1
|
Teixeira SK, Pontes R, Zuleta LFG, Wang J, Xu D, Hildebrand S, Russell J, Zhan X, Choi M, Tang M, Li X, Ludwig S, Beutler B, Krieger JE. Genetic determinants of blood pressure and heart rate identified through ENU-induced mutagenesis with automated meiotic mapping. SCIENCE ADVANCES 2024; 10:eadj9797. [PMID: 38427739 PMCID: PMC10906923 DOI: 10.1126/sciadv.adj9797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.
Collapse
Affiliation(s)
- Samantha K. Teixeira
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Pontes
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Fernando G. Zuleta
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose E. Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
3
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|
4
|
Khorrami A, Goleij P, Karamad V, Taheri E, Shadman B, Emami P, Jahangirzadeh G, Hajazimian S, Isazadeh A, Baradaran B, Heidari M. Identification of a compound heterozygous missense mutation in LAMA2 gene from a patient with merosin-deficient congenital muscular dystrophy type 1A. J Clin Lab Anal 2021; 35:e23930. [PMID: 34528292 PMCID: PMC8605159 DOI: 10.1002/jcla.23930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Merosin‐deficient congenital muscular dystrophy type 1A (MDC1A) is occurred by mutations in LAMA2 gene that encodes the laminin α2 chain (merosin). MDC1A is a predominant subtype of congenital muscular dystrophy. Herein, we identified two missense mutations in LAMA2 gene in compound heterozygous status in an Iranian patient with MDC1A using whole‐exome sequencing (WES). Methods In the present study, we evaluated genetic alterations in an Iranian 35‐month‐old boy with MDC1A and his healthy family using WES method. The identified mutations further confirmed by Sanger sequencing method. Finally, in silico analysis was conducted to further evaluation of molecular function of the identified genetic variants. Results We identified two potentially pathogenic missense mutations in compound heterozygous state (c.7681G>A p.Gly2561Ser and c.4840A>G p.Asn1614Asp) in LAMA2 gene as contributing to the MDC1A phenotype. The healthy parents of our proband are single heterozygous for identified mutations. These variants were found to be pathogenic by in silico analysis. Conclusions In general, we successfully identified LAMA2 gene mutations in an Iranian patient with MDC1A using WES. The identified mutations in LAMA2 gene can be useful in genetic counseling, prenatal diagnosis, and predicting prognosis of MDC1A.
Collapse
Affiliation(s)
- Afshin Khorrami
- Young Researchers and Elit Club, Varamin-Pishva Branch, Islamic Azad University, Varamin-Pishva, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Elham Taheri
- Department of Pharmaceutical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Shadman
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Parisa Emami
- Department of Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | | | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
5
|
Xu D, Lyon S, Bu CH, Hildebrand S, Choi JH, Zhong X, Liu A, Turer EE, Zhang Z, Russell J, Ludwig S, Mahrt E, Nair-Gill E, Shi H, Wang Y, Zhang D, Yue T, Wang KW, SoRelle JA, Su L, Misawa T, McAlpine W, Sun L, Wang J, Zhan X, Choi M, Farokhnia R, Sakla A, Schneider S, Coco H, Coolbaugh G, Hayse B, Mazal S, Medler D, Nguyen B, Rodriguez E, Wadley A, Tang M, Li X, Anderton P, Keller K, Press A, Scott L, Quan J, Cooper S, Collie T, Qin B, Cardin J, Simpson R, Tadesse M, Sun Q, Wise CA, Rios JJ, Moresco EMY, Beutler B. Thousands of induced germline mutations affecting immune cells identified by automated meiotic mapping coupled with machine learning. Proc Natl Acad Sci U S A 2021; 118:e2106786118. [PMID: 34260399 PMCID: PMC8285956 DOI: 10.1073/pnas.2106786118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Forward genetic studies use meiotic mapping to adduce evidence that a particular mutation, normally induced by a germline mutagen, is causative of a particular phenotype. Particularly in small pedigrees, cosegregation of multiple mutations, occasional unawareness of mutations, and paucity of homozygotes may lead to erroneous declarations of cause and effect. We sought to improve the identification of mutations causing immune phenotypes in mice by creating Candidate Explorer (CE), a machine-learning software program that integrates 67 features of genetic mapping data into a single numeric score, mathematically convertible to the probability of verification of any putative mutation-phenotype association. At this time, CE has evaluated putative mutation-phenotype associations arising from screening damaging mutations in ∼55% of mouse genes for effects on flow cytometry measurements of immune cells in the blood. CE has therefore identified more than half of genes within which mutations can be causative of flow cytometric phenovariation in Mus musculus The majority of these genes were not previously known to support immune function or homeostasis. Mouse geneticists will find CE data informative in identifying causative mutations within quantitative trait loci, while clinical geneticists may use CE to help connect causative variants with rare heritable diseases of immunity, even in the absence of linkage information. CE displays integrated mutation, phenotype, and linkage data, and is freely available for query online.
Collapse
Affiliation(s)
- Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Stephen Lyon
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chun Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Emre E Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Elena Mahrt
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hexin Shi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ying Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Duanwu Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tao Yue
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kuan-Wen Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jeffrey A SoRelle
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lijing Su
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Takuma Misawa
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - William McAlpine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lei Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Roxana Farokhnia
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Andrew Sakla
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Schneider
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hannah Coco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gabrielle Coolbaugh
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Braden Hayse
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Mazal
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Dawson Medler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Brandon Nguyen
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Edward Rodriguez
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Andrew Wadley
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Priscilla Anderton
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amanda Press
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sydney Cooper
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tiffany Collie
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Baifang Qin
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jennifer Cardin
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rochelle Simpson
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meron Tadesse
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qihua Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219
- McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219
- McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
6
|
Khodaenia N, Farjami Z, Ashnaei AH, Ebrahimi N, Chelvarforoosh N, Urtizberea A, Razmara E, Houshmand M. Novel Homozygous Pathogenic Mutations of LAMA 2 Gene in Patients with Congen ital Muscular Dystrophy. IRANIAN JOURNAL OF CHILD NEUROLOGY 2021; 15:101-106. [PMID: 33558818 PMCID: PMC7856435 DOI: 10.22037/ijcn.v15i1.21649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 01/01/2020] [Indexed: 11/18/2022]
Abstract
The laminin α2 subunit is a protein encoded by the laminin α2 gene(LAMA2) which has the role of adhesion (attachment of cells to one another). Genetics consideration showed that mutation in LAMA2 caused a collection of muscle-wasting conditions called muscular dystrophy. This disorder causes disconnection of muscular cells and degeneration of the musculoskeletal system. In this study, we defined the molecular consideration of three patients with laminin α2 deficiency by clinical presentations of congenital muscular dystrophy. In this regard, 65 exons of the LAMA2 gene were amplified by polymerase chain reaction. Moreover, multiple ligation-dependent probe amplification and next generation sequencing (NGS) were carried out for all the patients. Because of NGS negativity, gene sequencing was performed. Results of searching for rearrangements of the LAMA2 gene enabled us to recognize homozygous pathogenic mutations c.2049_c.2050del, c.7156-2A>G, and c,1303C>T. These mutations produce an out-of-frame transcript that will be degraded by nonsense mediated decay. Therefore, we think these changes are pathogenic ones.
Collapse
Affiliation(s)
- Negar Khodaenia
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Farjami
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Modern Sciences& Technologies, Medicine Faculty, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hosein Ashnaei
- Department of Modern Sciences& Technologies, Medicine Faculty, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neshat Ebrahimi
- Laboratory of Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Navid Chelvarforoosh
- Department of Agricultural Biotechnology, Science Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ehsan Razmara
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares, Tehran, Iran
| | - Massoud Houshmand
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
7
|
Astrakhantseva IV, Tomilin AN, Tarabykin VS, Nedospasov SA. Genome-Wide Mutagenesis in Mice: In Search for Genes Regulating Immune Responses and Inflammation. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795420120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Tissue-specific FAH deficiency alters sleep-wake patterns and results in chronic tyrosinemia in mice. Proc Natl Acad Sci U S A 2019; 116:22229-22236. [PMID: 31611405 DOI: 10.1073/pnas.1904485116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) is the last enzyme in tyrosine catabolism, and mutations in the FAH gene are associated with hereditary tyrosinemia type I (HT1 or TYRSN1) in humans. In a behavioral screen of N-ethyl-N-nitrosourea mutagenized mice we identified a mutant line which we named "swingshift" (swst, MGI:3611216) with a nonsynonymous point mutation (N68S) in Fah that caused age-dependent disruption of sleep-wake patterns. Mice homozygous for the mutation had an earlier onset of activity (several hours before lights off) and a reduction in total activity and body weight when compared with wild-type or heterozygous mice. Despite abnormal behavioral entrainment to light-dark cycles, there were no differences in the period or phase of the central clock in mutant mice, indicating a defect downstream of the suprachiasmatic nucleus. Interestingly, these behavioral phenotypes became milder as the mice grew older and were completely rescued by the administration of NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione], an inhibitor of 4-hydroxyphenylpyruvate dioxygenase, which is upstream of FAH. Mechanistically, the swst mutation had no effect on the enzymatic activity of FAH, but rather promoted the degradation of the mutant protein. This led to reduced FAH protein levels and enzymatic activity in the liver and kidney (but not the brain or fibroblasts) of homozygous mice. In addition, plasma tyrosine-but not methionine, phenylalanine, or succinylacetone-increased in homozygous mice, suggesting that swst mutants provide a model of mild, chronic HT1.
Collapse
|
9
|
Methodology and theoretical basis of forward genetic screening for sleep/wakefulness in mice. Proc Natl Acad Sci U S A 2019; 116:16062-16067. [PMID: 31337678 DOI: 10.1073/pnas.1906774116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulatory network of genes and molecules in sleep/wakefulness remains to be elucidated. Here we describe the methodology and workflow of the dominant screening of randomly mutagenized mice and discuss theoretical basis of forward genetics research for sleep in mice. Our high-throughput screening employs electroencephalogram (EEG) and electromyogram (EMG) to stage vigilance states into a wake, rapid eye movement sleep (REMS) and non-REM sleep (NREMS). Based on their near-identical sleep/wake behavior, C57BL/6J (B6J) and C57BL/6N (B6N) are chosen as mutagenized and counter strains, respectively. The total time spent in the wake and NREMS, as well as the REMS episode duration, shows sufficient reproducibility with small coefficients of variance, indicating that these parameters are most suitable for quantitative phenotype-driven screening. Coarse linkage analysis of the quantitative trait, combined with whole-exome sequencing, can identify the gene mutation associated with sleep abnormality. Our simulations calculate the achievable LOD score as a function of the phenotype strength and the numbers of mice examined. A pedigree showing a mild decrease in total wake time resulting from a heterozygous point mutation in the Cacna1a gene is described as an example.
Collapse
|
10
|
Jeong HH, Kim SY, Rousseaux MWC, Zoghbi HY, Liu Z. Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives. Genome Res 2019; 29:999-1008. [PMID: 31015259 PMCID: PMC6581060 DOI: 10.1101/gr.245571.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
The simplicity and cost-effectiveness of CRISPR technology have made high-throughput pooled screening approaches accessible to virtually any laboratory. Analyzing the large sequencing data derived from these studies, however, still demands considerable bioinformatics expertise. Various methods have been developed to lessen this requirement, but there are still three tasks for accurate CRISPR screen analysis that involve bioinformatic know-how, if not prowess: designing a proper statistical hypothesis test for robust target identification, developing an accurate mapping algorithm to quantify sgRNA levels, and minimizing the parameters that need to be fine-tuned. To make CRISPR screen analysis more reliable as well as more readily accessible, we have developed a new algorithm, called CRISPRBetaBinomial or CB2 Based on the beta-binomial distribution, which is better suited to sgRNA data, CB2 outperforms the eight most commonly used methods (HiTSelect, MAGeCK, PBNPA, PinAPL-Py, RIGER, RSA, ScreenBEAM, and sgRSEA) in both accurately quantifying sgRNAs and identifying target genes, with greater sensitivity and a much lower false discovery rate. It also accommodates staggered sgRNA sequences. In conjunction with CRISPRcloud, CB2 brings CRISPR screen analysis within reach for a wider community of researchers.
Collapse
Affiliation(s)
- Hyun-Hwan Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Seon Young Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Maxime W C Rousseaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Howard Hughes Medical Institute, Houston, Texas 77030, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Ohno T, Miyasaka Y, Kuga M, Ushida K, Matsushima M, Kawabe T, Kikkawa Y, Mizuno M, Takahashi M. Mouse NC/Jic strain provides novel insights into host genetic factors for malaria research. Exp Anim 2019; 68:243-255. [PMID: 30880305 PMCID: PMC6699971 DOI: 10.1538/expanim.18-0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Malaria is caused by Plasmodium parasites and is one of the most
life-threatening infectious diseases in humans. Infection can result in severe
complications such as cerebral malaria, acute lung injury/acute respiratory distress
syndrome, and acute renal injury. These complications are mainly caused by P.
falciparum infection and are major causes of death associated with malaria.
There are a few species of rodent-infective malaria parasites, and mice infected with such
parasites are now widely used for screening candidate drugs and vaccines and for studying
host immune responses and pathogenesis associated with disease-related complications. We
found that mice of the NC/Jic strain infected with rodent malarial parasites exhibit
distinctive disease-related complications such as cerebral malaria and nephrotic syndrome,
in addition to a rapid increase in parasitemia. Here, we focus on the analysis of host
genetic factors that affect malarial pathogenesis and describe the characteristic
features, utility, and future prospects for exploitation of the NC/Jic strain as a novel
mouse model for malaria research.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kaori Ushida
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masashi Mizuno
- Renal Replacement Therapy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
12
|
Kim SY, Nair DM, Romero M, Serna VA, Koleske AJ, Woodruff TK, Kurita T. Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death Differ 2018; 26:502-515. [PMID: 29988075 DOI: 10.1038/s41418-018-0151-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
Platinum-based chemotherapies can result in ovarian insufficiency by reducing the ovarian reserve, a reduction believed to result from apoptosis of immature oocytes via activation/phosphorylation of TAp63α by multiple kinases including CHEK2, CK1, and ABL1. Here we demonstrate that cisplatin (CDDP) induces oocyte apoptosis through a novel pathway and that temporary repression of this pathway fully preserves ovarian function in vivo. Although ABL kinase inhibitors effectively block CDDP-induced apoptosis of oocytes, oocytic ABL1, and ABL2 are dispensable for damage-induced apoptosis. Instead, CDDP activates TAp63α through the ATR > CHEK1 pathway independent of TAp63α hyper-phosphorylation, whereas X-irradiation activates the ATM > CHEK2 > TAp63α-hyper-phosphorylation pathway. Furthermore, oocyte-specific deletion of Trp73 partially protects oocytes from CDDP but not from X-ray, highlighting the fundamental differences of two pathways. Nevertheless, temporary repression of DNA damage response by a kinase inhibitor that attenuates phosphorylation of ATM, ATR, CHEK1, and CHEK2 fully preserves fertility in female mice against CDDP as well as X-ray. Our current study establishes the molecular basis and feasibility of adjuvant therapies to protect ovarian function against two distinctive gonadotoxic therapeutics, CDDP, and ionizing radiation.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Devi M Nair
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Megan Romero
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vanida A Serna
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Teresa K Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Jeong HH, Kim SY, Rousseaux MWC, Zoghbi HY, Liu Z. CRISPRcloud: a secure cloud-based pipeline for CRISPR pooled screen deconvolution. Bioinformatics 2018; 33:2963-2965. [PMID: 28541456 DOI: 10.1093/bioinformatics/btx335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/23/2017] [Indexed: 11/14/2022] Open
Abstract
Summary We present a user-friendly, cloud-based, data analysis pipeline for the deconvolution of pooled screening data. This tool, CRISPRcloud, serves a dual purpose of extracting, clustering and analyzing raw next generation sequencing files derived from pooled screening experiments while at the same time presenting them in a user-friendly way on a secure web-based platform. Moreover, CRISPRcloud serves as a useful web-based analysis pipeline for reanalysis of pooled CRISPR screening datasets. Taken together, the framework described in this study is expected to accelerate development of web-based bioinformatics tool for handling all studies which include next generation sequencing data. Availability and implementation http://crispr.nrihub.org. Contact zhandong.liu@bcm.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hyun-Hwan Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Seon Young Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maxime W C Rousseaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics.,Baylor College of Medicine, Howard Hughes Medical Institute, Houston, TX, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics
| |
Collapse
|
14
|
Unpackaging the genetics of mammalian fertility: strategies to identify the “reproductive genome”†. Biol Reprod 2018; 99:1119-1128. [DOI: 10.1093/biolre/ioy133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
|
15
|
Zhou J, Tan J, Ma D, Zhang J, Cheng J, Luo C, Liu G, Wang Y, Xu Z. Identification of Two Novel LAMA2 Mutations in a Chinese Patient with Congenital Muscular Dystrophy. Front Genet 2018; 9:43. [PMID: 29487616 PMCID: PMC5816747 DOI: 10.3389/fgene.2018.00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/30/2018] [Indexed: 01/06/2023] Open
Abstract
Merosin-deficient CMD type 1A (MDC1A), caused by mutations of laminin subunit alpha 2 (LAMA2), is a predominant subtype of congenital muscular dystrophy (CMD). Herein, we described a Chinese patient with MDC1A who was admitted to hospital 17 days after birth because of marasmus and feeding difficulties. Mutations were identified by targeted capture and next generation sequencing (NGS) and further confirmed by Sanger sequencing. Paternity was confirmed by short tandem repeat analysis. Physical examination showed malnutrition, poor suck and appendicular hypotonia. Her serum CK levels were 2483 and 1962 U/L at 2 and 4 months of age, respectively. Brain magnetic resonance imaging performed at 1 month of age presented hyperintensity on T2-weighted images, T1-weighted images in parietal and occipital lobes, and diffusion-weighted image (DWI) as well as hypointensity on fluid attenuated inversion recovery (FLAIR) image; however, the cerebellum and corpus arenaceum were normal. At 7 months of age, delayed developmental milestones were observed, and she failed to turn her body over and raise her head up. A point mutation (c.1782+2T > G) and a frameshift duplication (c.8217dupT) in the LAMA2 gene were identified by targeted capture and NGS and further confirmed by Sanger sequencing. Moreover, genotyping with multiple short tandem repeat markers confirmed paternity to demonstrate that the point mutation is de novo. The frameshift duplication (c.8217dupT), inherited from her mother, was predicted to cause a substitution of Pro (P) to Ser (S) at the 2740th amino-acid residue and generate a prematurely truncated protein. The in silico analysis suggests that the mutation (c.1782+2T > G) may lead to aberrant splicing of LAMA2. Our case further confirms the heterogeneous clinical spectrum of MDC1A and presents two novel LAMA2 mutations to expand the mutation spectrum of MDC1A.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jianxin Tan
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jian Cheng
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chunyu Luo
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Gang Liu
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yuguo Wang
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
16
|
Optimizing Genomic Methods for Mapping and Identification of Candidate Variants in ENU Mutagenesis Screens Using Inbred Mice. G3-GENES GENOMES GENETICS 2018; 8:401-409. [PMID: 29208648 PMCID: PMC5919724 DOI: 10.1534/g3.117.300292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Positional cloning of ENU-induced mutations has traditionally relied on analysis of polymorphic variation between two strains. In contrast, the application of whole-genome sequencing (WGS) has enabled gene discovery in mutant lines maintained on an inbred genetic background. This approach utilizes genetic variation derived from ENU-induced variants for mapping and reduces the likelihood of phenotypic variation, making it an ideal method for genetic modifier screening. Here, we describe the results of such a screen, wherein we determined the minimal number of mutant genomic DNA samples to include in our analyses and improved the sensitivity of our screen by individually barcoding each genomic DNA library. We present several unique cases to illustrate this approach's efficacy, including the discovery of two distinct mutations that generate essentially identical mutant phenotypes, the ascertainment of a non-ENU-induced candidate variant through homozygosity mapping, and an approach for the identification of putative dominant genetic modifiers.
Collapse
|
17
|
Speca DJ, Trimmer JS, Peterson AS, Díaz E. Whole exome sequencing reveals a functional mutation in the GAIN domain of the Bai2 receptor underlying a forward mutagenesis hyperactivity QTL. Mamm Genome 2017; 28:465-475. [PMID: 28894906 PMCID: PMC5702255 DOI: 10.1007/s00335-017-9716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
The identification of novel genes underlying complex mouse behavioral traits remains an important step in understanding normal brain function and its dysfunction in mental health disorders. To identify dominant mutations that influence locomotor activity, we performed a mouse N-ethyl-N-nitrosourea (ENU) forward mutagenesis screen and mapped several loci as quantitative traits. Here we describe the fine-mapping and positional cloning of a hyperactivity locus mapped to the medial portion of mouse chromosome four. We employed a modified recombinant progeny testing approach to fine-map the confidence interval from ≈20 Mb down to ≈5 Mb. Whole exome resequencing of all exons in this region revealed a single missense mutation in the adhesion G protein-coupled receptor brain-specific angiogenesis inhibitor 2 (Bai2). This mutation, R619W, is located in a critical extracellular domain that is a hotspot for mutations in this receptor class. We find that in two different mammalian cell lines, surface expression of Bai2 R619W is markedly reduced relative to wild-type Bai2, suggesting that R619W is a loss-of-function mutation. Our results highlight the powerful combination of ENU mutagenesis and next-generation sequencing to identify specific mutations that manifest as subtle behavioral phenotypes.
Collapse
Affiliation(s)
- David J Speca
- Department of Pharmacology, University of California, Davis, CA, 95616, USA.
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Elva Díaz
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Yagi T. A perspective of Genes and Environment for the development of environmental mutagen research in Asia. Genes Environ 2017; 39:23. [PMID: 29021869 PMCID: PMC5623060 DOI: 10.1186/s41021-017-0083-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Two years have passed since the Japanese Environmental Society (JEMS) made the official journal Genes and Environment (G&E) open access. Current subjects on environmental mutagen research to further advance this field are described herein, and the roles of JEMS and G&E are discussed. Various important subjects are being investigated in current research fields such as severe environmental pollution in Asian countries; the identification of new hazardous substances and elucidation of mutation mechanisms using newly developed techniques; the development of new genotoxicity assays including in silico predictions using information technology and artificial intelligence as well as bioassays. International exchange by scientists is important for advancing these research fields through international conferences such as the 12th International Conference and 5th Asian Congress on Environmental Mutagens and the 7th International Workshop on Genotoxicity Testing that will be held in 2017. G&E provides a common platform for high quality environmental mutagen research, contributes to the dissemination of Asian environmental mutagen research, and potentiates the level of research being conducted.
Collapse
Affiliation(s)
- Takashi Yagi
- Laboratory of Molecular and Cellular Genetics, Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| |
Collapse
|
19
|
Sundberg JP, Dadras SS, Silva KA, Kennedy VE, Garland G, Murray SA, Sundberg BA, Schofield PN, Pratt CH. Systematic screening for skin, hair, and nail abnormalities in a large-scale knockout mouse program. PLoS One 2017; 12:e0180682. [PMID: 28700664 PMCID: PMC5503261 DOI: 10.1371/journal.pone.0180682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
The International Knockout Mouse Consortium was formed in 2007 to inactivate (“knockout”) all protein-coding genes in the mouse genome in embryonic stem cells. Production and characterization of these mice, now underway, has generated and phenotyped 3,100 strains with knockout alleles. Skin and adnexa diseases are best defined at the gross clinical level and by histopathology. Representative retired breeders had skin collected from the back, abdomen, eyelids, muzzle, ears, tail, and lower limbs including the nails. To date, 169 novel mutant lines were reviewed and of these, only one was found to have a relatively minor sebaceous gland abnormality associated with follicular dystrophy. The B6N(Cg)-Far2tm2b(KOMP)Wtsi/2J strain, had lesions affecting sebaceous glands with what appeared to be a secondary follicular dystrophy. A second line, B6N(Cg)-Ppp1r9btm1.1(KOMP)Vlcg/J, had follicular dystrophy limited to many but not all mystacial vibrissae in heterozygous but not homozygous mutant mice, suggesting that this was a nonspecific background lesion. We discuss potential reasons for the low frequency of skin and adnexal phenotypes in mice from this project in comparison to those seen in human Mendelian diseases, and suggest alternative approaches to identification of human disease-relevant models.
Collapse
Affiliation(s)
- John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| | - Soheil S. Dadras
- Departments of Dermatology and Pathology, University of Connecticut, Farmington, Connecticut, United States of America
| | | | | | - Gaven Garland
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Beth A. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Paul N. Schofield
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - C. Herbert Pratt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
20
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
21
|
Abstract
As it is a hard-wired system for responses to microbes, innate immunity is particularly susceptible to classical genetic analysis. Mutations led the way to the discovery of many of the molecular elements of innate immune sensing and signaling pathways. In turn, the need for a faster way to find the molecular causes of mutation-induced phenotypes triggered a huge transformation in forward genetics. During the 1980s and 1990s, many heritable phenotypes were ascribed to mutations through positional cloning. In mice, this required three steps. First, a genetic mapping step was used to show that a given phenotype emanated from a circumscribed region of the genome. Second, a physical mapping step was undertaken, in which all of the region was cloned and its gene content determined. Finally, a concerted search for the mutation was performed. Such projects usually lasted for several years, but could produce breakthroughs in our understanding of biological processes. Publication of the annotated mouse genome sequence in 2002 made physical mapping unnecessary. More recently we devised a new technology for automated genetic mapping, which eliminated both genetic mapping and the search for mutations among candidate genes. The cause of phenotype can now be determined instantaneously. We have created more than 100,000 coding/splicing mutations. And by screening for defects of innate and adaptive immunity we have discovered many "new" proteins needed for innate immune function.
Collapse
Affiliation(s)
- Bruce Beutler
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8505, United States.
| |
Collapse
|
22
|
Morin MD, Wang Y, Jones BT, Su L, Surakattula MMRP, Berger M, Huang H, Beutler EK, Zhang H, Beutler B, Boger DL. Discovery and Structure-Activity Relationships of the Neoseptins: A New Class of Toll-like Receptor-4 (TLR4) Agonists. J Med Chem 2016; 59:4812-30. [PMID: 27050713 DOI: 10.1021/acs.jmedchem.6b00177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we report studies leading to the discovery of the neoseptins and a comprehensive examination of the structure-activity relationships (SARs) of this new class of small-molecule mouse Toll-like receptor 4 (mTLR4) agonists. The compounds in this class, which emerged from screening an α-helix mimetic library, stimulate the immune response, act by a well-defined mechanism (mouse TLR4 agonist), are easy to produce and structurally manipulate, exhibit exquisite SARs, are nontoxic, and elicit improved and qualitatively different responses compared to lipopolysaccharide, even though they share the same receptor.
Collapse
Affiliation(s)
- Matthew D Morin
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ying Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Brian T Jones
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lijing Su
- Department of Biophysics, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Murali M R P Surakattula
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael Berger
- Department of Genetics, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hua Huang
- Department of Genetics, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Elliot K Beutler
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hong Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|