1
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
2
|
Ogden KK, Ozkan ED, Rumbaugh G. Prioritizing the development of mouse models for childhood brain disorders. Neuropharmacology 2015; 100:2-16. [PMID: 26231830 DOI: 10.1016/j.neuropharm.2015.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent "high priority" risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Emin D Ozkan
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
O'Brien JE, Meisler MH. Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 2013; 4:213. [PMID: 24194747 PMCID: PMC3809569 DOI: 10.3389/fgene.2013.00213] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 11/13/2022] Open
Abstract
The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 years. Only within the past year has the role of SCN8A in human disease become apparent from whole exome and genome sequences of patients with sporadic disease. Unique features of Nav1.6 include its contribution to persistent current, resurgent current, repetitive neuronal firing, and subcellular localization at the axon initial segment (AIS) and nodes of Ranvier. Loss of Nav1.6 activity results in reduced neuronal excitability, while gain-of-function mutations can increase neuronal excitability. Mouse Scn8a (med) mutants exhibit movement disorders including ataxia, tremor and dystonia. Thus far, more than ten human de novo mutations have been identified in patients with two types of disorders, epileptic encephalopathy and intellectual disability. We review these human mutations as well as the unique features of Nav1.6 that contribute to its role in determining neuronal excitability in vivo. A supplemental figure illustrating the positions of amino acid residues within the four domains and 24 transmembrane segments of Nav1.6 is provided to facilitate the location of novel mutations within the channel protein.
Collapse
Affiliation(s)
- Janelle E O'Brien
- Department of Human Genetics, University of Michigan Ann Arbor, MI, USA
| | | |
Collapse
|
4
|
Tokuda S, Mahaffey CL, Monks B, Faulkner CR, Birnbaum MJ, Danzer SC, Frankel WN. A novel Akt3 mutation associated with enhanced kinase activity and seizure susceptibility in mice. Hum Mol Genet 2010; 20:988-99. [PMID: 21159799 DOI: 10.1093/hmg/ddq544] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a phenotype-driven mutagenesis screen, a novel, dominant mouse mutation, Nmf350, caused low seizure threshold, sporadic tonic-clonic seizures, brain enlargement and ectopic neurons in the dentate hilus and molecular layer of the hippocampus. Genetic mapping implicated Akt3, one of four candidates within the critical interval. Sequencing analysis revealed that mutants have a missense mutation in Akt3 (encoding one of three AKT/protein kinase B molecules), leading to a non-synonymous amino acid substitution in the highly conserved protein kinase domain. Previous knockout studies showed that Akt3 is pivotal in postnatal brain development, including a smaller brain, although seizures were not observed. In contrast to Akt3(Nmf350), we find that Akt3 null mice exhibit an elevated seizure threshold. An in vitro kinase assay revealed that Akt3(Nmf350) confers higher enzymatic activity, suggesting that Akt3(Nmf350) might enhance AKT signaling in the brain. In the dentate gyrus of Akt3(Nmf350) homozygotes, we also observed a modest increase in immunoreactivity of phosphorylated ribosomal protein S6, an AKT pathway downstream target. Together these findings suggest that Akt3(Nmf350) confers an increase of AKT3 activity in specific neuronal populations in the brain, and a unique dominant phenotype. Akt3(Nmf350) mice provide a new tool for studying physiological roles of AKT signaling in the brain, and potentially novel mechanisms for epilepsy.
Collapse
|
5
|
Lee Y, Smith RS, Jordan W, King BL, Won J, Valpuesta JM, Naggert JK, Nishina PM. Prefoldin 5 is required for normal sensory and neuronal development in a murine model. J Biol Chem 2010; 286:726-36. [PMID: 20956523 DOI: 10.1074/jbc.m110.177352] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones and co-chaperones are crucial for cellular development and maintenance as they assist in protein folding and stabilization of unfolded or misfolded proteins. Prefoldin (PFDN), a ubiquitously expressed heterohexameric co-chaperone, is necessary for proper folding of nascent proteins, in particular, tubulin and actin. Here we show that a genetic disruption in the murine Pfdn5 gene, a subunit of prefoldin, causes a syndrome characterized by photoreceptor degeneration, central nervous system abnormalities, and male infertility. Our data indicate that a missense mutation in Pfdn5, may cause these phenotypes through a reduction in formation of microtubules and microfilaments, which are necessary for the development of cilia and cytoskeletal structures, respectively. The diversity of phenotypes demonstrated by models carrying mutations in different PFDN subunits suggests that each PFDN subunit must confer a distinct substrate specificity to the prefoldin holocomplex.
Collapse
Affiliation(s)
- YongSuk Lee
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Jamsai D, O'Bryan MK. Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators. Syst Biol Reprod Med 2010; 56:246-59. [PMID: 20536324 DOI: 10.3109/19396361003706424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The completion of genome sequencing projects has provided an extensive knowledge of the contents of the genomes of human, mouse, and many other organisms. Despite this, the function of most of the estimated 25,000 human genes remains largely unknown. Attention has now turned to elucidating gene function and identifying biological pathways that contribute to human diseases, including male infertility. Our understanding of the genetic regulation of male fertility has been accelerated through the use of genetically modified mouse models including knockout, knock-in, gene-trapped, and transgenic mice. Such reverse genetic approaches however, require some fore-knowledge of a gene's function and, as such, bias against the discovery of completely novel genes and biological pathways. To facilitate high throughput gene discovery, genome-wide mouse mutagenesis via the use of a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU), has been developed over the past decade. This forward genetic, or phenotype-driven, approach relies upon observing a phenotype first, then subsequently defining the underlining genetic defect. Mutations are randomly introduced into the mouse genome via ENU exposure. Through a controlled breeding scheme, mutations causing a phenotype of interest (e.g., male infertility) are then identified by linkage analysis and candidate gene sequencing. This approach allows for the possibility of revealing comprehensive phenotype-genotype relationships for a range of genes and pathways i.e. in addition to null alleles, mice containing partial loss of function or gain-of-function mutations, can be recovered. Such point mutations are likely to be more reflective of those that occur within the human population. Many research groups have successfully used this approach to generate infertile mouse lines and some novel male fertility genes have been revealed. In this review, we focus on the utility of ENU mutagenesis for the discovery of novel male fertility regulators.
Collapse
Affiliation(s)
- Duangporn Jamsai
- The Department of Anatomy and Developmental Biology and The Australian Research Council (ARC) Centre of Excellence in Biotechnology and Development, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
7
|
A hearing and vestibular phenotyping pipeline to identify mouse mutants with hearing impairment. Nat Protoc 2010; 5:177-90. [PMID: 20057387 DOI: 10.1038/nprot.2009.204] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a protocol for the production of mice carrying N-ethyl-N-nitrosourea (ENU) mutations and their screening for auditory and vestibular phenotypes. In comparison with the procedures describing individual phenotyping tests, this protocol integrates a set of tests for the comprehensive determination of the causes of hearing loss. It comprises a primary screen of relatively simple auditory and vestibular tests. A variety of secondary phenotyping protocols are also described for further investigating the deaf and vestibular mutants identified in the primary screen. The screen can be applied to potentially thousands of mutant mice, produced either by ENU or other mutagenesis approaches. Primary screening protocols take no longer than a few minutes, apart from ABR testing which takes upto 3.5 h per mouse. These protocols have been applied for the identification of mouse models of human deafness and are a key component for investigating the genes and genetic pathways involved in hereditary deafness.
Collapse
|
8
|
Mackenzie FE, Parker A, Parkinson NJ, Oliver PL, Brooker D, Underhill P, Lukashkina VA, Lukashkin AN, Holmes C, Brown SDM. Analysis of the mouse mutant Cloth-ears shows a role for the voltage-gated sodium channel Scn8a in peripheral neural hearing loss. GENES BRAIN AND BEHAVIOR 2009; 8:699-713. [PMID: 19737145 PMCID: PMC2784214 DOI: 10.1111/j.1601-183x.2009.00514.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deafness is the most common sensory disorder in humans and the aetiology of genetic deafness is complex. Mouse mutants have been crucial in identifying genes involved in hearing. However, many deafness genes remain unidentified. Using N-ethyl N−nitrosourea (ENU) mutagenesis to generate new mouse models of deafness, we identified a novel semi-dominant mouse mutant, Cloth-ears (Clth). Cloth-ears mice show reduced acoustic startle response and mild hearing loss from ∼30 days old. Auditory-evoked brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) analyses indicate that the peripheral neural auditory pathway is impaired in Cloth-ears mice, but that cochlear function is normal. In addition, both Clth/Clth and Clth/+ mice display paroxysmal tremor episodes with behavioural arrest. Clth/Clth mice also show a milder continuous tremor during movement and rest. Longitudinal phenotypic analysis showed that Clth/+ and Clth/Clth mice also have complex defects in behaviour, growth, neurological and motor function. Positional cloning of Cloth-ears identified a point mutation in the neuronal voltage-gated sodium channel α-subunit gene, Scn8a, causing an aspartic acid to valine (D981V) change six amino acids downstream of the sixth transmembrane segment of the second domain (D2S6). Complementation testing with a known Scn8a mouse mutant confirmed that this mutation is responsible for the Cloth-ears phenotype. Our findings suggest a novel role for Scn8a in peripheral neural hearing loss and paroxysmal motor dysfunction.
Collapse
|
9
|
The ataxia3 mutation in the N-terminal cytoplasmic domain of sodium channel Na(v)1.6 disrupts intracellular trafficking. J Neurosci 2009; 29:2733-41. [PMID: 19261867 DOI: 10.1523/jneurosci.6026-08.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ENU-induced neurological mutant ataxia3 was mapped to distal mouse chromosome 15. Sequencing of the positional candidate gene Scn8a encoding the sodium channel Na(v)1.6 identified a T>C transition in exon 1 resulting in the amino acid substitution p.S21P near the N terminus of the channel. The cytoplasmic N-terminal region is evolutionarily conserved but its function has not been well characterized. ataxia3 homozygotes exhibit a severe disorder that includes ataxia, tremor, and juvenile lethality. Unlike Scn8a null mice, they retain partial hindlimb function. The mutant transcript is stable but protein abundance is reduced and the mutant channel is not detected in its usual site of concentration at nodes of Ranvier. In whole-cell patch-clamp studies of transfected ND7/23 cells that were maintained at 37 degrees C, the mutant channel did not produce sodium current, and function was not restored by coexpression of beta1 and beta2 subunits. However, when transfected cells were maintained at 30 degrees C, the mutant channel generated voltage-dependent inward sodium currents with an average peak current density comparable with wild type, demonstrating recovery of channel activity. Immunohistochemistry of primary cerebellar granule cells from ataxia3 mice demonstrated that the mutant protein is retained in the cis-Golgi. This trafficking defect can account for the low level of Na(v)1.6-S21P at nodes of Ranvier in vivo and at the surface of transfected cells. The data demonstrate that the cytoplasmic N-terminal domain of the sodium channel is required for anterograde transport from the Golgi complex to the plasma membrane.
Collapse
|
10
|
Papale LA, Beyer B, Jones JM, Sharkey LM, Tufik S, Epstein M, Letts VA, Meisler MH, Frankel WN, Escayg A. Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice. Hum Mol Genet 2009; 18:1633-41. [PMID: 19254928 PMCID: PMC2667290 DOI: 10.1093/hmg/ddp081] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In a chemical mutagenesis screen, we identified the novel Scn8a8J allele of the gene encoding the neuronal voltage-gated sodium channel Nav1.6. The missense mutation V929F in this allele alters an evolutionarily conserved residue in the pore loop of domain 2 of Nav1.6. Electroencephalography (EEG) revealed well-defined spike-wave discharges (SWD), the hallmark of absence epilepsy, in Scn8a8J heterozygotes and in heterozygotes for two classical Scn8a alleles, Scn8amed (null) and Scn8amed-jo (missense). Mouse strain background had a significant effect on SWD, with mutants on the C3HeB/FeJ strain showing a higher incidence than on C57BL/6J. The abnormal EEG patterns in heterozygous mutant mice and the influence of genetic background on SWD make SCN8A an attractive candidate gene for common human absence epilepsy, a genetically complex disorder.
Collapse
Affiliation(s)
- Ligia A Papale
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SDM. ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 2008; 9:49-69. [PMID: 18949851 DOI: 10.1146/annurev.genom.9.081307.164224] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arguably, the main challenge for contemporary genetics is to understand the function of every gene in a mammalian genome. The mouse has emerged as a model for this task because its genome can be manipulated in a number of ways to study gene function or mimic disease states. Two complementary genetic approaches can be used to generate mouse models. A reverse genetics or gene-driven approach (gene to phenotype) starts from a known gene and manipulates the genome to create genetically modified mice, such as knockouts. Alternatively, a forward genetics or phenotype-driven approach (phenotype to gene) involves screening mice for mutant phenotypes without previous knowledge of the genetic basis of the mutation. N-ethyl-N-nitrosourea (ENU) mutagenesis has been widely used for both approaches to generate mouse mutants. Here we review progress in ENU mutagenesis screening, with an emphasis on creating mouse models for human disorders.
Collapse
|
12
|
Cook MN, Dunning JP, Wiley RG, Chesler EJ, Johnson DK, Miller DR, Goldowitz D. Neurobehavioral mutants identified in an ENU-mutagenesis project. Mamm Genome 2007; 18:559-72. [PMID: 17629744 DOI: 10.1007/s00335-007-9035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
We report on a battery of behavioral screening tests that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU-mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and used a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open-field mutants (one displaying hyperlocomotion, the other hypolocomotion), four tail-suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning-and-memory mutant (displaying reduced response to the conditioned stimulus). These findings highlight the utility of a set of behavioral tasks used in a high-throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Melloni N Cook
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, and VA Tennessee Valley Healthcare System, Nashville 37212, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Oliver PL, Bitoun E, Davies KE. Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mamm Genome 2007; 18:412-24. [PMID: 17514509 PMCID: PMC1998876 DOI: 10.1007/s00335-007-9014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 12/23/2022]
Abstract
One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models.
Collapse
Affiliation(s)
- Peter L. Oliver
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Emmanuelle Bitoun
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
14
|
Barbaric I, Wells S, Russ A, Dear TN. Spectrum of ENU-induced mutations in phenotype-driven and gene-driven screens in the mouse. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:124-42. [PMID: 17295309 DOI: 10.1002/em.20286] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
N-ethyl-N-nitrosourea (ENU) mutagenesis in mice has become a standard tool for (i) increasing the pool of mutants in many areas of biology, (ii) identifying novel genes involved in physiological processes and disease, and (iii) in assisting in assigning functions to genes. ENU is assumed to cause random mutations throughout the mouse genome, but this presumption has never been analyzed. This is a crucial point, especially for large-scale mutagenesis, as a bias would reflect a constraint on identifying possible genetic targets. There is a significant body of published data now available from both phenotype-driven and gene-driven ENU mutagenesis screens in the mouse that can be used to reveal the effectiveness and limitations of an ENU mutagenesis approach. Analysis of the published data is presented in this paper. As expected for a randomly acting mutagen, ENU-induced mutations identified in phenotype-driven screens were in genes that had higher coding sequence length and higher exon number than the average for the mouse genome. Unexpectedly, the data showed that ENU-induced mutations were more likely to be found in genes that had a higher G + C content and neighboring base analysis revealed that the identified ENU mutations were more often directly flanked by G or C nucleotides. ENU mutations from phenotype-driven and gene-driven screens were dominantly A:T to T:A transversions or A:T to G:C transitions. Knowledge of the spectrum of mutations that ENU elicits will assist in positional cloning of ENU-induced mutations by allowing prioritization of candidate genes based on some of their inherent features.
Collapse
Affiliation(s)
- Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | | | | |
Collapse
|
15
|
Van Wart A, Matthews G. Impaired firing and cell-specific compensation in neurons lacking nav1.6 sodium channels. J Neurosci 2006; 26:7172-80. [PMID: 16822974 PMCID: PMC6673932 DOI: 10.1523/jneurosci.1101-06.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ability of neurons to fire precise patterns of action potentials is critical for encoding inputs and efficiently driving target neurons. At the axon initial segment and nodes of Ranvier, where nerve impulses are generated and propagated, a high density of Na(v)1.2 sodium channels is developmentally replaced by Na(v)1.6 channels. In retinal ganglion cells (GCs), this isoform switch coincides with the developmental transition from single spikes to repetitive firing. Also, Na(v)1.6 channels are required for repetitive spiking in cerebellar Purkinje neurons. These previous observations suggest that the developmental appearance of Na(v)1.6 underlies the transition to repetitive spiking in GCs. To test this possibility, we recorded from GCs of med (Na(v)1.6-null) and wild-type mice during postnatal development. By postnatal day 18, when the switch to Na(v)1.6 at GC initial segments is normally complete, the maximal sustained and instantaneous firing rates were lower in med than in wild-type GCs, demonstrating that Na(v)1.6 channels are necessary to attain physiologically relevant firing frequencies in GCs. However, the firing impairment was milder than that reported previously in med Purkinje neurons, which prompted us to look for differences in compensatory sodium channel expression. Both Na(v)1.2 and Na(v)1.1 channels accumulated at initial segments and nodes of med GCs, sites normally occupied by Na(v)1.6. In med Purkinje cells, only Na(v)1.1 channels were found at initial segments, whereas in other brain regions, only Na(v)1.2 was detected at med initial segments and nodes. Thus, compensatory mechanisms in channel isoform distribution are cell specific, which likely results in different firing properties.
Collapse
|
16
|
Chang B, Hawes NL, Hurd RE, Wang J, Howell D, Davisson MT, Roderick TH, Nusinowitz S, Heckenlively JR. Mouse models of ocular diseases. Vis Neurosci 2006; 22:587-93. [PMID: 16332269 DOI: 10.1017/s0952523805225075] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 05/19/2005] [Indexed: 11/06/2022]
Abstract
The Jackson Laboratory, having the world's largest collection of mouse mutant stocks and genetically diverse inbred strains, is an ideal place to discover genetically determined eye variations and disorders. In this paper, we list and describe mouse models for ocular research available from Mouse Eye Mutant Resource at The Jackson Laboratory. While screening mouse strains and stocks at The Jackson Laboratory (TJL) for genetic mouse models of human ocular disorders, we have identified numerous spontaneous or naturally occurring mutants. We characterized these mutants using serial indirect ophthalmoscopy, fundus photography, electroretinography (ERG) and histology, and performed genetic analysis including linkage studies and gene identification. Utilizing ophthalmoscopy, electroretinography, and histology, to date we have discovered 109 new disorders affecting all aspects of the eye including the lid, cornea, iris, lens, and retina, resulting in corneal disorders, glaucoma, cataracts, and retinal degenerations. The number of known serious or disabling eye diseases in humans is large and affects millions of people each year. Yet research on these diseases frequently is limited by the obvious restrictions on studying pathophysiologic processes in the human eye. Likewise, many human ocular diseases are genetic in origin, but appropriate families often are not readily available for genetic studies. Mouse models of inherited ocular disease provide powerful tools for rapid genetic analysis, characterization, and gene identification. Because of the great similarity among mammalian genomes, these findings in mice have direct relevance to the homologous human conditions.
Collapse
Affiliation(s)
- B Chang
- The Jackson Laboratory, Bar Harbor, ME 04609-1500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
A variety of inherited human disorders affecting skeletal muscle contraction, heart rhythm, and nervous system function have been traced to mutations in genes encoding voltage-gated sodium channels. Clinical severity among these conditions ranges from mild or even latent disease to life-threatening or incapacitating conditions. The sodium channelopathies were among the first recognized ion channel diseases and continue to attract widespread clinical and scientific interest. An expanding knowledge base has substantially advanced our understanding of structure-function and genotype-phenotype relationships for voltage-gated sodium channels and provided new insights into the pathophysiological basis for common diseases such as cardiac arrhythmias and epilepsy.
Collapse
Affiliation(s)
- Alfred L George
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0275, USA.
| |
Collapse
|
18
|
Oliver PL, Davies KE. Analysis of human neurological disorders using mutagenesis in the mouse. Clin Sci (Lond) 2005; 108:385-97. [PMID: 15831088 DOI: 10.1042/cs20050041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mouse continues to play a vital role in the deciphering of mammalian gene function and the modelling of human neurological disease. Advances in gene targeting technologies have facilitated the efficiency of generating new mouse mutants, although this valuable resource has rapidly expanded in recent years due to a number of major random mutagenesis programmes. The phenotype-driven mutagenesis screen at the MRC Mammalian Genetics Unit has generated a significant number of mice with potential neurological defects, and our aim has been to characterize selected mutants on a pathological and molecular level. Four lines are discussed, one displaying late-onset ataxia caused by Purkinje cell loss and an allelic series of three tremor mutants suffering from hypomyelination of the peripheral nerve. Molecular analysis of the causative mutation in each case has provided new insights into functional aspects of the mutated proteins, illustrating the power of mutagenesis screens to generate both novel and clinically relevant disease models.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|