1
|
Imai Y, Tanave A, Matsuyama M, Koide T. Efficient genome editing in wild strains of mice using the i-GONAD method. Sci Rep 2022; 12:13821. [PMID: 35970947 PMCID: PMC9378668 DOI: 10.1038/s41598-022-17776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Wild mouse strains have been used for many research studies, because of the high level of inter-strain genetic and phenotypic variations in them, in addition to the characteristic phenotype maintained from wild mice. However, since application of the current genetic engineering method on wild strains is not easy, there are limited studies that have attempted to apply gene modification techniques in wild strains. Recently, i-GONAD, a new method for genome editing that does not involve any ex vivo manipulation of unfertilized or fertilized eggs has been reported. We applied i-GONAD method for genome editing on a series of wild strains and showed that genome editing is efficiently possible using this method. We successfully made genetically engineered mice in seven out of the nine wild strains. Moreover, we believe that it is still possible to apply milder conditions and improve the efficiencies for the remaining two strains. These results will open avenues for studying the genetic basis of various phenotypes that are characteristic to wild strains. Furthermore, applying i-GONAD will be also useful for other mouse resources in which genetic manipulation is difficult using the method of microinjection into fertilized eggs.
Collapse
Affiliation(s)
- Yuji Imai
- grid.288127.60000 0004 0466 9350Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | - Akira Tanave
- grid.508743.dLaboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, 565-0871 Japan
| | - Makoto Matsuyama
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, Okayama, 701-0202 Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan. .,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan.
| |
Collapse
|
2
|
Kharaz YA, Goljanek‐Whysall K, Nye G, Hurst JL, McArdle A, Comerford EJ. Age-related changes in microRNAs expression in cruciate ligaments of wild-stock house mice. Physiol Rep 2022; 10:e15426. [PMID: 35993414 PMCID: PMC9393909 DOI: 10.14814/phy2.15426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023] Open
Abstract
Cruciate ligaments (CL) of the knee joint are injured following trauma or aging. MicroRNAs (miRs) are potential therapeutic targets in musculoskeletal disorders, but there is little known about the role of miRs and their expression ligaments during aging. This study aimed to (1) identify if mice with normal physical activity, wild-stock house mice are an appropriate model to study age-related changes in the knee joint and (2) investigate the expression of miRs in aging murine cruciate ligaments. Knee joints were collected from 6 and 24 months old C57BL/6 and wild-stock house mice (Mus musculus domesticus) for ligament and cartilage (OARSI) histological analysis. Expression of miR targets in CLs was determined in 6-, 12-, 24-, and 30-month-old wild-stock house mice, followed by the analysis of predicted mRNA target genes and Ingenuity Pathway Analysis. Higher CL and knee OARSI histological scores were found in 24-month-old wild-stock house mice compared with 6- and 24-month-old C57BL/6 and 6-month-old wild-stock house mice (p < 0.05). miR-29a and miR-34a were upregulated in 30-month-old wild-stock house mice in comparison with 6-, 12-, and 24-month-old wild-stock house mice (p < 0.05). Ingenuity Pathway Analysis on miR-29a and 34a targets was associated with inflammation through interleukins, TGFβ and Notch genes, and p53 signaling. Collagen type I alpha 1 chain (COL1A1) correlated negatively with both miR-29a (r = -0.35) and miR-34a (r = -0.33). The findings of this study support wild-stock house mice as an appropriate aging model for the murine knee joint. This study also indicated that miR-29a and miR-34a may be potential regulators of COL1A1 gene expression in murine CLs.
Collapse
Affiliation(s)
- Yalda A. Kharaz
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| | - Katarzyna Goljanek‐Whysall
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
- School of MedicineIRC Laureate, Physiology, Human Biology Building, NUI GalwayGalwayIreland
| | - Gareth Nye
- Chester Medical SchoolUniversity of ChesterChesterUK
| | - Jane L. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst CampusUniversity of LiverpoolNestonUK
| | - Anne McArdle
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| | - Eithne J. Comerford
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical SciencesUniversity of Liverpool, William Duncan BuildingLiverpoolUK
- The MRC‐Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)LiverpoolUK
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst CampusUniversity of LiverpoolNestonUK
| |
Collapse
|
3
|
Okumura K, Saito M, Wakabayashi Y. A wild-derived inbred mouse strain, MSM/Ms, provides insights into novel skin tumor susceptibility genes. Exp Anim 2021; 70:272-283. [PMID: 33776021 PMCID: PMC8390311 DOI: 10.1538/expanim.21-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is one of the most catastrophic human genetic diseases. Experimental animal cancer models are essential for gaining insights into the complex
interactions of different cells and genes in tumor initiation, promotion, and progression. Mouse models have been extensively used to analyze the genetic basis
of cancer susceptibility. They have led to the identification of multiple loci that confer, either alone or in specific combinations, an increased
susceptibility to cancer, some of which have direct translatability to human cancer. Additionally, wild-derived inbred mouse strains are an advantageous
reservoir of novel genetic polymorphisms of cancer susceptibility genes, because of the evolutionary divergence between wild and classical inbred strains. Here,
we review mapped Stmm (skintumor modifier of MSM) loci using a Japanese wild-derived inbred mouse strain, MSM/Ms, and describe recent advances
in our knowledge of the genes responsible for Stmm loci in the 7,12-dimethylbenz(a)anthracene
(DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) two-stage skin carcinogenesis model.
Collapse
Affiliation(s)
- Kazuhiro Okumura
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| | - Megumi Saito
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| | - Yuichi Wakabayashi
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| |
Collapse
|
4
|
Emami AJ, Toupadakis CA, Telek SM, Fyhrie DP, Yellowley CE, Christiansen BA. Age Dependence of Systemic Bone Loss and Recovery Following Femur Fracture in Mice. J Bone Miner Res 2019; 34:157-170. [PMID: 30189111 PMCID: PMC6526937 DOI: 10.1002/jbmr.3579] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/30/2018] [Accepted: 08/25/2018] [Indexed: 11/10/2022]
Abstract
The most reliable predictor of future fracture risk is a previous fracture of any kind. The etiology of this increased fracture risk is not fully known, but it is possible that fracture initiates systemic bone loss, leading to greater fracture risk at all skeletal sites. In this study, we investigated systemic bone loss and recovery after femoral fracture in young (3-month-old) and middle-aged (12-month-old) mice. Transverse femur fractures were created using a controlled impact, and whole-body bone mineral density (BMD), trabecular and cortical microstructure, bone mechanical properties, bone formation and resorption rates, mouse voluntary movement, and systemic inflammation were quantified at multiple time points post-fracture. We found that fracture led to decreased whole-body BMD in both young and middle-aged mice 2 weeks post-fracture; this bone loss was recovered by 6 weeks in young but not middle-aged mice. Similarly, trabecular bone volume fraction (BV/TV) of the L5 vertebral body was significantly reduced in fractured mice relative to control mice 2 weeks post-fracture (-11% for young mice, -18% for middle-aged mice); no significant differences were observed 6 weeks post-fracture. At 3 days post-fracture, we observed significant increases in serum levels of interleukin-6 and significant decreases in voluntary movement in fractured mice compared with control mice, with considerably greater changes in middle-aged mice than in young mice. At this time point, we also observed increased osteoclast number on L5 vertebral body trabecular bone of fractured mice compared with control mice. These data show that systemic bone loss occurs after fracture in both young and middle-aged mice, and recovery from this bone loss may vary with age. This systemic response could contribute to increased future fracture risk after fracture; these data may inform clinical treatment of fractures with respect to improving long-term skeletal health. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Armaun J Emami
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA
| | | | - Stephanie M Telek
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - David P Fyhrie
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA.,Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Clare E Yellowley
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Blaine A Christiansen
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA.,Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
5
|
Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains. G3-GENES GENOMES GENETICS 2017; 7:3449-3457. [PMID: 28855285 PMCID: PMC5633393 DOI: 10.1534/g3.117.300213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s) regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15), has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4) on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.
Collapse
|
6
|
Bains RS, Cater HL, Sillito RR, Chartsias A, Sneddon D, Concas D, Keskivali-Bond P, Lukins TC, Wells S, Acevedo Arozena A, Nolan PM, Armstrong JD. Analysis of Individual Mouse Activity in Group Housed Animals of Different Inbred Strains using a Novel Automated Home Cage Analysis System. Front Behav Neurosci 2016; 10:106. [PMID: 27375446 PMCID: PMC4901040 DOI: 10.3389/fnbeh.2016.00106] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/18/2016] [Indexed: 11/13/2022] Open
Abstract
Central nervous system disorders such as autism as well as the range of neurodegenerative diseases such as Huntington's disease are commonly investigated using genetically altered mouse models. The current system for characterizing these mice usually involves removing the animals from their home-cage environment and placing them into novel environments where they undergo a battery of tests measuring a range of behavioral and physical phenotypes. These tests are often only conducted for short periods of times in social isolation. However, human manifestations of such disorders are often characterized by multiple phenotypes, presented over long periods of time and leading to significant social impacts. Here, we have developed a system which will allow the automated monitoring of individual mice housed socially in the cage they are reared and housed in, within established social groups and over long periods of time. We demonstrate that the system accurately reports individual locomotor behavior within the group and that the measurements taken can provide unique insights into the effects of genetic background on individual and group behavior not previously recognized.
Collapse
Affiliation(s)
- Rasneer S Bains
- Mary Lyon Centre, Medical Research Council Harwell Oxfordshire, UK
| | - Heather L Cater
- Mary Lyon Centre, Medical Research Council Harwell Oxfordshire, UK
| | | | | | - Duncan Sneddon
- Mammalian Genetics Unit, Medical Research Council Harwell Oxfordshire, UK
| | - Danilo Concas
- Mary Lyon Centre, Medical Research Council Harwell Oxfordshire, UK
| | | | | | - Sara Wells
- Mary Lyon Centre, Medical Research Council Harwell Oxfordshire, UK
| | | | - Patrick M Nolan
- Mammalian Genetics Unit, Medical Research Council Harwell Oxfordshire, UK
| | - J Douglas Armstrong
- Actual Analytics LtdEdinburgh, UK; School of Informatics, University of EdinburghEdinburgh, UK
| |
Collapse
|
7
|
Loos M, Koopmans B, Aarts E, Maroteaux G, van der Sluis S, Verhage M, Smit AB. Sheltering behavior and locomotor activity in 11 genetically diverse common inbred mouse strains using home-cage monitoring. PLoS One 2014; 9:e108563. [PMID: 25264768 PMCID: PMC4180925 DOI: 10.1371/journal.pone.0108563] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/22/2014] [Indexed: 11/26/2022] Open
Abstract
Functional genetic analyses in mice rely on efficient and in-depth characterization of the behavioral spectrum. Automated home-cage observation can provide a systematic and efficient screening method to detect unexplored, novel behavioral phenotypes. Here, we analyzed high-throughput automated home-cage data using existing and novel concepts, to detect a plethora of genetic differences in spontaneous behavior in a panel of commonly used inbred strains (129S1/SvImJ, A/J, C3H/HeJ, C57BL/6J, BALB/cJ, DBA/2J, NOD/LtJ, FVB/NJ, WSB/EiJ, PWK/PhJ and CAST/EiJ). Continuous video-tracking observations of sheltering behavior and locomotor activity were segmented into distinguishable behavioral elements, and studied at different time scales, yielding a set of 115 behavioral parameters of which 105 showed highly significant strain differences. This set of 115 parameters was highly dimensional; principal component analysis identified 26 orthogonal components with eigenvalues above one. Especially novel parameters of sheltering behavior and parameters describing aspects of motion of the mouse in the home-cage showed high genetic effect sizes. Multi-day habituation curves and patterns of behavior surrounding dark/light phase transitions showed striking strain differences, albeit with lower genetic effect sizes. This spontaneous home-cage behavior study demonstrates high dimensionality, with a strong genetic contribution to specific sets of behavioral measures. Importantly, spontaneous home-cage behavior analysis detects genetic effects that cannot be studied in conventional behavioral tests, showing that the inclusion of a few days of undisturbed, labor extensive home-cage assessment may greatly aid gene function analyses and drug target discovery.
Collapse
Affiliation(s)
- Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | | | - Emmeke Aarts
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Gregoire Maroteaux
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sophie van der Sluis
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
- Section Complex Trait Genetics, Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | | | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Segregation of a QTL cluster for home-cage activity using a new mapping method based on regression analysis of congenic mouse strains. Heredity (Edinb) 2014; 113:416-23. [PMID: 24781804 PMCID: PMC4220717 DOI: 10.1038/hdy.2014.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 01/09/2023] Open
Abstract
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs.
Collapse
|
9
|
Kanno K, Kokubo H, Takahashi A, Koide T, Ishiura S. Enhanced prepulse inhibition and low sensitivity to a dopamine agonist in HESR1 knockout mice. J Neurosci Res 2013; 92:287-97. [PMID: 24431082 DOI: 10.1002/jnr.23291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 11/07/2022]
Abstract
Transcription factor Hesr family genes are important in neuronal development. We demonstrated previously that HESR1 and HESR2 modified expression of the dopamine transporter (DAT) reporter gene. HESR-family genes have been investigated in development, but their functions, especially in relation to behaviors regulated by dopamine, in adult animals remain unclear. In the present study, we investigated the effects of Hesr1 and Hesr2 on behavior. A behavioral test battery to examine spontaneous activity, anxiety-like behavior, aggressive behavior, pain sensitivity, and sensorimotor gating was conducted in Hesr1 and Hesr2 knockout (KO) mice. Enhanced prepulse inhibition (PPI), which is a form of sensorimotor gating, was observed in only Hesr1 KO mice; other behavioral traits were mostly comparable to wild-type animals in both the Hesr1 and the Hesr2 KO lines. Next, we used a dopamine agonist, apomorphine, to confirm the involvement of the dopaminergic system. Injection of apomorphine reduced the enhanced PPI in Hesr1 KO mice. Additionally, dose-dependent sensitivity to the agonist was lower in the Hesr1 KO mice than in wild-type mice, suggesting that the enhanced PPI resulted from this alteration in dopamine sensitivity. Furthermore, DAT mRNA was downregulated in Hesr1 KO mice, whereas the dopamine D1 and D2 receptors were comparable. These findings suggest Hesr1 to be a novel factor that affects dopamine sensitivity and the sensorimotor gating system.
Collapse
Affiliation(s)
- Kouta Kanno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
Kelly SA, Pomp D. Genetic determinants of voluntary exercise. Trends Genet 2013; 29:348-57. [PMID: 23351966 PMCID: PMC3665695 DOI: 10.1016/j.tig.2012.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/06/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
Variation in voluntary exercise behavior is an important determinant of long-term human health. Increased physical activity is used as a preventative measure or therapeutic intervention for disease, and a sedentary lifestyle has generally been viewed as unhealthy. Predisposition to engage in voluntary activity is heritable and induces protective metabolic changes, but its complex genetic/genomic architecture has only recently begun to emerge. We first present a brief historical perspective and summary of the known benefits of voluntary exercise. Second, we describe human and mouse model studies using genomic and transcriptomic approaches to reveal the genetic architecture of exercise. Third, we discuss the merging of genomic information and physiological observations, revealing systems and networks that lead to a more complete mechanistic understanding of how exercise protects against disease pathogenesis. Finally, we explore potential regulation of physical activity through epigenetic mechanisms, including those that persist across multiple generations.
Collapse
Affiliation(s)
- Scott A Kelly
- Department of Zoology, Ohio Wesleyan University, Delaware, OH 43015, USA
| | | |
Collapse
|
11
|
Koide T, Goto T, Takano-Shimizu T. Genomic mixing to elucidate the genetic system of complex traits. Exp Anim 2013; 61:503-9. [PMID: 23095813 DOI: 10.1538/expanim.61.503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Understanding the genetic basis of complex traits has become one of the major issues in genetics, but recent advances in this field are still faced with a difficulty, the so-called "missing heritability." It is speculated that missing heritability mainly stems from a large number of variants of small effect that are poorly detected by currently available methods. In order to overcome this problem, many recent genetic studies of complex traits have actively used outbred stocks of mice. However, most of the available outbred stocks have a limited amount of genetic variation, because many stocks originate from Swiss mouse colonies. We have repeatedly shown that wild-derived strains are a useful mouse resource since there is a large genetic diversity among these strains. Here, we give an overview of mouse resources produced by crossing different founder mice. Finally, we propose an advantage of new attempts to conduct selective breeding using heterogeneous stocks created by mixing genomes of wild-derived inbred strains of mice when studying complex traits.
Collapse
Affiliation(s)
- Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
12
|
Logan RW, Robledo RF, Recla JM, Philip VM, Bubier JA, Jay JJ, Harwood C, Wilcox T, Gatti DM, Bult CJ, Churchill GA, Chesler EJ. High-precision genetic mapping of behavioral traits in the diversity outbred mouse population. GENES BRAIN AND BEHAVIOR 2013; 12:424-37. [PMID: 23433259 PMCID: PMC3709837 DOI: 10.1111/gbb.12029] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 01/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022]
Abstract
Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine-mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild-derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open-field, light–dark box, tail-suspension and visual-cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety- and activity-related traits. Half of the QTLs are associated with wild-derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild-alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high-precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics
Collapse
Affiliation(s)
- R W Logan
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|
14
|
Tarantino LM, Eisener-Dorman AF. Forward genetic approaches to understanding complex behaviors. Curr Top Behav Neurosci 2012; 12:25-58. [PMID: 22297575 PMCID: PMC6989028 DOI: 10.1007/7854_2011_189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Assigning function to genes has long been a focus of biomedical research.Even with complete knowledge of the genomic sequences of humans, mice and other experimental organisms, there is still much to be learned about gene function and control. Ablation or overexpression of single genes using knockout or transgenic technologies has provided functional annotation for many genes, but these technologies do not capture the extensive genetic variation present in existing experimental mouse populations. Researchers have only recently begun to truly appreciate naturally occurring genetic variation resulting from single nucleotide substitutions,insertions, deletions, copy number variation, epigenetic changes (DNA methylation,histone modifications, etc.) and gene expression differences and how this variation contributes to complex phenotypes. In this chapter, we will discuss the benefits and limitations of different forward genetic approaches that capture the genetic variation present in inbred mouse strains and present the utility of these approaches for mapping QTL that influence complex behavioral phenotypes.
Collapse
|
15
|
Koide T, Ikeda K, Ogasawara M, Shiroishi T, Moriwaki K, Takahashi A. A new twist on behavioral genetics by incorporating wild-derived mouse strains. Exp Anim 2011; 60:347-54. [PMID: 21791874 DOI: 10.1538/expanim.60.347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Behavior has been proven to be extremely variable among human individuals. One of the most important factors for such variations of behavior is genetic diversity. A variety of mouse strains are reportedly suitable animal models for investigating the genetic basis of large individual differences in behavior. Laboratory strains have been shown to exhibit different behavioral traits due to variations in their genetic background. However, they show low-level genetic polymorphism because the original colony used for establishing the strains comprises a relatively small number of mice. Furthermore, because the laboratory strains were derived from fancy mice, they have lost the original behavioral phenotype of wild mice. Therefore, incorporation of inbred strains derived from wild mice of different mouse subspecies for behavioral studies is a marked advantage. In the long-term process of establishing a variety of wild-derived inbred strains from wild mice captured all over the world, a number of strains have been established. We previously identified a marked variety in behavioral traits using a Mishima battery. This review reports on the usefulness of wild-derived strains for genetic analyses of behavioral phenotypes in mice.
Collapse
Affiliation(s)
- Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
In genetic studies, many interesting traits, including growth curves and skeletal shape, have temporal or spatial structure. They are better treated as curves or function-valued traits. Identification of genetic loci contributing to such traits is facilitated by specialized methods that explicitly address the function-valued nature of the data. Current methods for mapping function-valued traits are mostly likelihood-based, requiring specification of the distribution and error structure. However, such specification is difficult or impractical in many scenarios. We propose a general functional regression approach based on estimating equations that is robust to misspecification of the covariance structure. Estimation is based on a two-step least-squares algorithm, which is fast and applicable even when the number of time points exceeds the number of samples. It is also flexible due to a general linear functional model; changing the number of covariates does not necessitate a new set of formulas and programs. In addition, many meaningful extensions are straightforward. For example, we can accommodate incomplete genotype data, and the algorithm can be trivially parallelized. The framework is an attractive alternative to likelihood-based methods when the covariance structure of the data is not known. It provides a good compromise between model simplicity, statistical efficiency, and computational speed. We illustrate our method and its advantages using circadian mouse behavioral data.
Collapse
|
17
|
Antony PMA, Diederich NJ, Balling R. Parkinson's disease mouse models in translational research. Mamm Genome 2011; 22:401-19. [PMID: 21559878 PMCID: PMC3151483 DOI: 10.1007/s00335-011-9330-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022]
Abstract
Animal models with high predictive power are a prerequisite for translational research. The closer the similarity of a model to Parkinson’s disease (PD), the higher is the predictive value for clinical trials. An ideal PD model should present behavioral signs and pathology that resemble the human disease. The increasing understanding of PD stratification and etiology, however, complicates the choice of adequate animal models for preclinical studies. An ultimate mouse model, relevant to address all PD-related questions, is yet to be developed. However, many of the existing models are useful in answering specific questions. An appropriate model should be chosen after considering both the context of the research and the model properties. This review addresses the validity, strengths, and limitations of current PD mouse models for translational research.
Collapse
Affiliation(s)
- Paul M A Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg.
| | | | | |
Collapse
|
18
|
Thomas C, Marcaletti S, Feige JN. Assessment of Spontaneous Locomotor and Running Activity in Mice. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2011; 1:185-98. [PMID: 26068992 DOI: 10.1002/9780470942390.mo100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The locomotor activity of laboratory mice is a global behavioral trait which can be valuable for the primary phenotyping of genetically engineered mouse models as well as mouse models of pathologies affecting the central and peripheral nervous systems, the musculoskeletal system, and the control of energy homeostasis. Basal levels of mouse locomotion can be recorded using infrared monitoring of movements, and further information can be gathered by giving the animal access to a running wheel, which will greatly enhance its spontaneous physical activity. Described here are two detailed protocols to evaluate basal locomotor activity and spontaneous wheel running. Curr. Protoc. Mouse Biol. 1:185-198. © 2011 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Charles Thomas
- Center of Phenogenomics (CPG), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stefan Marcaletti
- MusculoSkeletal Diseases, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Jérôme N Feige
- MusculoSkeletal Diseases, Novartis Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
19
|
Zombeck JA, Deyoung EK, Brzezinska WJ, Rhodes JS. Selective breeding for increased home cage physical activity in collaborative cross and Hsd:ICR mice. Behav Genet 2010; 41:571-82. [PMID: 21184167 DOI: 10.1007/s10519-010-9425-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/02/2010] [Indexed: 11/30/2022]
Abstract
Selective breeding experiments for increased wheel running and open field behavior have identified genetic and neurobiological factors associated with increased voluntary physical activity in mice, but no previous study has directly selected for increased distance traveled in the home cage. Therefore, within-family selection was applied to increase home cage activity as measured by continuous video tracking using two different starting populations, G2:F1 Collaborative Cross (CC) and Hsd:ICR mice. Genetic correlations with distance traveled on running wheels and in the open field were evaluated by mid-parent offspring regression. A significant response to selection was observed in CC but not Hsd:ICR. Wheel running was heritable in both populations but not significantly genetically correlated with home cage activity. Open field was not heritable in either population. We conclude that different genes and neural circuits influence physical activity in the home cage as compared to wheel running or open field. Selective breeding for home cage activity in CC mice warrants further exploration.
Collapse
Affiliation(s)
- Jonathan A Zombeck
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|