1
|
Song S, Zhang M, Xie P, Wang S, Wang Y. Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front Immunol 2022; 13:978909. [PMID: 36341328 PMCID: PMC9630583 DOI: 10.3389/fimmu.2022.978909] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cuproptosis is a newly discovered programmed cell death dependent on overload copper-induced mitochondrial respiration dysregulation. The positive response to immunotherapy, one of the most important treatments for invasive breast cancer, depends on the dynamic balance between tumor cells and infiltrating lymphocytes in the tumor microenvironment (TME). However, cuproptosis-related genes (CRGs) in clinical prognosis, immune cell infiltration, and immunotherapy response remain unclear in breast cancer progression. Methods The expression and mutation patterns of 12 cuproptosis-related genes were systematically evaluated in the BRCA training group. Through unsupervised clustering analysis and developing a cuproptosis-related scoring system, we further explored the relationship between cuproptosis and breast cancer progression, prognosis, immune cell infiltration, and immunotherapy. Results We identified two distinct CuproptosisClusters, which were correlated with the different patterns between clinicopathological features, prognosis, and immune cell infiltration. Moreover, the differences of the three cuproptosis-related gene subtypes were evaluated based on the CuproptosisCluster-related DEGs. Then, a cuproptosis-related gene signature (PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2) and the scoring system were constructed to quantify the cuproptosis pattern of BRCA patients in the training cohort, and the testing cohorts validated them. Specifically, patients from the low-CRG_score group were characterized by higher immune cell infiltration, immune checkpoint expression, immune checkpoint inhibitor (ICI) scores, and greater sensitivity to immunotherapy. Finally, we screened out RAD23B as a favorable target and indicated its expression was associated with breast cancer progression, drug resistance, and poor prognosis in BRCA patients by performing real-time RT-PCR, cell viability, and IC50 assay. Conclusions Our results confirmed the essential function of cuproptosis in regulating the progression, prognosis, immune cell infiltration, and response to breast cancer immunotherapy. Quantifying cuproptosis patterns and constructing a CRG_score could help explore the potential molecular mechanisms of cuproptosis regulating BRCA advancement and provide more effective immunotherapy and chemotherapy targets.
Collapse
Affiliation(s)
- Shaoran Song
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Miao Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Peiling Xie
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuhong Wang
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yaochun Wang, ; Shuhong Wang,
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yaochun Wang, ; Shuhong Wang,
| |
Collapse
|
2
|
Azbukina NV, Lopachev AV, Chistyakov DV, Goriainov SV, Astakhova AA, Poleshuk VV, Kazanskaya RB, Fedorova TN, Sergeeva MG. Oxylipin Profiles in Plasma of Patients with Wilson's Disease. Metabolites 2020; 10:metabo10060222. [PMID: 32485807 PMCID: PMC7345781 DOI: 10.3390/metabo10060222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Wilson’s disease (WD) is a rare autosomal recessive metabolic disorder resulting from mutations in the copper-transporting, P-type ATPase gene ATP7B gene, but influences of epigenetics, environment, age, and sex-related factors on the WD phenotype complicate diagnosis and clinical manifestations. Oxylipins, derivatives of omega-3, and omega-6 polyunsaturated fatty acids (PUFAs) are signaling mediators that are deeply involved in innate immunity responses; the regulation of inflammatory responses, including acute and chronic inflammation; and other disturbances related to any system diseases. Therefore, oxylipin profile tests are attractive for the diagnosis of WD. With UPLC-MS/MS lipidomics analysis, we detected 43 oxylipins in the plasma profiles of 39 patients with various clinical manifestations of WD compared with 16 healthy controls (HCs). Analyzing the similarity matrix of oxylipin profiles allowed us to cluster patients into three groups. Analysis of the data by VolcanoPlot and partial least square discriminant analysis (PLS-DA) showed that eight oxylipins and lipids stand for the variance between WD and HCs: eicosapentaenoic acid EPA, oleoylethanolamide OEA, octadecadienoic acids 9-HODE, 9-KODE, 12-hydroxyheptadecatrenoic acid 12-HHT, prostaglandins PGD2, PGE2, and 14,15-dihydroxyeicosatrienoic acids 14,15-DHET. The compounds indicate the involvement of oxidative stress damage, inflammatory processes, and peroxisome proliferator-activated receptor (PPAR) signaling pathways in this disease. The data reveal novel possible therapeutic targets and intervention strategies for treating WD.
Collapse
Affiliation(s)
- Nadezhda V. Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow 119234, Russia;
| | - Alexander V. Lopachev
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, Moscow 125367, Russia;
| | - Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia;
- Correspondence: (D.V.C.); (T.N.F.); (M.G.S.)
| | - Sergei V. Goriainov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia;
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia;
| | | | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, Moscow 125367, Russia;
- Correspondence: (D.V.C.); (T.N.F.); (M.G.S.)
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia;
- Correspondence: (D.V.C.); (T.N.F.); (M.G.S.)
| |
Collapse
|
3
|
Qin S, Huang X, Wang D, Hu X, Yuan Y, Sun X, Tan Z, Gu Y, Cheng X, He C, Su Z. Identification of characteristic genes distinguishing neural stem cells from astrocytes. Gene 2018; 681:26-35. [PMID: 30266499 DOI: 10.1016/j.gene.2018.09.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neural stem cells (NSCs) have unique biological characteristics such as continuous proliferation and multipotential differentiation, providing a possible method for restoration of central nervous system (CNS) function after injury or disease. NSCs and astrocytes share many similar biological properties including cell morphology and molecular expression and can trans-differentiate into each other under certain conditions. However, characteristic genes specifically expressed by NSCs have not been well described. METHODS To provide insights into the characteristic expression of NSCs, bioinformatics analysis of two microarrays of mouse NSCs and astrocytes was performed. Compared to astrocytes, the differentially expressed genes (DEGs) in NSCs were identified and annotated by GO, KEGG and GSEA analysis, respectively. Then key genes were screened by protein-protein interaction (PPI) network and modules analysis, and were verified using multiple high-throughput sequencing resources. Finally, the expression difference between the two cell types was confirmed by Real-time Quantitative PCR (qPCR), western blotting and immunochemical analysis. RESULTS In the present study, 282 and 250 NSC-enriched genes from two microarrays were identified and annotated respectively, and the 77 overlapping DEGs were then selected. From the PPI network 24 key genes in three modules were screened out. Importantly, sequencing data of tissues showed that these 24 key genes tended to be highly expressed in NSCs compared with astrocytes. Furthermore, qPCR and western blot analysis of cultured NSCs and astrocytes showed two genes (KIF2C and TOP2A) were not only differentially expressed in RNA level but also at the protein level. Importantly, the NSC-specific genes KIF2C and TOP2A were validated by immunohistochemistry in vivo. CONCLUSION In present study, we identified 2 hub genes (KIF2C and TOP2A) that might serve as potential biomarkers for distinguishing NSCs from astrocytes, contributing to our comprehensive understanding of the biological properties and functions of NSCs.
Collapse
Affiliation(s)
- Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xin Hu
- Department of Neurological Surgery, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xiu Sun
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Yakun Gu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xueyan Cheng
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China.
| |
Collapse
|
4
|
Wang H, Sun X, Chou J, Lin M, Ferrario CM, Zapata-Sudo G, Groban L. Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice. Data Brief 2016; 10:465-473. [PMID: 28054009 PMCID: PMC5198850 DOI: 10.1016/j.dib.2016.11.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/15/2016] [Indexed: 02/04/2023] Open
Abstract
We previously showed that cardiomyocyte-specific G protein-coupled estrogen receptor (GPER) gene deletion leads to sex-specific adverse effects on cardiac structure and function; alterations which may be due to distinct differences in mitochondrial and inflammatory processes between sexes. Here, we provide the results of Gene Set Enrichment Analysis (GSEA) based on the DNA microarray data from GPER-knockout versus GPER-intact (intact) cardiomyocytes. This article contains complete data on the mitochondrial and inflammatory response-related gene expression changes that were significant in GPER knockout versus intact cardiomyocytes from adult male and female mice. The data are supplemental to our original research article "Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: a sex-specific gene profiling" (Wang et al., 2016) [1]. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE86843.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA; Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA
| | - Jeff Chou
- Public Health Sciences, Section on Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Marina Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; Department of Internal Medicine/Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Gisele Zapata-Sudo
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA; Institute of Biomedical Sciences, Drug Development Program, Federal University of Rio de Janeiro, Brazil
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA; Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; Cardiovascular Research Center, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; Sticht Center on Aging, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| |
Collapse
|
5
|
He K, Lv W, Zhang Q, Wang Y, Tao L, Liu D. Gene set enrichment analysis of pathways and transcription factors associated with diabetic retinopathy using a microarray dataset. Int J Mol Med 2015; 36:103-12. [PMID: 25997411 PMCID: PMC4494587 DOI: 10.3892/ijmm.2015.2220] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/12/2015] [Indexed: 01/05/2023] Open
Abstract
Diabetic retinopathy (DR) is a serious microvascular complication of diabetes, which causes visual disability and blindness. Several studies have used gene expression profiling of DR to identify the key genes involved in this process; however, few studies have focused on the associated pathways and transcription factors (TFs), or on the co-expression patterns at the multiple pathways level. In this study, we employed a microarray dataset from the public database library of the Gene Expression Omnibus (GEO) associated with DR and applied gene set enrichment analysis (GSEA) to this dataset and performed candidate TF selection. As a result, 10 upregulated pathways, including the type I diabetes mellitus and peroxisome proliferator-activated receptor (PPAR) signaling pathways, as well as 59 downregulated pathways, including the ErbB signaling pathway and the mammalian target of rapamycin (mTOR) signaling pathway, were identified as DR‑related pathways. The majority of these pathways have been previously identified, but some were novel. Finally, co-expression networks of related pathways were constructed using the significant core genes and TFs, such as PPARγ and SMAD4. The results of our study may enhance our understanding of the molecular mechanisms associated DR at the genome-wide level.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Wenwen Lv
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yuqing Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Liming Tao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Dahai Liu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
6
|
He K, Zhou T, Shao J, Ren X, Zhao Z, Liu D. Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans. Aging (Albany NY) 2015; 6:215-30. [PMID: 24739375 PMCID: PMC4012938 DOI: 10.18632/aging.100648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP–seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, P. R. China, 230601
| | | | | | | | | | | |
Collapse
|
7
|
He K, Lv W, Zheng D, Cheng F, Zhou T, Ye S, Ban Q, Ying Q, Huang B, Chen L, Wu G, Liu D. The stromal genome heterogeneity between breast and prostate tumors revealed by a comparative transcriptomic analysis. Oncotarget 2015; 6:8687-97. [PMID: 25826086 PMCID: PMC4496176 DOI: 10.18632/oncotarget.3478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/12/2015] [Indexed: 11/25/2022] Open
Abstract
Stromal microenvironment increases tumor cell survival, proliferation and migration, and promotes angiogenesis. In order to provide comprehensive information on the stromal heterogeneity of diverse tumors, here we employed the microarray datasets of human invasive breast and prostate cancer-associated stromals and applied Gene Set Enrichment Analysis (GSEA) to compare the gene expression profiles between them. As a result, 8 up-regulated pathways and 73 down-regulated pathways were identified in the breast tumor stroma, while 32 up-regulated pathways and 18 down-regulated pathways were identified in the prostate tumor stroma. Only 9 pathways such as tryptophan metabolism were commonly up or down regulated, but most of them (including ABC transporters) were specific for these two tumors. Several essential tumors stromal marker genes were also significantly identified. For example, CDH3 was significantly up-regulated in the stromals of both breast and prostate tumors, however EGFR was only significantly down-regulated in the stromal of breast tumor. Our study would be helpful for future therapeutic and predictive applications in breast and prostate cancers.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Wenwen Lv
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Dongni Zheng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Fei Cheng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Tao Zhou
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Molecular Genetics, Shanghai Medical School, Fudan University, Shanghai, China
| | - Qian Ban
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Lei Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Guohua Wu
- Laboratory of Quality & Safety Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Dahai Liu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| |
Collapse
|
8
|
Extracting data from the muck: deriving biological insight from complex microbial communities and non-model organisms with next generation sequencing. Curr Opin Biotechnol 2014; 28:103-10. [DOI: 10.1016/j.copbio.2014.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/09/2023]
|
9
|
He K, Xiao W, Lv W. Comprehensive identification of essential pathways and transcription factors related to epilepsy by gene set enrichment analysis on microarray datasets. Int J Mol Med 2014; 34:715-24. [PMID: 25016997 PMCID: PMC4121356 DOI: 10.3892/ijmm.2014.1843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/30/2014] [Indexed: 11/06/2022] Open
Abstract
Epilepsy is a common chronic neurological disorder characterized by seizures or convulsions, and is known to affect patients with primary brain tumors. The etiology of epilepsy is superficially thought to be multifactorial; however, the genetic factors which may be involved in the pathogenesis of seizures have not yet been elucidated, particularly at the pathway level. In the present study, in order to systematically investigate the gene regulatory networks involved in epilepsy, we employed a microarray dataset from the public database library of Gene Expression Omnibus (GEO) associated with tumor-induced epileptogenesis and applied gene set enrichment analysis (GSEA) on these data sets and performed candidate transcription factor (TF) selection. As a result, 68 upregulated pathways, including the extracellular matrix (ECM)-receptor interaction (P=0.004) and peroxisome proliferator-activated receptor (PPAR) signaling pathways (P=0.045), as well as 4 downregulated pathways, including the GnRH signaling pathway (P=0.029) and gap junction (P=0.034) were identified as epileptogenesis-related pathways. The majority of these pathways identified have been previously reported and our results were in accordance with those reports. However, some of these pathways identified were novel. Finally, co-expression networks of the related pathways were constructed with the significant core genes and TFs, such as PPAR-γ and phosphatidylethanolamine-binding protein. The results of our study may contribute to the improved understanding of the molecular mechanisms of epileptogenesis on a genome-wide level.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Weizhong Xiao
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, P.R. China
| | - Wenwen Lv
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
10
|
Association study between gene polymorphisms in PPAR signaling pathway and porcine meat quality traits. Mamm Genome 2014; 24:322-31. [PMID: 23797830 DOI: 10.1007/s00335-013-9460-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
There is increasing evidence suggesting that fatty acids biosynthesis and metabolism are regulated by peroxisome proliferator-activated receptors (PPARs), mostly through the PPAR signaling pathway at the transcriptomic level. We hypothesized that the genetic variants of the enzymes in the PPAR signaling pathway may be associated with the traits of porcine meat quality (PMQ). We mined 77 potentially functional single nucleotide polymorphisms in the PPAR signaling pathway of the pig. There were 13 TagSNPs in 13 different genes mapped within the reported pig quantitative trait loci (QTLs) regions related to PMQ based on the Pig QTL database. Based on the association study with ten measured PMQ traits in both the pathway level and the SNP level, we tested eight significantly associated traits with additive effect in the PPAR signaling pathway and explored only one significant TagSNP in gene RXRB, which is directly associated with the trait of skin weight. Moreover, several interactions of TagSNPs were also significantly related to some of PMQ traits. In this large and comprehensive candidate gene set study, we found a modest association of genes and SNPs in the PPAR signaling pathway with PMQ. Further investigation of these gene polymorphisms jointly with fatty acid measures and other genetic factors would help us better understand the regulation mechanisms of PMQ.
Collapse
|
11
|
Huster D. Structural and metabolic changes in Atp7b-/- mouse liver and potential for new interventions in Wilson's disease. Ann N Y Acad Sci 2014; 1315:37-44. [PMID: 24697742 DOI: 10.1111/nyas.12337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wilson's disease (WD) is caused by ATP7B mutations and results in copper accumulation and toxicity in liver and brain tissues. The specific mechanisms underlying copper toxicity are still poorly understood. Mouse models have revealed new insights into pathomechanisms of hepatic WD. Mitochondrial damage is observed in livers of WD patients and in mouse models; copper induces fragmentation of mitochondrial membrane lipids, particularly cardiolipin, with deleterious effects on both mitochondrial integrity and function. Copper accumulation also induces chronic inflammation in WD livers, which is followed by regeneration in parts of the liver and occasionally neoplastic proliferation. Gene expression studies using microarrays have aided our understanding of the molecular basis of these changes. Copper overload alters cholesterol biosynthesis in hepatocytes resulting in reduced liver and serum cholesterol. Experiments are currently underway to elucidate the link between copper and cholesterol metabolism. These findings may facilitate the development of specific therapies to ameliorate WD progression.
Collapse
Affiliation(s)
- Dominik Huster
- Department of Gastroenterology and Oncology, Deaconess Hospital Leipzig, Academic Teaching Hospital University of Leipzig, Germany
| |
Collapse
|
12
|
Gu S, Yang H, Qi Y, Deng X, Zhang L, Guo Y, Huang Q, Li J, Shi X, Song Z, Deng H. Novel ATPase Cu(2+) transporting beta polypeptide mutations in Chinese families with Wilson's disease. PLoS One 2013; 8:e66526. [PMID: 23843956 PMCID: PMC3699604 DOI: 10.1371/journal.pone.0066526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 12/24/2022] Open
Abstract
Wilson's disease (WD) is an autosomal recessive inherited disorder caused by mutations in the ATPase Cu(2+) transporting beta polypeptide gene (ATP7B). The detailed metabolism of copper-induced pathology in WD is still unknown. Gene mutations as well as the possible pathways involved in the ATP7B deficiency were documented. The ATP7B gene was analyzed for mutations in 18 Chinese Han families with WD by direct sequencing. Cell viability and apoptosis analysis of ATP7B small interfering RNA (siRNA)-treated human liver carcinoma (HepG2) cells were measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and Hoechst 33342 staining. Finally, the expression of B-cell CLL/lymphoma 2 (BCL2), BCL2-associated X protein (BAX), sterol regulatory element binding protein 1 (SREBP1), and minichromosome maintenance protein 7 (MCM7) of ATP7B siRNA-treated cells were tested by real-time polymerase chain reaction (real-time PCR) and Western blot analysis. Twenty different mutations including four novel mutations (p.Val145Phe, p.Glu388X, p.Thr498Ser and p.Gly837X) in the ATP7B gene were identified in our families. Haplotype analysis revealed that founder effects for four mutations (p.Arg778Leu, p.Pro992Leu, p.Ile1148Thr and p.Ala1295Val) existed in these families. Transfection of HepG2 cells with ATP7B siRNA resulted in decreased mRNA expression by 86.3%, 93.1% and 90.8%, and decreased protein levels by 58.5%, 85.5% and 82.1% at 24, 48 and 72 hours, respectively (All P<0.01). In vitro study revealed that the apoptotic, cell cycle and lipid metabolism pathway may be involved in the mechanism of WD. Our results revealed that the genetic cause of 18 Chinese families with WD and ATP7B deficiency-induce apoptosis may result from imbalance in cell cycle and lipid metabolism pathway.
Collapse
Affiliation(s)
- Shaojuan Gu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Huarong Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Qi
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Department of Physiology, Xiangya Medical School, Central South University, Changsha, China
| | - Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
- * E-mail:
| |
Collapse
|
13
|
Vonk WIM, Bartuzi P, de Bie P, Kloosterhuis N, Wichers CGK, Berger R, Haywood S, Klomp LWJ, Wijmenga C, van de Sluis B. Liver-specific Commd1 knockout mice are susceptible to hepatic copper accumulation. PLoS One 2011; 6:e29183. [PMID: 22216203 PMCID: PMC3245254 DOI: 10.1371/journal.pone.0029183] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/22/2011] [Indexed: 11/23/2022] Open
Abstract
Canine copper toxicosis is an autosomal recessive disorder characterized by hepatic copper accumulation resulting in liver fibrosis and eventually cirrhosis. We have identified COMMD1 as the gene underlying copper toxicosis in Bedlington terriers. Although recent studies suggest that COMMD1 regulates hepatic copper export via an interaction with the Wilson disease protein ATP7B, its importance in hepatic copper homeostasis is ill-defined. In this study, we aimed to assess the effect of Commd1 deficiency on hepatic copper metabolism in mice. Liver-specific Commd1 knockout mice (Commd1Δhep) were generated and fed either a standard or a copper-enriched diet. Copper homeostasis and liver function were determined in Commd1Δhep mice by biochemical and histological analyses, and compared to wild-type littermates. Commd1Δhep mice were viable and did not develop an overt phenotype. At six weeks, the liver copper contents was increased up to a 3-fold upon Commd1 deficiency, but declined with age to concentrations similar to those seen in controls. Interestingly, Commd1Δhep mice fed a copper-enriched diet progressively accumulated copper in the liver up to a 20-fold increase compared to controls. These copper levels did not result in significant induction of the copper-responsive genes metallothionein I and II, neither was there evidence of biochemical liver injury nor overt liver pathology. The biosynthesis of ceruloplasmin was clearly augmented with age in Commd1Δhep mice. Although COMMD1 expression is associated with changes in ATP7B protein stability, no clear correlation between Atp7b levels and copper accumulation in Commd1Δhep mice could be detected. Despite the absence of hepatocellular toxicity in Commd1Δhep mice, the changes in liver copper displayed several parallels with copper toxicosis in Bedlington terriers. Thus, these results provide the first genetic evidence for COMMD1 to play an essential role in hepatic copper homeostasis and present a valuable mouse model for further understanding of the molecular mechanisms underlying hepatic copper homeostasis.
Collapse
Affiliation(s)
- Willianne I. M. Vonk
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, and Netherlands Metabolomics Center, Utrecht, The Netherlands
- Complex Genetics Section, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paulina Bartuzi
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Prim de Bie
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, and Netherlands Metabolomics Center, Utrecht, The Netherlands
- Complex Genetics Section, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels Kloosterhuis
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Catharina G. K. Wichers
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, and Netherlands Metabolomics Center, Utrecht, The Netherlands
| | - Ruud Berger
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, and Netherlands Metabolomics Center, Utrecht, The Netherlands
| | - Susan Haywood
- Department of Veterinary Pathology, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Leo W. J. Klomp
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, and Netherlands Metabolomics Center, Utrecht, The Netherlands
| | - Cisca Wijmenga
- Complex Genetics Section, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|