(s)
- Martin L. Watzenboeck
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
- Computational Imaging Research Lab, Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Lucian Beer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
- Computational Imaging Research Lab, Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Daria Kifjak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
- Computational Imaging Research Lab, Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Röhrich
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
- Computational Imaging Research Lab, Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Benedikt H. Heidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
- Computational Imaging Research Lab, Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
- Computational Imaging Research Lab, Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ruxandra-Iulia Milos
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
- Computational Imaging Research Lab, Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Paul Apfaltrer
- Zentralröntgeninstitut für Diagnostik, Interventionelle Radiologie und Nuklearmedizin, Landesklinikum Wiener Neustadt, 2700 Wiener Neustadt, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
- Computational Imaging Research Lab, Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Pascal A. T. Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (G.L.); (P.A.T.B.); (H.P.)
- Computational Imaging Research Lab, Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Akinci D'Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R, Ugga L, Baran A, Fanni SC, Petrash E, Ambrosini I, Cappellini LA, van Ooijen P, Kotter E, Pinto Dos Santos D, Cuocolo R. Reproducibility of radiomics quality score: an intra- and inter-rater reliability study. Eur Radiol 2024; 34:2791-2804. [PMID: 37733025 PMCID: PMC10957586 DOI: 10.1007/s00330-023-10217-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES To investigate the intra- and inter-rater reliability of the total radiomics quality score (RQS) and the reproducibility of individual RQS items' score in a large multireader study. METHODS Nine raters with different backgrounds were randomly assigned to three groups based on their proficiency with RQS utilization: Groups 1 and 2 represented the inter-rater reliability groups with or without prior training in RQS, respectively; group 3 represented the intra-rater reliability group. Thirty-three original research papers on radiomics were evaluated by raters of groups 1 and 2. Of the 33 papers, 17 were evaluated twice with an interval of 1 month by raters of group 3. Intraclass coefficient (ICC) for continuous variables, and Fleiss' and Cohen's kappa (k) statistics for categorical variables were used. RESULTS The inter-rater reliability was poor to moderate for total RQS (ICC 0.30-055, p < 0.001) and very low to good for item's reproducibility (k - 0.12 to 0.75) within groups 1 and 2 for both inexperienced and experienced raters. The intra-rater reliability for total RQS was moderate for the less experienced rater (ICC 0.522, p = 0.009), whereas experienced raters showed excellent intra-rater reliability (ICC 0.91-0.99, p < 0.001) between the first and second read. Intra-rater reliability on RQS items' score reproducibility was higher and most of the items had moderate to good intra-rater reliability (k - 0.40 to 1). CONCLUSIONS Reproducibility of the total RQS and the score of individual RQS items is low. There is a need for a robust and reproducible assessment method to assess the quality of radiomics research. CLINICAL RELEVANCE STATEMENT There is a need for reproducible scoring systems to improve quality of radiomics research and consecutively close the translational gap between research and clinical implementation. KEY POINTS • Radiomics quality score has been widely used for the evaluation of radiomics studies. • Although the intra-rater reliability was moderate to excellent, intra- and inter-rater reliability of total score and point-by-point scores were low with radiomics quality score. • A robust, easy-to-use scoring system is needed for the evaluation of radiomics research.
Collapse
Affiliation(s)
- Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | | | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Agah Baran
- MVZ Diagnostikum Berlin Gmbh, Diagnostisches Zentrum, Berlin, Germany
| | | | - Ekaterina Petrash
- Radiology Department, Research Institute of Children Oncology and Haematology of National Medical Research Center of Oncology n.a.N.N. Blokhin of Ministry of Health of RF, Moscow, Russia
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Peter van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elmar Kotter
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
8
|
Qu J, Zhang T, Zhang X, Zhang W, Li Y, Gong Q, Yao L, Lui S. MRI radiomics for predicting intracranial progression in non-small-cell lung cancer patients with brain metastases treated with epidermal growth factor receptor tyrosine kinase inhibitors. Clin Radiol 2024; 79:e582-e591. [PMID: 38310058 DOI: 10.1016/j.crad.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
AIM To identify clinical and magnetic resonance imaging (MRI) radiomics predictors specialised for intracranial progression (IP) after first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment in non-small-cell lung cancer (NSCLC) patients with brain metastases (BMs). MATERIALS AND METHODS Seventy EGFR-mutated NSCLC patients with a total of 212 BMs who received first-line EGFR-TKI therapy were enrolled. Radiomics features were extracted from the BM regions on the pretreatment contrast-enhanced T1-weighted images, and the radiomics score (rad-score) of each BM was established based on the selected features. Furthermore, the mean rad-score derived from the average rad-score of all included BMs in each patient was calculated. Univariate and multivariate logistic regression analyses were performed to identify potential predictors of IP. Prediction models based on different predictors and their combinations were constructed, and nomogram based on the optimal prediction model was evaluated. RESULTS Thirty-three (47.1 %) patients developed IP, and the remaining 37 (52.9 %) patients were IP-free. EGFR-19del mutation (OR 0.19, 95 % CI 0.05-0.69), third-generation TKI treatment (OR 0.33, 95 % CI 0.16-0.67) and mean rad-score (OR 5.71, 95 % CI 1.65-19.68) were found to be independent predictive factors. Models based on these three predictors alone and in combination (combined model) achieved AUCs of 0.64, 0.64, 0.74, and 0.86 and 0.64, 0.64, 0.75, and 0.84 in the training and validation sets, respectively, and the combined model demonstrated optimal performance for predicting IP. CONCLUSIONS The model integrating EGFR-19del mutation, third-generation TKI treatment and mean rad-score had good predictive value for IP after EGFR-TKI treatment in NSCLC patients with BM.
Collapse
Affiliation(s)
- J Qu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - T Zhang
- Department of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - X Zhang
- Pharmaceutical Diagnostic Team, GE Healthcare, Life Sciences, Beijing, China
| | - W Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Y Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Q Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - L Yao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - S Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
9
|
Zhang X, Zhang G, Qiu X, Yin J, Tan W, Yin X, Yang H, Wang H, Zhang Y. Non-invasive decision support for clinical treatment of non-small cell lung cancer using a multiscale radiomics approach. Radiother Oncol 2024; 191:110082. [PMID: 38195018 DOI: 10.1016/j.radonc.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Selecting therapeutic strategies for cancer patients is typically based on key target-molecule biomarkers that play an important role in cancer onset, progression, and prognosis. Thus, there is a pressing need for novel biomarkers that can be utilized longitudinally to guide treatment selection. METHODS Using data from 508 non-small cell lung cancer (NSCLC) patients across three institutions, we developed and validated a comprehensive predictive biomarker that distinguishes six genotypes and infiltrative immune phenotypes. These features were analyzed to establish the association between radiological phenotypes and tumor genotypes/immune phenotypes and to create a radiological interpretation of molecular features. In addition, we assessed the sensitivity of the models by evaluating their performance at five different voxel intervals, resulting in improved generalizability of the proposed approach. FINDINGS The radiomics model we developed, which integrates clinical factors and multi-regional features, outperformed the conventional model that only uses clinical and intratumoral features. Our combined model showed significant performance for EGFR, KRAS, ALK, TP53, PIK3CA, and ROS1 mutation status with AUCs of 0.866, 0.874, 0.902, 0.850, 0.860, and 0.900, respectively. Additionally, the predictive performance for PD-1/PD-L1 was 0.852. Although the performance of all models decreased to different degrees at five different voxel space resolutions, the performance advantage of the combined model did not change. CONCLUSIONS We validated multiscale radiomic signatures across tumor genotypes and immunophenotypes in a multi-institutional cohort. This imaging-based biomarker offers a non-invasive approach to select patients with NSCLC who are sensitive to targeted therapies or immunotherapy, which is promising for developing personalized treatment strategies during therapy.
Collapse
Affiliation(s)
- Xingping Zhang
- School of Medical Information Engineering, Gannan Medical University, 341000, Ganzhou, China; Cyberspace Institute of Advanced Technology, Guangzhou University, 510006 Guangzhou, China; Institute for Sustainable Industries and Liveable Cities, Victoria University, 3011, Melbourne, Australia; Department of New Networks, Peng Cheng Laboratory, 518000, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, China
| | - Jiao Yin
- Institute for Sustainable Industries and Liveable Cities, Victoria University, 3011, Melbourne, Australia
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, 110189, Shenyang, China
| | - Xiaoxia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, 510006 Guangzhou, China
| | - Hong Yang
- Cyberspace Institute of Advanced Technology, Guangzhou University, 510006 Guangzhou, China
| | - Hua Wang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, 3011, Melbourne, Australia.
| | - Yanchun Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, 3011, Melbourne, Australia; School of Computer Science and Technology, Zhejiang Normal University, 321000, Jinhua, China; Department of New Networks, Peng Cheng Laboratory, 518000, Shenzhen, China.
| |
Collapse
|
10
|
Lv X, Li Y, Wang B, Wang Y, Pan Y, Li C, Hou D. Multisequence MRI-based radiomics analysis for early prediction of the risk of T790M resistance in new brain metastases. Quant Imaging Med Surg 2023; 13:8599-8610. [PMID: 38106277 PMCID: PMC10722019 DOI: 10.21037/qims-23-822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
Background Predicting whether T790M emerges early is crucial to the adjustment of targeted drugs for non-small cell lung cancer (NSCLC) patients. This study aimed to evaluate the risk of T790M resistance in progressive new brain metastases (BMs) based on multisequence magnetic resonance imaging (MRI) radiomics. Methods This retrospective study included 405 consecutive patients (training cohort: 294 patients; testing cohort: 111 patients) with proven NSCLC with disease progression of new BM. The radiomics features were separately extracted from T2-weighted imaging (T2WI), T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted imaging (T1-CE) sequence of baseline MRI. Then, we calculated radiomics scores (rad-score) of the 4 sequences respectively and established predictive models (lesion- or patient-level) to evaluate T790M resistance within up to 14 months using random forest classifier. Receiver operating characteristic (ROC) curves and F1 scores were used to validate the performance of two models in both the training and testing cohort. Results There were significant differences in rad-scores of the four sequences between T790M-positive and negative groups whether in the training or testing cohort (P<0.05). The lesion-level model consisting of rad-scores showed excellent discrimination, with an area under the curve (AUC) and F1-score of 0.879 and 0.798 in the training cohort, and 0.834 and 0.742 in the testing cohort, respectively. The patient-level model also showed a favorable discriminatory ability with an AUC and F1 score of 0.851 and 0.837, which was confirmed with an AUC and F1 score of 0.734 and 0.716 in the testing cohort. Conclusions The MRI-based radiomics signatures may be new markers to identify patients at high risk of developing resistance in the early period.
Collapse
Affiliation(s)
- Xinna Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bing Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yichuan Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanxi Pan
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Radiology, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Chenghai Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Shang Y, Chen W, Li G, Huang Y, Wang Y, Kui X, Li M, Zheng H, Zhao W, Liu J. Computed Tomography-derived intratumoral and peritumoral radiomics in predicting EGFR mutation in lung adenocarcinoma. LA RADIOLOGIA MEDICA 2023; 128:1483-1496. [PMID: 37749461 PMCID: PMC10700425 DOI: 10.1007/s11547-023-01722-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To investigate the value of Computed Tomography (CT) radiomics derived from different peritumoral volumes of interest (VOIs) in predicting epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma patients. MATERIALS AND METHODS A retrospective cohort of 779 patients who had pathologically confirmed lung adenocarcinoma were enrolled. 640 patients were randomly divided into a training set, a validation set, and an internal testing set (3:1:1), and the remaining 139 patients were defined as an external testing set. The intratumoral VOI (VOI_I) was manually delineated on the thin-slice CT images, and seven peritumoral VOIs (VOI_P) were automatically generated with 1, 2, 3, 4, 5, 10, and 15 mm expansion along the VOI_I. 1454 radiomic features were extracted from each VOI. The t-test, the least absolute shrinkage and selection operator (LASSO), and the minimum redundancy maximum relevance (mRMR) algorithm were used for feature selection, followed by the construction of radiomics models (VOI_I model, VOI_P model and combined model). The performance of the models were evaluated by the area under the curve (AUC). RESULTS 399 patients were classified as EGFR mutant (EGFR+), while 380 were wild-type (EGFR-). In the training and validation sets, internal and external testing sets, VOI4 (intratumoral and peritumoral 4 mm) model achieved the best predictive performance, with AUCs of 0.877, 0.727, and 0.701, respectively, outperforming the VOI_I model (AUCs of 0.728, 0.698, and 0.653, respectively). CONCLUSIONS Radiomics extracted from peritumoral region can add extra value in predicting EGFR mutation status of lung adenocarcinoma patients, with the optimal peritumoral range of 4 mm.
Collapse
Affiliation(s)
- Youlan Shang
- Department of Radiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Weidao Chen
- Infervision, Chaoyang District, Beijing, 100025, China
| | - Ge Li
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd, Changsha, 410008, Hunan, People's Republic of China
| | - Yijie Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Yisong Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiaoyan Kui
- School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan Province, People's Republic of China.
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
12
|
Li Y, Lv X, Wang Y, Xu Z, Lv Y, Hou D. CT-based nomogram for early identification of T790M resistance in metastatic non-small cell lung cancer before first-line epidermal growth factor receptor-tyrosine kinase inhibitors therapy. Eur Radiol Exp 2023; 7:64. [PMID: 37914925 PMCID: PMC10620367 DOI: 10.1186/s41747-023-00380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND To evaluate the value of computed tomography (CT) radiomics in predicting the risk of developing epidermal growth factor receptor (EGFR) T790M resistance mutation for metastatic non-small lung cancer (NSCLC) patients before first-line EGFR-tyrosine kinase inhibitors (EGFR-TKIs) therapy. METHODS A total of 162 metastatic NSCLC patients were recruited and split into training and testing cohort. Radiomics features were extracted from tumor lesions on nonenhanced CT (NECT) and contrast-enhanced CT (CECT). Radiomics score (rad-score) of two CT scans was calculated respectively. A nomogram combining two CT scans was developed to evaluate T790M resistance within up to 14 months. Patients were followed up to calculate the time of T790M occurrence. Models were evaluated by area under the curve at receiver operating characteristic analysis (ROC-AUC), calibration curve, and decision curve analysis (DCA). The association of the nomogram with the time of T790M occurrence was evaluated by Kaplan-Meier survival analysis. RESULTS The nomogram constructed with the rad-score of NECT and CECT for predicting T790M resistance within 14 months achieved the highest ROC-AUCs of 0.828 and 0.853 in training and testing cohorts, respectively. The DCA showed that the nomogram was clinically useful. The Kaplan-Meier analysis showed that the occurrence time of T790M difference between the high- and low-risk groups distinguished by the rad-score was significant (p < 0.001). CONCLUSIONS The CT-based radiomics signature may provide prognostic information and improve pretreatment risk stratification in EGFR NSCLC patients before EGFR-TKIs therapy. The multimodal radiomics nomogram further improved the capability. RELEVANCE STATEMENT Radiomics based on NECT and CECT images can effectively identify and stratify the risk of T790M resistance before the first-line TKIs treatment in metastatic non-small cell lung cancer patients. KEY POINTS • Early identification of the risk of T790M resistance before TKIs treatment is clinically relevant. • Multimodel radiomics nomogram holds potential to be a diagnostic tool. • It provided an imaging surrogate for identifying the pretreatment risk of T790M.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Xinna Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Yichuan Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Zexuan Xu
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Yan Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
13
|
Fan Y, Wang X, Dong Y, Cui E, Wang H, Sun X, Su J, Luo Y, Yu T, Jiang X. Multiregional radiomics of brain metastasis can predict response to EGFR-TKI in metastatic NSCLC. Eur Radiol 2023; 33:7902-7912. [PMID: 37142868 DOI: 10.1007/s00330-023-09709-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/12/2023] [Accepted: 03/16/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES To develop radiomics signatures from multiparametric magnetic resonance imaging (MRI) scans to detect epidermal growth factor receptor (EGFR) mutations and predict the response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM). METHODS We included 230 NSCLC patients with BM treated at our hospital between January 2017 and December 2021 and 80 patients treated at another hospital between July 2014 and October 2021 to form the primary and external validation cohorts, respectively. All patients underwent contrast-enhanced T1-weighted (T1C) and T2-weighted (T2W) MRI, and radiomics features were extracted from both the tumor active area (TAA) and peritumoral edema area (POA) for each patient. The least absolute shrinkage and selection operator (LASSO) was used to identify the most predictive features. Radiomics signatures (RSs) were constructed using logistic regression analysis. RESULTS For predicting the EGFR mutation status, the created RS-EGFR-TAA and RS-EGFR- POA showed similar performance. By combination of TAA and POA, the multi-region combined RS (RS-EGFR-Com) achieved the highest prediction performance, with AUCs of 0.896, 0.856, and 0.889 in the primary training, internal validation, and external validation cohort, respectively. For predicting response to EGFR-TKI, the multi-region combined RS (RS-TKI-Com) generated the highest AUCs in the primary training (AUC = 0.817), internal validation (AUC = 0.788), and external validation (AUC = 0.808) cohort, respectively. CONCLUSIONS Our findings suggested values of multiregional radiomics of BM for predicting EGFR mutations and response to EGFR-TKI. CLINICAL RELEVANCE STATEMENT The application of radiomic analysis of multiparametric brain MRI has proven to be a promising tool to stratify which patients can benefit from EGFR-TKI therapy and to facilitate the precise therapeutics of NSCLC patients with brain metastases. KEY POINTS • Multiregional radiomics can improve efficacy in predicting therapeutic response to EGFR-TKI therapy in NSCLC patients with brain metastasis. • The tumor active area (TAA) and peritumoral edema area (POA) may hold complementary information related to the therapeutic response to EGFR-TKI. • The developed multi-region combined radiomics signature achieved the best predictive performance and may be considered as a potential tool for predicting response to EGFR-TKI.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xinti Wang
- The First Clinical Department, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Enuo Cui
- School of Computer Science and Engineering, Shenyang University, Shenyang, 110044, People's Republic of China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Xinyan Sun
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Juan Su
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Tao Yu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
14
|
Wang TW, Chao HS, Chiu HY, Lin YH, Chen HC, Lu CF, Liao CY, Lee Y, Shiao TH, Chen YM, Huang JW, Wu YT. Evaluating the Potential of Delta Radiomics for Assessing Tyrosine Kinase Inhibitor Treatment Response in Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2023; 15:5125. [PMID: 37958300 PMCID: PMC10647242 DOI: 10.3390/cancers15215125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Our study aimed to harness the power of CT scans, observed over time, in predicting how lung adenocarcinoma patients might respond to a treatment known as EGFR-TKI. Analyzing scans from 322 advanced stage lung cancer patients, we identified distinct image-based patterns. By integrating these patterns with comprehensive clinical information, such as gene mutations and treatment regimens, our predictive capabilities were significantly enhanced. Interestingly, the precision of these predictions, particularly related to radiomics features, diminished when data from various centers were combined, suggesting that the approach requires standardization across facilities. This novel method offers a potential pathway to anticipate disease progression in lung adenocarcinoma patients treated with EGFR-TKI, laying the groundwork for more personalized treatments. To further validate this approach, extensive studies involving a larger cohort are pivotal.
Collapse
Affiliation(s)
- Ting-Wei Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Heng-Sheng Chao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hwa-Yen Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yi-Hui Lin
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hung-Chun Chen
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yen Lee
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tsu-Hui Shiao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Jing-Wen Huang
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
15
|
Liu X, Xu T, Wang S, Chen Y, Jiang C, Xu W, Gong J. CT-based radiomic phenotypes of lung adenocarcinoma: a preliminary comparative analysis with targeted next-generation sequencing. Front Med (Lausanne) 2023; 10:1191019. [PMID: 37663660 PMCID: PMC10469976 DOI: 10.3389/fmed.2023.1191019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives This study aimed to explore the relationship between computed tomography (CT)-based radiomic phenotypes and genomic profiles, including expression of programmed cell death-ligand 1 (PD-L1) and the 10 major genes, such as epidermal growth factor receptor (EGFR), tumor protein 53 (TP53), and Kirsten rat sarcoma viral oncogene (KRAS), in patients with lung adenocarcinoma (LUAD). Methods In total, 288 consecutive patients with pathologically confirmed LUAD were enrolled in this retrospective study. Radiomic features were extracted from preoperative CT images, and targeted genomic data were profiled through next-generation sequencing. PD-L1 expression was assessed by immunohistochemistry staining (chi-square test or Fisher's exact test for categorical data and the Kruskal-Wallis test for continuous data). A total of 1,013 radiomic features were obtained from each patient's CT images. Consensus clustering was used to cluster patients on the basis of radiomic features. Results The 288 patients were classified according to consensus clustering into four radiomic phenotypes: Cluster 1 (n = 11) involving mainly large solid masses with a maximum diameter of 5.1 ± 2.0 cm; Clusters 2 and 3 involving mainly part-solid and solid masses with maximum diameters of 2.1 ± 1.4 cm and 2.1 ± 0.9 cm, respectively; and Cluster 4 involving mostly small ground-glass opacity lesions with a maximum diameter of 1.0 ± 0.9 cm. Differences in maximum diameter, PD-L1 expression, and TP53, EGFR, BRAF, ROS1, and ERBB2 mutations among the four clusters were statistically significant. Regarding targeted therapy and immunotherapy, EGFR mutations were highest in Cluster 2 (73.1%); PD-L1 expression was highest in Cluster 1 (45.5%). Conclusion Our findings provide evidence that CT-based radiomic phenotypes could non-invasively identify LUADs with different molecular characteristics, showing the potential to provide personalized treatment decision-making support for LUAD patients.
Collapse
Affiliation(s)
- Xiaowen Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Ting Xu
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Shuxing Wang
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Yaxi Chen
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Changsi Jiang
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Wuyan Xu
- Guangzhou Red Cross Hospital, Jinan University, Guangdong, China
| | - Jingshan Gong
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
16
|
Wang TW, Hsu MS, Lin YH, Chiu HY, Chao HS, Liao CY, Lu CF, Wu YT, Huang JW, Chen YM. Application of Radiomics in Prognosing Lung Cancer Treated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3542. [PMID: 37509204 PMCID: PMC10377421 DOI: 10.3390/cancers15143542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In the context of non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs), this research evaluated the prognostic value of CT-based radiomics. A comprehensive systematic review and meta-analysis of studies up to April 2023, which included 3111 patients, was conducted. We utilized the Quality in Prognosis Studies (QUIPS) tool and radiomics quality scoring (RQS) system to assess the quality of the included studies. Our analysis revealed a pooled hazard ratio for progression-free survival of 2.80 (95% confidence interval: 1.87-4.19), suggesting that patients with certain radiomics features had a significantly higher risk of disease progression. Additionally, we calculated the pooled Harrell's concordance index and area under the curve (AUC) values of 0.71 and 0.73, respectively, indicating good predictive performance of radiomics. Despite these promising results, further studies with consistent and robust protocols are needed to confirm the prognostic role of radiomics in NSCLC.
Collapse
Affiliation(s)
- Ting-Wei Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Sheng Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Hui Lin
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hwa-Yen Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Heng-Sheng Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Jing-Wen Huang
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|