1
|
Influence of a Polyherbal Choline Source in Dogs: Body Weight Changes, Blood Metabolites, and Gene Expression. Animals (Basel) 2022; 12:ani12101313. [PMID: 35625159 PMCID: PMC9137459 DOI: 10.3390/ani12101313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022] Open
Abstract
Choline chloride is used to provide choline in dog foods; however, in other domestic species, it has been replaced with a polyherbal containing phosphatidylcholine. A polyherbal containing Achyrantes aspera, Trachyspermum ammi, Citrullus colocynthis, Andrographis paniculata, and Azadirachta indica was evaluated in adult dogs through body weight changes, subcutaneous fat thickness, blood metabolites, and gene expression. Forty dogs (4.6 ± 1.6 years old) who were individually housed in concrete kennels were randomly assigned to the following treatments: unsupplemented diet (377 mg choline/kg), choline chloride (3850 mg/kg equivalent to 2000 mg choline/kg diet), and polyherbal (200, 400, and 800 mg/kg) for 60 days. Blood samples were collected on day 59 for biochemistry, biometry, and gene expression analysis through microarray assays. Intake, final body weight, and weight changes were similar for the two choline sources. Feed intake variation among dogs (p = 0.01) and dorsal fat (p = 0.03) showed a quadratic response to herbal choline. Dogs that received the polyherbal diet had reduced blood cholesterol levels (Quadratic, p = 0.02). The gene ontology analysis indicated that 15 biological processes were modified (p ≤ 0.05) with implications for preventing cardiovascular and metabolic diseases, cancer prevention, inflammatory and immune response, and behavior and cognitive process. According to these results that were observed in a 60 day trial, the polyherbal form could replace choline chloride in dog diets at a concentration of 400 mg/kg.
Collapse
|
2
|
Ning Y, Chen S, Hu J, Li L, Cheng L, Lu F. Fluorometric determination of agrA gene transcription in methicillin-resistant Staphylococcus aureus with a graphene oxide-based assay using strand-displacement polymerization recycling and hybridization chain reaction. Mikrochim Acta 2020; 187:372. [PMID: 32504215 DOI: 10.1007/s00604-020-04347-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023]
Abstract
A graphene oxide (GO)-based fluorescent bioassay was developed to quantify agrA gene transcription (its mRNA) in methicillin-resistant Staphylococcus aureus (MRSA). This method is based on the use of Klenow fragment (KF)-assisted target recycling amplification and hybridization chain reaction (HCR). A triple complex was designed that contained a capture probe (CP), a trigger probe (TP), and a help probe (HP), which were partially complementary to one another. In the absence of the target, all the oligonucleotides labeled with carboxyfluorescein (FAM) are adsorbed onto the surface of GO by π-stacking interactions. This adsorption quenches the FAM signal. On the contrary, the target RNA causes the triple complex to disintegrate and initiates strand-displacement polymerization reaction (SDPR) and HCR in the presence of the appropriate raw materials, including the primer, KF, dNTPs, hairpin 1 (H1), and hairpin 2 (H2), generating double-stranded DNA (dsDNA) products. These dsDNA products are repelled by GO and produce strong fluorescence, measured at excitation/emission wavelengths of 480/514 nm. The fluorescent signal is greatly amplified by SYBR Green I (SGI) due to the synergistic effect of dsDNA-SGI. The target was assayed with this method at concentrations in the range 10 fM to 100 pM, and the detection limit (LOD) was 10 fM. This method also displayed good applicability in the analysis of real samples. It provides a new way of monitoring biofilm formation and studying the mechanisms of drug actions. Graphical abstract Schematic representation of the graphene oxide-based fluorescent bioassay for agrA gene transcription in methicillin-resistant Staphylococcus aureus by using strand-displacement polymerization recycling and hybridization chain reaction.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Shanquan Chen
- Department of General Education, The School of Humanities and Social Science, The Chinese University of Hong Kong (Shenzhen campus), Shenzhen, 518172, Guangdong, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Ling Li
- Experimental Center of molecular biology, The Chinese Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Lijuan Cheng
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Misiewicz Z, Iurato S, Kulesskaya N, Salminen L, Rodrigues L, Maccarrone G, Martins J, Czamara D, Laine MA, Sokolowska E, Trontti K, Rewerts C, Novak B, Volk N, Park DI, Jokitalo E, Paulin L, Auvinen P, Voikar V, Chen A, Erhardt A, Turck CW, Hovatta I. Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior. PLoS Genet 2019; 15:e1008358. [PMID: 31557158 PMCID: PMC6762065 DOI: 10.1371/journal.pgen.1008358] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/08/2019] [Indexed: 01/10/2023] Open
Abstract
Stressful life events are major environmental risk factors for anxiety disorders, although not all individuals exposed to stress develop clinical anxiety. The molecular mechanisms underlying the influence of environmental effects on anxiety are largely unknown. To identify biological pathways mediating stress-related anxiety and resilience to it, we used the chronic social defeat stress (CSDS) paradigm in male mice of two inbred strains, C57BL/6NCrl (B6) and DBA/2NCrl (D2), that differ in their susceptibility to stress. Using a multi-omics approach, we identified differential mRNA, miRNA and protein expression changes in the bed nucleus of the stria terminalis (BNST) and blood cells after chronic stress. Integrative gene set enrichment analysis revealed enrichment of mitochondrial-related genes in the BNST and blood of stressed mice. To translate these results to human anxiety, we investigated blood gene expression changes associated with exposure-induced panic attacks. Remarkably, we found reduced expression of mitochondrial-related genes in D2 stress-susceptible mice and in exposure-induced panic attacks in humans, but increased expression of these genes in B6 stress-susceptible mice. Moreover, stress-susceptible vs. stress-resilient B6 mice displayed more mitochondrial cross-sections in the post-synaptic compartment after CSDS. Our findings demonstrate mitochondrial-related alterations in gene expression as an evolutionarily conserved response in stress-related behaviors and validate the use of cross-species approaches in investigating the biological mechanisms underlying anxiety disorders.
Collapse
Affiliation(s)
- Zuzanna Misiewicz
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Stella Iurato
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia Kulesskaya
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Laura Salminen
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Luis Rodrigues
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jade Martins
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mikaela A. Laine
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ewa Sokolowska
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Christiane Rewerts
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bozidar Novak
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Naama Volk
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Dong Ik Park
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Vootele Voikar
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Angelika Erhardt
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail: (AE); (CWT); (IH)
| | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail: (AE); (CWT); (IH)
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
- * E-mail: (AE); (CWT); (IH)
| |
Collapse
|
4
|
Correia CN, McLoughlin KE, Nalpas NC, Magee DA, Browne JA, Rue-Albrecht K, Gordon SV, MacHugh DE. RNA Sequencing (RNA-Seq) Reveals Extremely Low Levels of Reticulocyte-Derived Globin Gene Transcripts in Peripheral Blood From Horses ( Equus caballus) and Cattle ( Bos taurus). Front Genet 2018; 9:278. [PMID: 30154823 PMCID: PMC6102425 DOI: 10.3389/fgene.2018.00278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
RNA-seq has emerged as an important technology for measuring gene expression in peripheral blood samples collected from humans and other vertebrate species. In particular, transcriptomics analyses of whole blood can be used to study immunobiology and develop novel biomarkers of infectious disease. However, an obstacle to these methods in many mammalian species is the presence of reticulocyte-derived globin mRNAs in large quantities, which can complicate RNA-seq library sequencing and impede detection of other mRNA transcripts. A range of supplementary procedures for targeted depletion of globin transcripts have, therefore, been developed to alleviate this problem. Here, we use comparative analyses of RNA-seq data sets generated from human, porcine, equine, and bovine peripheral blood to systematically assess the impact of globin mRNA on routine transcriptome profiling of whole blood in cattle and horses. The results of these analyses demonstrate that total RNA isolated from equine and bovine peripheral blood contains very low levels of globin mRNA transcripts, thereby negating the need for globin depletion and greatly simplifying blood-based transcriptomic studies in these two domestic species.
Collapse
Affiliation(s)
- Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Kevin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research University College Dublin, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Shiue HS, Lee YS, Tsai CN, Chang HH. Treatment of allergic rhinitis with acupoint herbal plaster: an oligonucleotide chip analysis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:436. [PMID: 27814709 PMCID: PMC5097372 DOI: 10.1186/s12906-016-1418-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022]
Abstract
Background Allergic rhinitis is regarded as an imbalanced Th1/Th2 cell-mediated response. The present study used microarray analysis to compare gene expression levels between allergic rhinitis patients before and after a series of acupoint herbal plaster applications. Methods In this experimental pilot study, volunteers experiencing sneezing, runny nose, and congestion for more than 9 months in the year following initial diagnoses were included after diagnostic confirmation by otolaryngologists to exclude patients with sinusitis and nasal polyps. Patients with persistent allergic rhinitis each received four acupoint herbal plaster treatments applied using the moxibustion technique. Clinical outcomes were evaluated using the Rhinitis Quality of Life Questionnaire (RQLQ). Peripheral blood samples were analyzed using an ImmunoCAP Phadiatop test, and patients were classified as phadiatop (Ph)-positive or -negative. Microarray results were analyzed for genes that were differentially expressed between (1) Ph-positive and -negative patients treated with herbal plaster; and (2) before and after herbal plaster treatment in the Ph-positive patient group. Unsupervised and supervised methods were used for gene-expression data analysis. Results Nineteen Ph-positive and four Ph-negative participants with persistent allergic rhinitis were included in the study. RQLQ results indicated that the 19 Ph-positive volunteers experienced improvement in six of seven categories following acupoint herbal plaster treatments, whereas the four Ph-negative participants reported improvement in only two categories. Hierarchical clustering and principle component analysis of the gene expression profiles of Ph-positive and –negative participants indicated the groups exhibited distinct physiological responses to acupoint herbal treatment. Evaluation of gene networks using MetaCore identified that the “Immune response_IL-13 signaling via JAK-STAT” and the “Inflammation_Interferon signaling” were down- and up-regulated, respectively, among Ph-positive subjects. Conclusions In this preliminary study, we find that the IL-13 immune response via JAK-STAT signaling and interferon inflammation signaling were down- and upregulated, respectively, in the Ph-positive group. Further studies are required to verify these pathways in Ph-positive patients, and to determine the mechanism of such pathway dysregulation. Trial registration ClinicalTrials.gov: NCT02486159. Registered 30 Jun 2015.
Collapse
|
6
|
Jiang Z, Uboh CE, Chen J, Soma LR. Isolation of RNA from equine peripheral blood cells: comparison of methods. SPRINGERPLUS 2013; 2:478. [PMID: 24133642 PMCID: PMC3797321 DOI: 10.1186/2193-1801-2-478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Gene expression studies in equine research involve the use of whole blood samples as a vital source of RNA. To determine the optimal method for RNA isolation from equine whole blood, we compared three RNA isolation strategies using different commercially available kits to evaluate the yield and quality of equine RNA. All 3 methods produced RNA with high quality. Though it did not produce the highest yield, combining the quality, yield and the need for the downstream application in our project, LeukoLOCK™ total RNA isolation system was the best RNA extraction method.
Collapse
Affiliation(s)
- Zibin Jiang
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center Campus, 382 West Street Road, Kennett Square, Kragujevac, PA 19348 USA
| | | | | | | |
Collapse
|
7
|
Scherer A, Günther OP, Balshaw RF, Hollander Z, Wilson-McManus J, Ng R, McMaster WR, McManus BM, Keown PA. Alteration of human blood cell transcriptome in uremia. BMC Med Genomics 2013; 6:23. [PMID: 23809614 PMCID: PMC3706221 DOI: 10.1186/1755-8794-6-23] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 06/04/2013] [Indexed: 11/17/2022] Open
Abstract
Background End-stage renal failure is associated with profound changes in physiology and health, but the molecular causation of these pleomorphic effects termed “uremia” is poorly understood. The genomic changes of uremia were explored in a whole genome microarray case-control comparison of 95 subjects with end-stage renal failure (n = 75) or healthy controls (n = 20). Methods RNA was separated from blood drawn in PAXgene tubes and gene expression analyzed using Affymetrix Human Genome U133 Plus 2.0 arrays. Quality control and normalization was performed, and statistical significance determined with multiple test corrections (qFDR). Biological interpretation was aided by knowledge mining using NIH DAVID, MetaCore and PubGene Results Over 9,000 genes were differentially expressed in uremic subjects compared to normal controls (fold change: -5.3 to +6.8), and more than 65% were lower in uremia. Changes appeared to be regulated through key gene networks involving cMYC, SP1, P53, AP1, NFkB, HNF4 alpha, HIF1A, c-Jun, STAT1, STAT3 and CREB1. Gene set enrichment analysis showed that mRNA processing and transport, protein transport, chaperone functions, the unfolded protein response and genes involved in tumor genesis were prominently lower in uremia, while insulin-like growth factor activity, neuroactive receptor interaction, the complement system, lipoprotein metabolism and lipid transport were higher in uremia. Pathways involving cytoskeletal remodeling, the clathrin-coated endosomal pathway, T-cell receptor signaling and CD28 pathways, and many immune and biological mechanisms were significantly down-regulated, while the ubiquitin pathway and certain others were up-regulated. Conclusions End-stage renal failure is associated with profound changes in human gene expression which appears to be mediated through key transcription factors. Dialysis and primary kidney disease had minor effects on gene regulation, but uremia was the dominant influence in the changes observed. This data provides important insight into the changes in cellular biology and function, opportunities for biomarkers of disease progression and therapy, and potential targets for intervention in uremia.
Collapse
|
8
|
Pellegrino R, Sunaga DY, Guindalini C, Martins RCS, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 2012; 44:1003-12. [DOI: 10.1152/physiolgenomics.00058.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Collapse
Affiliation(s)
- R. Pellegrino
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - D. Y. Sunaga
- Human Genome Research Center, Biosciences Institute of University of Sao Paulo, São Paulo, Brazil
| | - C. Guindalini
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R. C. S. Martins
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - D. R. Mazzotti
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Z. Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey; and
| | - Z. J. Daye
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - M. L. Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - S. Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Huang TH, Uthe JJ, Bearson SMD, Demirkale CY, Nettleton D, Knetter S, Christian C, Ramer-Tait AE, Wannemuehler MJ, Tuggle CK. Distinct peripheral blood RNA responses to Salmonella in pigs differing in Salmonella shedding levels: intersection of IFNG, TLR and miRNA pathways. PLoS One 2011; 6:e28768. [PMID: 22174891 PMCID: PMC3236216 DOI: 10.1371/journal.pone.0028768] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 11/15/2011] [Indexed: 12/22/2022] Open
Abstract
Transcriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes. Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of Salmonella is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonella shedding following experimental inoculation, we initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n = 40) was inoculated with ST and peripheral blood and fecal Salmonella counts were collected between 2 and 20 days post-inoculation (dpi). Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. Global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip® analysis of peripheral blood RNA at day 0 and 2 dpi. ST inoculation triggered substantial gene expression changes in the pigs and there was differential expression of many genes between LS and PS pigs. Analysis of the differential profiles of gene expression within and between PS and LS phenotypic classes identified distinct regulatory pathways mediated by IFN-γ, TNF, NF-κB, or one of several miRNAs. We confirmed the activation of two regulatory factors, SPI1 and CEBPB, and demonstrated that expression of miR-155 was decreased specifically in the PS animals. These data provide insight into specific pathways associated with extremes in Salmonella fecal shedding that can be targeted for further exploration on why some animals develop a carrier state. This knowledge can also be used to develop rational manipulations of genetics, pharmaceuticals, nutrition or husbandry methods to decrease Salmonella colonization, shedding and spread.
Collapse
Affiliation(s)
- Ting-Hua Huang
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jolita J. Uthe
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Shawn M. D. Bearson
- National Animal Disease Center, United States Department of Agriculture- Agricultural Research Service, Ames, Iowa, United States of America
| | | | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Susan Knetter
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Curtis Christian
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Amanda E. Ramer-Tait
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | | | - Christopher K. Tuggle
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
10
|
Woelk CH, Singhania A, Pérez-Santiago J, Glatt SJ, Tsuang MT. The utility of gene expression in blood cells for diagnosing neuropsychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:41-63. [PMID: 22050848 DOI: 10.1016/b978-0-12-387718-5.00003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective diagnostic tools are required for neuropsychiatric disorders. Gene expression in blood cells may provide such a tool and has already been used to construct classifiers capable of diagnosing many human diseases. This chapter discusses the use of microarray gene expression data to construct diagnostic classifiers for neuropsychiatric disorders. The potential pitfalls of microarray gene expression analysis and the experimental design and methods suitable for classifier construction are described in detail. A review of studies that have analyzed gene expression in blood cells from patients with neuropsychiatric disorders is presented with an emphasis on the feasibility of generating a diagnostic classifier for schizophrenia. Finally, the future directions of the field are discussed with respect to using blood gene expression to tailor antipsychotic medications to individual patients, applying microRNA expression for diagnostic purposes, as well as the implications of next-generation sequencing technologies for gene expression analysis.
Collapse
Affiliation(s)
- Christopher H Woelk
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | | | | | | | | |
Collapse
|