1
|
Drake AG, Revell LJ, Klingenberg CP, Lattimer JC, Nelson NC, Schmidt MJ, Zwingenberger AL, Moyer JK, Losos JB. Copy-cat evolution: Divergence and convergence within and between cat and dog breeds. Proc Natl Acad Sci U S A 2025; 122:e2413780122. [PMID: 40294264 PMCID: PMC12067280 DOI: 10.1073/pnas.2413780122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Many domesticated species exhibit remarkable phenotypic diversity. In nature, selection produces not only divergence but also convergence when organisms experience similar selective pressures. Whether artificial selection during domestication also produces convergence has received little attention. Three-dimensional shape analysis of domestic cat and dog skulls demonstrated convergence at multiple levels. Most broadly, cats and dogs have both diversified greatly: equaling or exceeding the morphological disparity among all modern-day species of their respective families. Moreover, as a result of artificial selection, some breeds of these two phenotypically distinct species, evolutionarily separated for 50 My, have converged to such an extreme extent that they are more similar to each other than they are to many members of their own species or their ancestors, a phenomenon never previously observed in domesticated species. Remarkably, this convergence evolved not only between dogs and cats but also multiple times within each taxon.
Collapse
Affiliation(s)
- Abby Grace Drake
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| | - Liam J. Revell
- Department of Biology, University of Massachusetts, Boston, MA02125
| | - Christian Peter Klingenberg
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, ManchesterM13 9PT, United Kingdom
| | - Jimmy C. Lattimer
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO65211
| | - Nathan C. Nelson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC27607
| | - Martin J. Schmidt
- Clinic for Small Animals, Department of Neurosurgery, Neuroradiology and Clinical Neurology, Justus Liebig University, Giessen35392, Germany
| | - Allison L. Zwingenberger
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA95616
| | - Joshua K. Moyer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06520
| | | |
Collapse
|
2
|
Matsumoto Y, Yik-Lok Chung C, Isobe S, Sakamoto M, Lin X, Chan TF, Hirakawa H, Ishihara G, Lam HM, Nakayama S, Sasamoto S, Tanizawa Y, Watanabe A, Watanabe K, Yagura M, Niimura Y, Nakamura Y. Chromosome-scale assembly with improved annotation provides insights into breed-wide genomic structure and diversity in domestic cats. J Adv Res 2024:S2090-1232(24)00478-8. [PMID: 39490737 DOI: 10.1016/j.jare.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Comprehensive genomic resources offer insights into biological features, including traits/disease-related genetic loci. The current reference genome assembly for the domestic cat (Felis catus), Felis_Catus_9.0 (felCat9), derived from sequences of the Abyssinian cat, may inadequately represent the general cat population, limiting the extent of deducible genetic variations. OBJECTIVES The goal was to develop Anicom American Shorthair 1.0 (AnAms1.0), a reference-grade chromosome-scale cat genome assembly. METHODS In contrast to prior assemblies relying on Abyssinian cat sequences, AnAms1.0 was constructed from the sequences of more popular American Shorthair breed, which is related to more breeds than the Abyssinian cat. By combining advanced genomics technologies, including PacBio long-read sequencing and Hi-C- and optical mapping data-based sequence scaffolding, we compared AnAms1.0 to existing Felidae genome assemblies (20 scaffolds, scaffolds N50 > 150 Mbp). Homology-based and ab initio gene annotation through Iso-Seq and RNA-Seq was used to identify new coding genes and splice variants. RESULTS AnAms1.0 demonstrated superior contiguity and accuracy than existing Felidae genome assemblies. Using AnAms1.0, we identified over 1.5 thousand structural variants and 29 million repetitions compared to felCat9. Additionally, we identified > 1,600 novel protein-coding genes. Notably, olfactory receptor structural variants and cardiomyopathy-related variants were identified. CONCLUSION AnAms1.0 facilitates the discovery of novel genes related to normal and disease phenotypes in domestic cats. The analyzed data are publicly accessible on Cats-I (https://cat.annotation.jp/), which we established as a platform for accumulating and sharing genomic resources to discover novel genetic traits and advance veterinary medicine.
Collapse
Affiliation(s)
- Yuki Matsumoto
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Kanagawa, Japan; Data Science Center, Azabu University, Sagamihara, Kanagawa, Japan.
| | - Claire Yik-Lok Chung
- School of Life Sciences and the Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Xiao Lin
- School of Life Sciences and the Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Ting-Fung Chan
- School of Life Sciences and the Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | | | - Genki Ishihara
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Kanagawa, Japan
| | - Hon-Ming Lam
- School of Life Sciences and the Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | | | | | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | | | - Kei Watanabe
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Kanagawa, Japan
| | - Masaru Yagura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Yoshihito Niimura
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.
| |
Collapse
|
3
|
Dehesa-Santos A, Faria-Teixeira MC, Iglesias-Linares A. Skeletal Class III phenotype: Link between animal models and human genetics: A scoping review. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:21-44. [PMID: 38108095 DOI: 10.1002/jez.b.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
This study aimed to identify evidence from animal studies examining genetic variants underlying maxillomandibular discrepancies resulting in a skeletal Class III (SCIII) malocclusion phenotype. Following the Manual for Evidence Synthesis of the JBI and the PRISMA extension for scoping reviews, a participant, concept, context question was formulated and systematic searches were executed in the PubMed, Scopus, WOS, Scielo, Open Gray, and Mednar databases. Of the 779 identified studies, 13 met the selection criteria and were included in the data extraction. The SCIII malocclusion phenotype was described as mandibular prognathism in the Danio rerio, Dicentrarchus labrax, and Equus africanus asinus models; and as maxillary deficiency in the Felis silvestris catus, Canis familiaris, Salmo trutta, and Mus musculus models. The identified genetic variants highlight the significance of BMP and TGF-β signaling. Their regulatory pathways and genetic interactions link them to cellular bone regulation events, particularly ossification regulation of postnatal cranial synchondroses. In conclusion, twenty genetic variants associated with the skeletal SCIII malocclusion phenotype were identified in animal models. Their interactions and regulatory pathways corroborate the role of these variants in bone growth, differentiation events, and ossification regulation of postnatal cranial synchondroses.
Collapse
Affiliation(s)
| | - Maria Cristina Faria-Teixeira
- School of Dentistry, Complutense University of Madrid, Madrid, Spain
- University Clinic of Stomatology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Alejandro Iglesias-Linares
- School of Dentistry, Complutense University of Madrid, Madrid, Spain
- BIOCRAN, Craniofacial Biology and Orthodontics Research Group, School of Dentistry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Myers AN, Lawhon SD, Diesel AB, Bradley CW, Rodrigues Hoffmann A, Murphy WJ, 99 Lives Cat Genome Consortium. An ancient haplotype containing antimicrobial peptide gene variants is associated with severe fungal skin disease in Persian cats. PLoS Genet 2022; 18:e1010062. [PMID: 35157719 PMCID: PMC8880935 DOI: 10.1371/journal.pgen.1010062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/25/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Dermatophytosis, also known as ringworm, is a contagious fungal skin disease affecting humans and animals worldwide. Persian cats exhibit severe forms of the disease more commonly than other breeds of cat, including other long-haired breeds. Certain types of severe dermatophytosis in humans are reportedly caused by monogenic inborn errors of immunity. The goal of this study was to identify genetic variants in Persian cats contributing to the phenotype of severe dermatophytosis. Whole-genome sequencing of case and control Persian cats followed by a genome-wide association study identified a highly divergent, disease-associated haplotype on chromosome F1 containing the S100 family of genes. S100 calcium binding protein A9 (S100A9), which encodes a subunit of the antimicrobial heterodimer known as calprotectin, contained 13 nonsynonymous variants between cases and controls. Evolutionary analysis of S100A9 haplotypes comparing cases, controls, and wild felids suggested the divergent disease-associated haplotype was likely introgressed into the domestic cat lineage and maintained via balancing selection. We demonstrated marked upregulation of calprotectin expression in the feline epidermis during dermatophytosis, suggesting involvement in disease pathogenesis. Given this divergent allele has been maintained in domestic cat and wildcat populations, this haplotype may have beneficial effects against other pathogens. The pathogen specificity of this altered protein should be investigated before attempting to reduce the allele frequency in the Persian cat breed. Further work is needed to clarify if severe Persian dermatophytosis is a monogenic disease or if hidden disease-susceptibility loci remain to be discovered. Consideration should be given to engineering antimicrobial peptides such as calprotectin for topical treatment of dermatophytosis in humans and animals. Fungal skin infections known as ringworm or dermatophytosis affect billions of humans and animals worldwide. Normally the disease is self-limiting in affected individuals. The Persian cat breed is a popular breed known for its long hair coat and short nose as well as its propensity to develop severe, chronic dermatophytosis. By examining the genomes of Persian cats, we discovered that a specific region of DNA is highly altered between cats with and without severe dermatophytosis. The DNA sequence in this region is particularly divergent within a cluster of genes involved in immune defense against pathogens. Notably, alterations to the DNA sequence cause several changes in the antimicrobial protein known as calprotectin, which defends against pathogens in the skin of cats. Persian cats with severe dermatophytosis have a version of calprotectin similar to a version maintained by certain desert-dwelling wild felids such as sand cats and Asiatic wildcats. Therefore, we think this version of the protein is beneficial in some environments or against certain pathogens but not against the fungus that causes ringworm in cats. Our findings suggest changes to calprotectin may affect pathogen specificity and engineered calprotectin could be considered as a novel therapy for dermatophytosis in humans and animals.
Collapse
Affiliation(s)
- Alexandra N. Myers
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
- * E-mail: (ANM); (WJM)
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
| | - Alison B. Diesel
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
| | - Charles W. Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, Unites States of America
| | - Aline Rodrigues Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
- * E-mail: (ANM); (WJM)
| | | |
Collapse
|
5
|
Anagrius KL, Dimopoulou M, Moe AN, Petterson A, Ljungvall I. Facial conformation characteristics in Persian and Exotic Shorthair cats. J Feline Med Surg 2021; 23:1089-1097. [PMID: 33655782 PMCID: PMC8637354 DOI: 10.1177/1098612x21997631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The primary objectives of the study were to examine the diversity in facial conformation characteristics within a group of Persian (PER) and Exotic Shorthair (EXO) show cats, and to contrast the results to findings within a group of non-purebred domestic shorthair (DSH) and domestic longhair (DLH) cats. The secondary objectives were to determine the PER/EXO show cat owners' perceptions of the breathing status of their cats, and to evaluate if remarks from the cat show judges concerning the cats' head and facial conformation were exclusively related to the aesthetic features of the cats. METHODS Sixty-four PER and 12 EXO show cats were prospectively examined at five international cat shows, and 20 DSH/DLH cats were examined at an animal hospital. Facial conformation characteristics were evaluated by examining photos of the cats. Owners of the PER/EXO show cats answered a questionnaire concerning their cats' health status, and they were encouraged to send in the judges' score sheets from the cat shows. RESULTS The PER/EXO show cats had higher diversity in facial conformation characteristics than the DSH/DLH cats, and high incidences of hypoplasia of the nose leather (95%), the nose leather top positioned above the level of the lower eyelid (93%), moderate-to-severe stenotic nares (86%), epiphora (83%) and entropion (32%). Owners of 6/76 PER/EXO show cats stated that their cat had increased respiratory sounds and/or trouble breathing at least once a week. The cat show judges' written comments were exclusively related to aesthetic features of the cats' head and facial conformation details. CONCLUSIONS AND RELEVANCE Hypoplasia of the nose leather, high position of the nose leather top, stenotic nares, epiphora and entropion were common findings in the PER/EXO show cats but not in the DSH/DLH cats. Few of the cat owners perceived that their cat had problems related to the airways.
Collapse
Affiliation(s)
- Kerstin L Anagrius
- University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Dimopoulou
- University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna N Moe
- Anicura, Roslagen Animal Clinic, Norrtälje, Sweden
| | - Ann Petterson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
More Than a Moggy; A Population Genetics Analysis of the United Kingdom's Non-Pedigree Cats. Genes (Basel) 2021; 12:genes12101619. [PMID: 34681013 PMCID: PMC8535647 DOI: 10.3390/genes12101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
The domestic cat is one of the most popular pets in the world. It is estimated that 89–92% of domestic cats in the UK are non-pedigree Domestic shorthair (DSH), Domestic longhair (DLH), or Domestic semi-longhair cats (DSLH). Despite their popularity, little is known of the UK non-pedigree cats’ population structure and breeding dynamics. Using a custom designed single nucleotide variant (SNV) array, this study investigated the population genetics of 1344 UK cats. Principal components analysis (PCA) and fastSTRUCTURE analysis verified that the UK’s DSH, DLH, and DSLH cats are random-bred, rather than admixed, mix breed, or crossbred. In contrast to pedigree cats, the linkage disequilibrium of these random-bred cats was least extensive and decayed rapidly. Homozygosity by descent (HBD) analysis showed the majority of non-pedigree cats had proportionally less of their genome in HBD segments compared to pedigree cats, and that these segments were older. Together, these findings suggest that the DSH, DLH, and DSLH cats should be considered as a population of random-bred cats rather than a crossbred or pedigree-admixed cat. Unexpectedly, 19% of random-bred cat genomes displayed a higher proportion of HBD segments associated with more recent inbreeding events. Therefore, while non-pedigree cats as a whole are genetically diverse, they are not impervious to inbreeding and its health risks.
Collapse
|
7
|
Kerdchuchuen K, Samathayanon K, Phientong P, Chattraphirat S, Jaturakan O, Tuntivanich N. Comparison of intraocular pressure in healthy brachycephalic and nonbrachycephalic cats using the Icare® TONOVET Plus rebound tonometer. Vet Ophthalmol 2021; 24:484-490. [PMID: 34487613 DOI: 10.1111/vop.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To compare intraocular pressure using the Icare® TONOVET Plus rebound tonometer in healthy brachycephalic and nonbrachycephalic cats. ANIMALS STUDIED Both eyes of 78 healthy cats were investigated in this study. Cats were divided into two groups: brachycephalic (n = 39) and nonbrachycephalic (n = 39). PROCEDURES Nose position and muzzle ratio were photographically recorded and analyzed. Physical and ophthalmic examinations were performed. Intraocular pressure was measured using the Icare® TONOVET Plus rebound tonometry instrument. Quantitative mean values were statistically compared using an unpaired t-test at a significance level of p < .05. RESULTS Mean values of the nose position and muzzle ratio were significantly lower in the brachycephalic group (20.14 ± 5.43%, 9.61 ± 3.29%) compared with the nonbrachycephalic group (29.21 ± 4.30%, 13.97 ± 6.01%). The mean intraocular pressure for brachycephalic cats (15.76 ± 0.50 mmHg) was significantly lower (p < .001) than for nonbrachycephalic cats (18.77 ± 0.49 mmHg). CONCLUSIONS Intraocular pressure was significantly lower in brachycephalic cats using the Icare® TONOVET Plus rebound tonometer. Intraocular pressure values obtained in this study could be used as a guideline for measurements obtained using this tonometry device in healthy brachycephalic and nonbrachycephalic cats.
Collapse
Affiliation(s)
| | | | - Pitchapa Phientong
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Orapun Jaturakan
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
8
|
Geiger M, Schoenebeck JJ, Schneider RA, Schmidt MJ, Fischer MS, Sánchez-Villagra MR. Exceptional Changes in Skeletal Anatomy under Domestication: The Case of Brachycephaly. Integr Org Biol 2021; 3:obab023. [PMID: 34409262 PMCID: PMC8366567 DOI: 10.1093/iob/obab023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023] Open
Abstract
"Brachycephaly" is generally considered a phenotype in which the facial part of the head is pronouncedly shortened. While brachycephaly is characteristic for some domestic varieties and breeds (e.g., Bulldog, Persian cat, Niata cattle, Anglo-Nubian goat, Middle White pig), this phenotype can also be considered pathological. Despite the superficially similar appearance of "brachycephaly" in such varieties and breeds, closer examination reveals that "brachycephaly" includes a variety of different cranial modifications with likely different genetic and developmental underpinnings and related with specific breed histories. We review the various definitions and characteristics associated with brachycephaly in different domesticated species. We discern different types of brachycephaly ("bulldog-type," "katantognathic," and "allometric" brachycephaly) and discuss morphological conditions related to brachycephaly, including diseases (e.g., brachycephalic airway obstructive syndrome). Further, we examine the complex underlying genetic and developmental processes and the culturally and developmentally related reasons why brachycephalic varieties may or may not be prevalent in certain domesticated species. Knowledge on patterns and mechanisms associated with brachycephaly is relevant for domestication research, veterinary and human medicine, as well as evolutionary biology, and highlights the profound influence of artificial selection by humans on animal morphology, evolution, and welfare.
Collapse
Affiliation(s)
- M Geiger
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| | - J J Schoenebeck
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University
of Edinburgh, Easter Bush Campus, Midlothian EH25
9RG, UK
| | - R A Schneider
- Department of Orthopaedic Surgery, University of California at San
Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA
94143-0514, USA
| | - M J Schmidt
- Clinic for Small Animals—Neurosurgery, Neuroradiology and Clinical
Neurology, Justus Liebig University Giessen, Frankfurter Str.
114, 35392 Giessen, Germany
| | - M S Fischer
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller
University Jena, Erbertstr. 1, 07743 Jena,
Germany
| | - M R Sánchez-Villagra
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| |
Collapse
|
9
|
Alhaddad H, Abdi M, Lyons LA. Patterns of allele frequency differences among domestic cat breeds assessed by a 63K SNP array. PLoS One 2021; 16:e0247092. [PMID: 33630878 PMCID: PMC7906347 DOI: 10.1371/journal.pone.0247092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 01/11/2023] Open
Abstract
Cats are ubiquitous companion animals that have been keenly associated with humans for thousands of years and only recently have been intentionally bred for aesthetically appealing coat looks and body forms. The intense selection on single gene phenotypes and the various breeding histories of cat breeds have left different marks on the genomes. Using a previously published 63K Feline SNP array dataset of twenty-six cat breeds, this study utilized a genetic differentiation-based method (di) to empirically identify candidate regions under selection. Defined as three or more overlapping (500Kb) windows of high levels of population differentiation, we identified a total of 205 candidate regions under selection across cat breeds with an average of 6 candidate regions per breed and an average size of 1.5 Mb per candidate region. Using the combined size of candidate regions of each breed, we conservatively estimate that a minimum of ~ 0.1-0.7% of the autosomal genome is potentially under selection in cats. As positive controls and tests of our methodology, we explored the candidate regions of known breed-defining genes (e.g., FGF5 for longhaired breeds) and we were able to detect the genes within candidate regions, each in its corresponding breed. For breed specific exploration of candidate regions under selection, eleven representative candidate regions were found to encompass potential candidate genes for several phenotypes such as brachycephaly of Persian (DLX6, DLX5, DLX2), curled ears of American Curl (MCRIP2, PBX1), and body-form of Siamese and Oriental (ADGRD1), which encourages further molecular investigations. The current assessment of the candidate regions under selection is empiric and detailed analyses are needed to rigorously disentangle effects of demography and population structure from artificial selection.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | - Mona Abdi
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
10
|
Keep Garfagnina alive. An integrated study on patterns of homozygosity, genomic inbreeding, admixture and breed traceability of the Italian Garfagnina goat breed. PLoS One 2021; 16:e0232436. [PMID: 33449925 PMCID: PMC7810337 DOI: 10.1371/journal.pone.0232436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to investigate the genetic diversity of the Garfagnina (GRF) goat, a breed that currently risks extinction. For this purpose, 48 goats were genotyped with the Illumina CaprineSNP50 BeadChip and analyzed together with 214 goats belonging to 9 other Italian breeds (~25 goats/breed), whose genotypes were available from the AdaptMap project [Argentata (ARG), Bionda dell'Adamello (BIO), Ciociara Grigia (CCG), Di Teramo (DIT), Garganica (GAR), Girgentana (GGT), Orobica (ORO), Valdostana (VAL) and Valpassiria (VSS)]. Comparative analyses were conducted on i) runs of homozygosity (ROH), ii) admixture ancestries and iii) the accuracy of breed traceability via discriminant analysis on principal components (DAPC) based on cross-validation. ROH analyses was used to assess the genetic diversity of GRF, while admixture and DAPC to evaluate its relationship to the other breeds. For GRF, common ROH (more than 45% in GRF samples) was detected on CHR 12 at, roughly 50.25-50.94Mbp (ARS1 assembly), which spans the CENPJ (centromere protein) and IL17D (interleukin 17D) genes. The same area of common ROH was also present in DIT, while a broader region (~49.25-51.94Mbp) was shared among the ARG, CCG, and GGT. Admixture analysis revealed a small region of common ancestry from GRF shared by BIO, VSS, ARG and CCG breeds. The DAPC model yielded 100% assignment success for GRF. Overall, our results support the identification of GRF as a distinct native Italian goat breed. This work can contribute to planning conservation programmes to save GRF from extinction and will improve the understanding of the socio-agro-economic factors related with the farming of GRF.
Collapse
|
11
|
Gorssen W, Meyermans R, Janssens S, Buys N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genet Sel Evol 2021; 53:2. [PMID: 33397285 PMCID: PMC7784028 DOI: 10.1186/s12711-020-00599-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/11/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Runs of homozygosity (ROH) have become the state-of-the-art method for analysis of inbreeding in animal populations. Moreover, ROH are suited to detect signatures of selection via ROH islands and are used in other applications, such as genomic prediction and genome-wide association studies (GWAS). Currently, a vast amount of single nucleotide polymorphism (SNP) data is available online, but most of these data have never been used for ROH analysis. Therefore, we performed a ROH analysis on large medium-density SNP datasets in eight animal species (cat, cattle, dog, goat, horse, pig, sheep and water buffalo; 442 different populations) and make these results publicly available. RESULTS The results include an overview of ROH islands per population and a comparison of the incidence of these ROH islands among populations from the same species, which can assist researchers when studying other (livestock) populations or when looking for similar signatures of selection. We were able to confirm many known ROH islands, for example signatures of selection for the myostatin (MSTN) gene in sheep and horses. However, our results also included multiple other ROH islands, which are common to many populations and not identified to date (e.g. on chromosomes D4 and E2 in cats and on chromosome 6 in sheep). CONCLUSIONS We are confident that our repository of ROH islands is a valuable reference for future studies. The discovered ROH island regions represent a unique starting point for new studies or can be used as a reference for future studies. Furthermore, we encourage authors to add their population-specific ROH findings to our repository.
Collapse
Affiliation(s)
- Wim Gorssen
- Livestock Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, 3001, Leuven, Belgium
| | - Roel Meyermans
- Livestock Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, 3001, Leuven, Belgium
| | - Steven Janssens
- Livestock Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, 3001, Leuven, Belgium
| | - Nadine Buys
- Livestock Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Box 2472, 3001, Leuven, Belgium.
| |
Collapse
|
12
|
Friedrich J, Talenti A, Arvelius P, Strandberg E, Haskell MJ, Wiener P. Unravelling selection signatures in a single dog breed suggests recent selection for morphological and behavioral traits. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10024. [PMID: 36619250 PMCID: PMC9744541 DOI: 10.1002/ggn2.10024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 01/11/2023]
Abstract
Strong selection has resulted in substantial morphological and behavioral diversity across modern dog breeds, which makes dogs interesting model animals to study the underlying genetic architecture of these traits. However, results from between-breed analyses may confound selection signatures for behavior and morphological features that were coselected during breed development. In this study, we assess population genetic differences in a unique resource of dogs of the same breed but with systematic behavioral selection in only one population. We exploit these different breeding backgrounds to identify signatures of recent selection. Selection signatures within populations were found on chromosomes 4 and 19, with the strongest signals in behavior-related genes. Regions showing strong signals of divergent selection were located on chromosomes 1, 24, and 32, and include candidate genes for both physical features and behavior. Some of the selection signatures appear to be driven by loci associated with coat color (Chr 24; ASIP) and length (Chr 32; FGF5), while others showed evidence of association with behavior. Our findings suggest that signatures of selection within dog breeds have been driven by selection for morphology and behavior. Furthermore, we demonstrate that combining selection scans with association analyses is effective for dissecting the traits under selection.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and GenomicsThe Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothianUK
| | - Andrea Talenti
- Division of Genetics and GenomicsThe Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothianUK
| | - Per Arvelius
- Swedish Armed Forces Dog Training CenterMärstaSweden
| | - Erling Strandberg
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Marie J. Haskell
- Animal & Veterinary SciencesScotland's Rural College (SRUC)EdinburghUK
| | - Pamela Wiener
- Division of Genetics and GenomicsThe Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothianUK
| |
Collapse
|
13
|
Talenti A, Bertolini F, Williams J, Moaeen-Ud-Din M, Frattini S, Coizet B, Pagnacco G, Reecy J, Rothschild MF, Crepaldi P. Genomic Analysis Suggests KITLG is Responsible for a Roan Pattern in two Pakistani Goat Breeds. J Hered 2019; 109:315-319. [PMID: 29099936 DOI: 10.1093/jhered/esx093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/25/2017] [Indexed: 11/12/2022] Open
Abstract
The roan coat color pattern is described as the presence of white hairs intermixed with pigmented hairs. This kind of pigmentation pattern has been observed in many domestic species, including the goat. The molecular mechanisms and inheritance that underlie this pattern are known for some species and the KITLG gene has been shown associated with this phenotype. To date, no research effort has been carried out to find the gene(s) that control(s) roan coat color pattern in goats. In the present study, after genotyping with the GoatSNP50 BeadChip, 35 goats that showed a roan pattern and that belonged to two Pakistan breeds (Group A) were analyzed and then compared to 740 goats of 39 Italian and Pakistan goat breeds that did not have the same coat color pattern (Group B). Runs of homozygosity-based and XP-EHH analyses were used to identify unique genomic regions potentially associated with the roan pattern. A total of 3 regions on chromosomes 5, 6, and 12 were considered unique among the group A versus group B comparisons. The A region > 1.7 Mb on chromosome 5 was the most divergent between the two groups. This region contains six genes, including the KITLG gene. Our findings support the hypothesis that the KITLG gene may be associated with the roan phenotype in goats.
Collapse
Affiliation(s)
- Andrea Talenti
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Jamie Williams
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Muhammad Moaeen-Ud-Din
- Laboratories of Animal Breeding & Genetics, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Stefano Frattini
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Beatrice Coizet
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Giulio Pagnacco
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - James Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Paola Crepaldi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
14
|
Szpiech ZA, Mak ACY, White MJ, Hu D, Eng C, Burchard EG, Hernandez RD. Ancestry-Dependent Enrichment of Deleterious Homozygotes in Runs of Homozygosity. Am J Hum Genet 2019; 105:747-762. [PMID: 31543216 PMCID: PMC6817522 DOI: 10.1016/j.ajhg.2019.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
Runs of homozygosity (ROH) are important genomic features that manifest when an individual inherits two haplotypes that are identical by descent. Their length distributions are informative about population history, and their genomic locations are useful for mapping recessive loci contributing to both Mendelian and complex disease risk. We have previously shown that ROH, and especially long ROH that are likely the result of recent parental relatedness, are enriched for homozygous deleterious coding variation in a worldwide sample of outbred individuals. However, the distribution of ROH in admixed populations and their relationship to deleterious homozygous genotypes is understudied. Here we analyze whole-genome sequencing data from 1,441 unrelated individuals from self-identified African American, Puerto Rican, and Mexican American populations. These populations are three-way admixed between European, African, and Native American ancestries and provide an opportunity to study the distribution of deleterious alleles partitioned by local ancestry and ROH. We re-capitulate previous findings that long ROH are enriched for deleterious variation genome-wide. We then partition by local ancestry and show that deleterious homozygotes arise at a higher rate when ROH overlap African ancestry segments than when they overlap European or Native American ancestry segments of the genome. These results suggest that, while ROH on any haplotype background are associated with an inflation of deleterious homozygous variation, African haplotype backgrounds may play a particularly important role in the genetic architecture of complex diseases for admixed individuals, highlighting the need for further study of these populations.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Department of Biological Sciences, Auburn University, Auburn, AL 36842, USA.
| | - Angel C Y Mak
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marquitta J White
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ryan D Hernandez
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada; Genome Quebec Innovation Center, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
15
|
O'Neill DG, Romans C, Brodbelt DC, Church DB, Černá P, Gunn-Moore DA. Persian cats under first opinion veterinary care in the UK: demography, mortality and disorders. Sci Rep 2019; 9:12952. [PMID: 31530836 PMCID: PMC6748978 DOI: 10.1038/s41598-019-49317-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Persian cats are a popular cat breed worldwide, and especially in the US, Europe and Asia. This study aimed to describe the demography, common disorders and mortality in Persians under general practice veterinary care in 2013 in the UK. The study population of 285,547 cats overall included 3235 (1.1%) Persians. Mean adult Persian bodyweight was 3.9 kg (SD 0.9) and median age was 7.0 years (IQR 3.3–11.6). At least one disorder was recorded in 2099 (64.9%) Persians. The most common specific disorders were haircoat disorders (411, 12.7%), periodontal disease (365, 11.3%), overgrown nails (234, 7.2%), and ocular discharge (188, 5.8%). The most common disorder groups were dermatological (578, 17.9%), ophthalmological (496, 15.3%) and dental (397, 12.3%). Median longevity was 13.5 years (IQR 9.9–16.0). The most common grouped causes of death were renal disease (102, 23.4%), neoplasia (37, 8.5%) and mass-associated disorder (35, 8.0%). This is the first study to use general practice data to examine the overall health of Persian cats. With haircoat, ocular and dental disorders being the predominant disorders identified, this study highlights the need for increased owner awareness to manage and prevent the typical health problems associated with this breed’s phenotype.
Collapse
Affiliation(s)
- Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| | - Charlotte Romans
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - David B Church
- Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Petra Černá
- University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.,The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Danièlle A Gunn-Moore
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
16
|
Bertolini F, Cardoso TF, Marras G, Nicolazzi EL, Rothschild MF, Amills M. Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats. Genet Sel Evol 2018; 50:59. [PMID: 30449279 PMCID: PMC6241033 DOI: 10.1186/s12711-018-0424-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 10/15/2018] [Indexed: 01/15/2023] Open
Abstract
Background Patterns of homozygosity can be influenced by several factors, such as demography, recombination, and selection. Using the goat SNP50 BeadChip, we genotyped 3171 goats belonging to 117 populations with a worldwide distribution. Our objectives were to characterize the number and length of runs of homozygosity (ROH) and to detect ROH hotspots in order to gain new insights into the consequences of neutral and selection processes on the genome-wide homozygosity patterns of goats. Results The proportion of the goat genome covered by ROH is, in general, less than 15% with an inverse relationship between ROH length and frequency i.e. short ROH (< 3 Mb) are the most frequent ones. Our data also indicate that ~ 60% of the breeds display low FROH coefficients (< 0.10), while ~ 30 and ~ 10% of the goat populations show moderate (0.10 < FROH < 0.20) or high (> 0.20) FROH values. For populations from Asia, the average number of ROH is smaller and their coverage is lower in goats from the Near East than in goats from Central Asia, which is consistent with the role of the Fertile Crescent as the primary centre of goat domestication. We also observed that local breeds with small population sizes tend to have a larger fraction of the genome covered by ROH compared to breeds with tens or hundreds of thousands of individuals. Five regions on three goat chromosomes i.e. 11, 12 and 18, contain ROH hotspots that overlap with signatures of selection. Conclusions Patterns of homozygosity (average number of ROH of 77 and genome coverage of 248 Mb; FROH < 0.15) are similar in goats from different geographic areas. The increased homozygosity in local breeds is the consequence of their small population size and geographic isolation as well as of founder effects and recent inbreeding. The existence of three ROH hotspots that co-localize with signatures of selection demonstrates that selection has also played an important role in increasing the homozygosity of specific regions in the goat genome. Finally, most of the goat breeds analysed in this work display low levels of homozygosity, which is favourable for their genetic management and viability. Electronic supplementary material The online version of this article (10.1186/s12711-018-0424-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA. .,National Institute of Aquatic Resources, Technical University of Denmark (DTU), Lyngby, 2800, Denmark.
| | - Tainã Figueiredo Cardoso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus, Universitat Autonoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Gabriele Marras
- Fondazione Parco Tecnologico Padano (PTP), 26900, Lodi, Italy
| | | | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus, Universitat Autonoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
17
|
Avila F, Mickelson JR, Schaefer RJ, McCue ME. Genome-Wide Signatures of Selection Reveal Genes Associated With Performance in American Quarter Horse Subpopulations. Front Genet 2018; 9:249. [PMID: 30105047 PMCID: PMC6060370 DOI: 10.3389/fgene.2018.00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Selective breeding for athletic performance in various disciplines has resulted in population stratification within the American Quarter Horse (QH) breed. The goals of this study were to utilize high density genotype data to: (1) identify genomic regions undergoing positive selection within and among QH subpopulations; (2) investigate haplotype structure within each QH subpopulation; and (3) identify candidate genes within genomic regions of interest (ROI), as well as biological pathways, predicted to play a role in elite performance in each group. For that, 65K SNP genotyping data on 143 elite individuals from 6 QH subpopulations (cutting, halter, racing, reining, western pleasure, and working cow) were imputed to 2M SNPs. Signatures of selection were identified using FST-based (di ) and haplotype-based (hapFLK) analyses, accompanied by identification of local haplotype structure and sharing within subpopulations (hapQTL). Regions undergoing positive selection were identified on all 31 autosomes, and ROI on 2 chromosomes were identified by all 3 methods combined. Genes within each ROI were retrieved and used to identify pathways and genes that might contribute to performance in each subpopulation. These included, among others, candidate genes associated with skeletal muscle development, metabolism, and central nervous system development. This work improves our understanding of equine breed development, and provides breeders with a better understanding of how selective breeding impacts the performance of QH populations.
Collapse
Affiliation(s)
- Felipe Avila
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Robert J Schaefer
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Molly E McCue
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
18
|
Usui K, Tokita M. Creating diversity in mammalian facial morphology: a review of potential developmental mechanisms. EvoDevo 2018; 9:15. [PMID: 29946416 PMCID: PMC6003202 DOI: 10.1186/s13227-018-0103-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Mammals (class Mammalia) have evolved diverse craniofacial morphology to adapt to a wide range of ecological niches. However, the genetic and developmental mechanisms underlying the diversification of mammalian craniofacial morphology remain largely unknown. In this paper, we focus on the facial length and orofacial clefts of mammals and deduce potential mechanisms that produced diversity in mammalian facial morphology. Small-scale changes in facial morphology from the common ancestor, such as slight changes in facial length and the evolution of the midline cleft in some lineages of bats, could be attributed to heterochrony in facial bone ossification. In contrast, large-scale changes of facial morphology from the common ancestor, such as a truncated, widened face as well as the evolution of the bilateral cleft possessed by some bat species, could be brought about by changes in growth and patterning of the facial primordium (the facial processes) at the early stages of embryogenesis.
Collapse
Affiliation(s)
- Kaoru Usui
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| |
Collapse
|
19
|
Gandolfi B, Alhaddad H, Abdi M, Bach LH, Creighton EK, Davis BW, Decker JE, Dodman NH, Ginns EI, Grahn JC, Grahn RA, Haase B, Haggstrom J, Hamilton MJ, Helps CR, Kurushima JD, Lohi H, Longeri M, Malik R, Meurs KM, Montague MJ, Mullikin JC, Murphy WJ, Nilson SM, Pedersen NC, Peterson CB, Rusbridge C, Saif R, Shelton GD, Warren WC, Wasim M, Lyons LA. Applications and efficiencies of the first cat 63K DNA array. Sci Rep 2018; 8:7024. [PMID: 29728693 PMCID: PMC5935720 DOI: 10.1038/s41598-018-25438-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array’s genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50–1,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, USA
| | - Hasan Alhaddad
- Department of Biological Sciences, Kuwait University, Safat, Kuwait.
| | - Mona Abdi
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | - Leslie H Bach
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,University of San Francisco, San Francisco, CA, USA
| | - Erica K Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri - Columbia, Columbia, MO, USA
| | - Nicholas H Dodman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Edward I Ginns
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer C Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Robert A Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Bianca Haase
- Sydney School of Veterinary Science, University of Sydney, Sydney, Australia
| | - Jens Haggstrom
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michael J Hamilton
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Department of Biochemistry, University of California - Riverside, Riverside, CA, USA
| | | | - Jennifer D Kurushima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Foothill College, Los Altos Hills, CA, USA
| | - Hannes Lohi
- Department of Veterinary Biosciences, Research Programs Unit, Molecular Neurology, University of Helsinki, and The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maria Longeri
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Richard Malik
- Centre for Veterinary Education, University of Sydney, New South Wales, Australia
| | - Kathryn M Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael J Montague
- Department of Neuroscience, Parelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Sara M Nilson
- Division of Animal Sciences, University of Missouri - Columbia, Columbia, MO, USA
| | - Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Carlyn B Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Clare Rusbridge
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Rashid Saif
- Institute of Biotechnology, Gulab Devi Educational Complex, Lahore, Pakistan
| | - G Diane Shelton
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Muhammad Wasim
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, USA.
| |
Collapse
|
20
|
Steenkamp G, Boy SC, van Staden PJ, Bester MN. Oral, Maxillofacial and Dental Diseases in Captive Cheetahs (Acinonyx jubatus). J Comp Pathol 2018; 158:77-89. [PMID: 29422320 DOI: 10.1016/j.jcpa.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 11/18/2022]
Abstract
Descriptions of several oral, maxillofacial and dental conditions/diseases exist for a variety of captive large felids, but little is reported on the pathology of free roaming large felids. Apart from focal palatine erosions (FPEs) as initially described by Fitch and Fagan (1982) and some reference to absent incisor teeth, few data exist on diseases affecting the oral, maxillofacial and dental structures of cheetahs (Acinonyx jubatus), regardless of their captivity status. This study reports 18 different conditions affecting the teeth, bone and oral cavity soft tissue of cheetahs, based on initial assessment of 256 animals over 11 years (2002-2012) in South Africa and Namibia. This report excludes oral tumours or FPEs, but includes several acquired and developmental conditions never described before.
Collapse
Affiliation(s)
- G Steenkamp
- Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, South Africa; Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.
| | - S C Boy
- Department of Oral Pathology, School of Oral Health Sciences, Sefako Makgatho Health Sciences University, Ga-Rankuwa
| | - P J van Staden
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - M N Bester
- Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, South Africa
| |
Collapse
|
21
|
Blant A, Kwong M, Szpiech ZA, Pemberton TJ. Weighted likelihood inference of genomic autozygosity patterns in dense genotype data. BMC Genomics 2017; 18:928. [PMID: 29191164 PMCID: PMC5709839 DOI: 10.1186/s12864-017-4312-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Background Genomic regions of autozygosity (ROA) arise when an individual is homozygous for haplotypes inherited identical-by-descent from ancestors shared by both parents. Over the past decade, they have gained importance for understanding evolutionary history and the genetic basis of complex diseases and traits. However, methods to infer ROA in dense genotype data have not evolved in step with advances in genome technology that now enable us to rapidly create large high-resolution genotype datasets, limiting our ability to investigate their constituent ROA patterns. Methods We report a weighted likelihood approach for inferring ROA in dense genotype data that accounts for autocorrelation among genotyped positions and the possibilities of unobserved mutation and recombination events, and variability in the confidence of individual genotype calls in whole genome sequence (WGS) data. Results Forward-time genetic simulations under two demographic scenarios that reflect situations where inbreeding and its effect on fitness are of interest suggest this approach is better powered than existing state-of-the-art methods to infer ROA at marker densities consistent with WGS and popular microarray genotyping platforms used in human and non-human studies. Moreover, we present evidence that suggests this approach is able to distinguish ROA arising via consanguinity from ROA arising via endogamy. Using subsets of The 1000 Genomes Project Phase 3 data we show that, relative to WGS, intermediate and long ROA are captured robustly with popular microarray platforms, while detection of short ROA is more variable and improves with marker density. Worldwide ROA patterns inferred from WGS data are found to accord well with those previously reported on the basis of microarray genotype data. Finally, we highlight the potential of this approach to detect genomic regions enriched for autozygosity signals in one group relative to another based upon comparisons of per-individual autozygosity likelihoods instead of inferred ROA frequencies. Conclusions This weighted likelihood ROA inference approach can assist population- and disease-geneticists working with a wide variety of data types and species to explore ROA patterns and to identify genomic regions with differential ROA signals among groups, thereby advancing our understanding of evolutionary history and the role of recessive variation in phenotypic variation and disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4312-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Blant
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Michelle Kwong
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Zachary A Szpiech
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
22
|
Ostrander EA, Wayne RK, Freedman AH, Davis BW. Demographic history, selection and functional diversity of the canine genome. Nat Rev Genet 2017; 18:705-720. [DOI: 10.1038/nrg.2017.67] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Schmidt MJ, Kampschulte M, Enderlein S, Gorgas D, Lang J, Ludewig E, Fischer A, Meyer-Lindenberg A, Schaubmar AR, Failing K, Ondreka N. The Relationship between Brachycephalic Head Features in Modern Persian Cats and Dysmorphologies of the Skull and Internal Hydrocephalus. J Vet Intern Med 2017; 31:1487-1501. [PMID: 28833532 PMCID: PMC5598898 DOI: 10.1111/jvim.14805] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/01/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023] Open
Abstract
Background Cat breeders observed a frequent occurrence of internal hydrocephalus in Persian cats with extreme brachycephalic head morphology. Objective To investigate a possible relationship among the grade of brachycephaly, ventricular dilatation, and skull dysmorphologies in Persian cats. Animals 92 Persian‐, 10 Domestic shorthair cats. Methods The grade of brachycephaly was determined on skull models based on CT datasets. Cranial measurements were examined with regard to a possible correlation with relative ventricular volume, and cranial capacity. Persians with high (peke‐face Persians) and lower grades of brachycephaly (doll‐face Persians) were investigated for the presence of skull dysmorphologies. Results The mean cranial index of the peke‐face Persians (0.97 ± 0.14) was significantly higher than the mean cranial index of doll‐face Persians (0.66 ± 0.04; P < 0.001). Peke‐face Persians had a lower relative nasal bone length (0.15 ± 0.04) compared to doll‐face (0.29 ± 0.08; P < 0.001). The endocranial volume was significantly lower in doll‐face than peke‐face Persians (89.6 ± 1.27% versus 91.76 ± 2.07%; P < 0.001). The cranial index was significantly correlated with this variable (Spearman's r: 0.7; P < 0.0001). Mean ventricle: Brain ratio of the peke‐face group (0.159 ± 0.14) was significantly higher compared to doll‐face Persians (0.015 ± 0.01; P < 0.001). Conclusion and Clinical Relevance High grades of brachycephaly are also associated with malformations of the calvarial and facial bones as well as dental malformations. As these dysmorphologies can affect animal welfare, the selection for extreme forms of brachycephaly in Persian cats should be reconsidered.
Collapse
Affiliation(s)
- M J Schmidt
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Justus-Liebig University, Giessen, Germany
| | - M Kampschulte
- Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Gießen, Germany
| | - S Enderlein
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Justus-Liebig University, Giessen, Germany
| | - D Gorgas
- Vetsuisse Faculty Berne, Clinical Radiology, Berne, Switzerland
| | - J Lang
- Vetsuisse Faculty Berne, Clinical Radiology, Berne, Switzerland
| | - E Ludewig
- Department of Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - A Fischer
- Section of Neurology, Clinic of Small Animal Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - A Meyer-Lindenberg
- Clinic of Small Animal Surgery and Reproduction, Ludwig Maximilians-University, Munich, Germany
| | - A R Schaubmar
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig-University, Giessen, Germany
| | - K Failing
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig-University, Giessen, Germany
| | - N Ondreka
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
24
|
Talenti A, Bertolini F, Pagnacco G, Pilla F, Ajmone-Marsan P, Rothschild MF, Crepaldi P. The Valdostana goat: a genome-wide investigation of the distinctiveness of its selective sweep regions. Mamm Genome 2017; 28:114-128. [PMID: 28255622 DOI: 10.1007/s00335-017-9678-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/26/2017] [Indexed: 01/10/2023]
Abstract
The Valdostana goat is an alpine breed, raised only in the northern Italian region of the Aosta Valley. This breed's main purpose is to produce milk and meat, but is peculiar for its involvement in the "Batailles de Chèvres," a recent tradition of non-cruel fight tournaments. At both the genetic and genomic levels, only a very limited number of studies have been performed with this breed and there are no studies about the genomic signatures left by selection. In this work, 24 unrelated Valdostana animals were screened for runs of homozygosity to identify highly homozygous regions. Then, six different approaches (ROH comparison, Fst single SNPs and windows based, Bayesian, Rsb, and XP-EHH) were applied comparing the Valdostana dataset with 14 other Italian goat breeds to confirm regions that were different among the comparisons. A total of three regions of selection that were also unique among the Valdostana were identified and located on chromosomes 1, 7, and 12 and contained 144 genes. Enrichment analyses detected genes such as cytokines and lymphocyte/leukocyte proliferation genes involved in the regulation of the immune system. A genetic link between an aggressive challenge, cytokines, and immunity has been hypothesized in many studies both in humans and in other species. Possible hypotheses associated with the signals of selection detected could be therefore related to immune-related factors as well as with the peculiar battle competition, or other breed-specific traits, and provided insights for further investigation of these unique regions, for the understanding and safeguard of the Valdostana breed.
Collapse
Affiliation(s)
- Andrea Talenti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | | | - Giulio Pagnacco
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Fabio Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via Francesco De Sanctis s.n.c., 86100, Campobasso, Italy
| | - Paolo Ajmone-Marsan
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, via Emilia Parmense, 84, 29122, Piacenza, Italy
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Paola Crepaldi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
25
|
Lebedev IN, Nazarenko LP, Skryabin NA, Babushkina NP, Kashevarova AA. A de novo microtriplication at 4q21.21-q21.22 in a patient with a vascular malignant hemangioma, elongated sigmoid colon, developmental delay, and absence of speech. Am J Med Genet A 2016; 170:2089-96. [DOI: 10.1002/ajmg.a.37754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 05/02/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Igor N. Lebedev
- Institute of Medical Genetics; Tomsk Russia
- National Research Tomsk State University; Tomsk Russia
- Siberian State Medical University; Tomsk Russia
| | - Lyudmila P. Nazarenko
- Institute of Medical Genetics; Tomsk Russia
- Siberian State Medical University; Tomsk Russia
| | - Nikolay A. Skryabin
- Institute of Medical Genetics; Tomsk Russia
- National Research Tomsk State University; Tomsk Russia
| | | | - Anna A. Kashevarova
- Institute of Medical Genetics; Tomsk Russia
- National Research Tomsk State University; Tomsk Russia
| |
Collapse
|