1
|
Bhakta S, Kodama H, Mimaki M, Tsukahara T. Restoration of Genetic Code in Macular Mouse Fibroblasts via APOBEC1-Mediated RNA Editing. Biomolecules 2025; 15:136. [PMID: 39858530 PMCID: PMC11762822 DOI: 10.3390/biom15010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
RNA editing is a significant mechanism underlying genetic variation and protein molecule alteration; C-to-U RNA editing, specifically, is important in the regulation of mammalian genetic diversity. The ability to define and limit accesses of enzymatic machinery to avoid the modification of unintended targets is key to the success of RNA editing. Identification of the core component of the apoB RNA editing holoenzyme, APOBEC, and investigation into new candidate genes encoding other elements of the complex could reveal further details regarding APOBEC-mediated mRNA editing. Menkes disease is a recessive X-chromosome-linked hereditary syndrome in humans, caused by defective copper metabolism due to mutations in the ATP7A gene, which encodes a copper transport protein. Here, we generated plasmids encoding the MS2 system and the APOBEC1 deaminase domain and used a guide RNA with flanking MS2 sites to restore mutated Atp7a in fibroblasts from a macular mouse model of Menkes disease withs T>C mutation. Around 35% of the mutated C nucleotide (nt) was restored to U, demonstrating that our RNA editing system is reliable and has potential for therapeutic clinical application. RNA base editing via human RNA-guided cytidine deaminases is a potentially attractive approach for in vivo therapeutic application and provides opportunities for new developments in this field.
Collapse
Affiliation(s)
- Sonali Bhakta
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan;
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hiroko Kodama
- General Medical Education and Research Center, Teikyo University School of Medicine, Tokyo 173-0003, Japan
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Toshifumi Tsukahara
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan;
- GeCoRT Co., Ltd., Nishi-ku, Yokohama 220-0011, Japan
| |
Collapse
|
2
|
Mhaske A, Dileep K, Kumar M, Poojary M, Pandhare K, Zhang KY, Scaria V, Binukumar B. ATP7A Clinical Genetics Resource - A comprehensive clinically annotated database and resource for genetic variants in ATP7A gene. Comput Struct Biotechnol J 2020; 18:2347-2356. [PMID: 32994893 PMCID: PMC7501406 DOI: 10.1016/j.csbj.2020.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
ATP7A is a critical copper transporter involved in Menkes Disease, Occipital horn Syndrome and X-linked distal spinal muscular atrophy type 3 which are X linked genetic disorders. These are rare diseases and their genetic epidemiology of the diseases is unknown. A number of genetic variants in the genes have been reported in published literature as well as databases, however, understanding the pathogenicity of variants and genetic epidemiology requires the data to be compiled in a unified format. To this end, we systematically compiled genetic variants from published literature and datasets. Each of the variants were systematically evaluated for evidences with respect to their pathogenicity and classified as per the American College of Medical Genetics and the Association of Molecular Pathologists (ACMG-AMP) guidelines into Pathogenic, Likely Pathogenic, Benign, Likely Benign and Variants of Uncertain Significance. Additional integrative analysis of population genomic datasets provides insights into the genetic epidemiology of the disease through estimation of carrier frequencies in global populations. To deliver a mechanistic explanation for the pathogenicity of selected variants, we also performed molecular modeling studies. Our modeling studies concluded that the small structural distortions observed in the local structures of the protein may lead to the destabilization of the global structure. To the best of our knowledge, ATP7A Clinical Genetics Resource is one of the most comprehensive compendium of variants in the gene providing clinically relevant annotations in gene.
Collapse
Affiliation(s)
- Aditi Mhaske
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
| | - K.V. Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mukesh Kumar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Mukta Poojary
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Kavita Pandhare
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Kam Y.J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
- Corresponding author at: CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, Sukhdev Vihar, New Delhi 110025, India.
| | - B.K. Binukumar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
- Corresponding author at: CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, Sukhdev Vihar, New Delhi 110025, India.
| |
Collapse
|
3
|
Hoshina T, Nozaki S, Hamazaki T, Kudo S, Nakatani Y, Kodama H, Shintaku H, Watanabe Y. Disulfiram enhanced delivery of orally administered copper into the central nervous system in Menkes disease mouse model. J Inherit Metab Dis 2018; 41:1285-1291. [PMID: 30132231 DOI: 10.1007/s10545-018-0239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Menkes disease (MD) is an X-linked recessive disorder caused by dysfunction of a copper-transporting protein, leading to severe neurodegeneration in early childhood. We investigated whether a lipophilic copper chelator, disulfiram, could enhance copper absorption from the intestine and transport copper across the blood-brain barrier in MD model mice. METHODS Wild type and MD model mice were pretreated with disulfiram for 30 min before oral administration of 64CuCl2. Each organ was sequentially analyzed for radioactivity with γ counting. Copper uptake into the brain parenchyma was assessed by ex vivo autoradiography. RESULTS In wild type mice, orally administered copper was initially detected in the intestine within 2 h, reaching a maximum level in the liver (19.6 ± 3.8 percentage injected dose per gram [%ID/g]) at 6 h. In MD model mice, the copper reached the maximum level in the liver (5.3 ± 1.5 %ID/g) at 4 h, which was lower than that of wild type mice (19.0 ± 7.4 %ID/g) (P < 0.05). Pretreatment of disulfiram in MD model mice increased the copper level in the brain (0.59 ± 0.28 %ID/g) at 24 h compared with MD model mice without disulfiram (0.07 ± 0.05 %ID/g) (P < 0.05). Ex vivo autoradiography revealed that high levels of copper uptake was observed in the cerebral cortex upon disulfiram pretreatment. CONCLUSION Our data demonstrated that disulfiram enhanced the delivery of orally administered copper into the central nervous system in MD model mice. The administration of disulfiram will enable patients to avoid unpleasant subcutaneous copper injection in the future.
Collapse
Affiliation(s)
- Takao Hoshina
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Satoshi Nozaki
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Takashi Hamazaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Satoshi Kudo
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuka Nakatani
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Hiroko Kodama
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, Japan
| |
Collapse
|
4
|
Lenartowicz M, Krzeptowski W, Lipiński P, Grzmil P, Starzyński R, Pierzchała O, Møller LB. Mottled Mice and Non-Mammalian Models of Menkes Disease. Front Mol Neurosci 2015; 8:72. [PMID: 26732058 PMCID: PMC4684000 DOI: 10.3389/fnmol.2015.00072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/06/2015] [Indexed: 12/27/2022] Open
Abstract
Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterized by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in copper absorption in the small intestine and in copper transport to the central nervous system (CNS) across the blood-brain-barrier (BBB) and blood–cerebrospinal fluid barrier (BCSFB). Cu is essential for synaptogenesis and axonal development. In cells, ATP7A participates in the incorporation of copper into Cu-dependent enzymes during the course of its maturation in the secretory pathway. There is a high degree of homology (>80%) between the human ATP7A and murine Atp7a genes. Mice with mutations in the Atp7a gene, called mottled mutants, are well-established and excellent models of Menkes disease. Mottled mutants closely recapitulate the Menkes phenotype and are invaluable for studying Cu-metabolism. They provide useful models for exploring and testing new forms of therapy in Menkes disease. Recently, non-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals.
Collapse
Affiliation(s)
- Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Rafał Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Poland
| | - Olga Pierzchała
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Lisbeth Birk Møller
- Applied Human Molecular Genetics, Kennedy Center, Rigshospitalet, Copenhagen University Hospital Glostrup, Denmark
| |
Collapse
|
5
|
Takikita S, Takano T, Narita T, Maruo Y. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain. Mol Genet Metab Rep 2015; 4:25-9. [PMID: 26937406 PMCID: PMC4750634 DOI: 10.1016/j.ymgmr.2015.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/25/2015] [Indexed: 12/18/2022] Open
Abstract
Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A). In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene) is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes). This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism.
Collapse
Affiliation(s)
- Shoichi Takikita
- Department of Pediatrics, Takatsuki Red Cross Hospital, Takatsuki 569-1096, Japan
| | - Tomoyuki Takano
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Tsutomu Narita
- Department of Pediatrics, Takatsuki Red Cross Hospital, Takatsuki 569-1096, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
6
|
Tümer Z. An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat 2013; 34:417-29. [PMID: 23281160 DOI: 10.1002/humu.22266] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/11/2012] [Indexed: 01/28/2023]
Abstract
Menkes disease (MD) is a lethal multisystemic disorder of copper metabolism. Progressive neurodegeneration and connective tissue disturbances, together with the peculiar "kinky" hair, are the main manifestations. MD is inherited as an X-linked recessive trait, and as expected the vast majority of patients are males. MD occurs because of mutations in the ATP7A gene and the vast majority of ATP7A mutations are intragenic mutations or partial gene deletions. ATP7A is an energy-dependent transmembrane protein, which is involved in the delivery of copper to the secreted copper enzymes and in the export of surplus copper from cells. Severely affected MD patients die usually before the third year of life. A cure for the disease does not exist, but very early copper-histidine treatment may correct some of the neurological symptoms. This study reviews 274 published and 18 novel disease causing mutations identified in 370 unrelated MD patients, nonpathogenic variants of ATP7A, functional studies of the ATP7A mutations, and animal models of MD.
Collapse
Affiliation(s)
- Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
7
|
Copper-trafficking efficacy of copper-pyruvaldehyde bis(N4- methylthiosemicarbazone) on the macular mouse, an animal model of Menkes disease. Pediatr Res 2012; 72:270-6. [PMID: 22728746 DOI: 10.1038/pr.2012.85] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Menkes disease (MD) is a disorder of copper transport caused by ATP7A mutations. Although parenteral copper supplements are partly effective in treating MD, the copper level in the brain remains insufficient, whereas copper accumulates in the kidney. We investigated the copper-trafficking efficacy of copper-pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), a lipophilic copper complex, in macular mice, an animal model of MD. METHODS Macular mice were treated with cupric chloride (CuCl2) or Cu-PTSM on postnatal days 4, 10, and 17. At 4 wk of age, the copper levels in major organs and cytochrome oxidase (CO) activity in brain tissue were measured. Hematology, blood biochemistry, and urinary β2-microglobulin (β2-M) secretion were also assessed. RESULTS The copper levels in the brains of the Cu-PTSM-treated group remained low, but CO activity in the cerebral and cerebellar cortices in the Cu-PTSM-treated group were higher than those in the CuCl2-treated group. There were no significant differences in hematological or biochemical findings or in urinary β2-M secretion among the groups. CONCLUSION Although the copper-trafficking efficacy of Cu-PTSM was limited, the improved CO activity in the brain suggests that Cu-PTSM delivered copper more effectively to neuronal CO than did CuCl2. Reduced renal copper accumulation may be beneficial in prolonged copper supplementation.
Collapse
|
8
|
Lenartowicz M, Grzmil P, Shoukier M, Starzyński R, Marciniak M, Lipiński P. Mutation in the CPC motif-containing 6th transmembrane domain affects intracellular localization, trafficking and copper transport efficiency of ATP7A protein in mosaic mutant mice--an animal model of Menkes disease. Metallomics 2011; 4:197-204. [PMID: 22089129 DOI: 10.1039/c1mt00134e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copper is an essential micronutrient for all living organisms. ATP7A protein is a copper-transporting ATPase which plays a vital role in the maintenance of cellular copper homeostasis in mammals. This protein is retained within the trans-Golgi network, but after binding copper it can be translocated to the cell membrane to participate in the efflux of excess Cu. Mutation of the ATP7A gene in humans results in the severe neurodegenerative disorder, Menkes disease. The mouse ATP7A homolog encodes a protein that plays the same role in copper transport. Mosaic mutant mice display a lethal phenotype which resembles Menkes disease, although the underlying molecular defect has not been characterized until now. In the present study we identified a G to C nucleotide exchange in exon 15 of the Atp7a gene in mosaic mutants, which resulted in an arginine to proline substitution in the highly conserved 6th transmembrane domain of the ATP7A protein. This mutated protein was mislocalized in kidney cells isolated from mosaic mutant mice, and following exposure of these cells to increased copper concentrations it was not translocated to the plasma membrane. Disturbance of ATP7A function in mosaic mice results in increased copper accumulation in the small intestine and kidneys, and in Cu deficiency in the brain, liver and heart. Mouse models of Menkes disease belong to the mottled mutant group. The mosaic mutant represents another interesting animal model for Menkes disease that will be of value in research on copper metabolism and transport in mammals.
Collapse
Affiliation(s)
- Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Ingardena 6, Gronostajowa 9, 30-387 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
This Review summarizes recent advances in understanding copper-transporting ATPase 1 (ATP7A), and examines the neurological phenotypes associated with dysfunction of this protein. Involvement of ATP7A in axonal outgrowth, synapse integrity and neuronal activation underscores the fundamental importance of copper metabolism to neurological function. Defects in ATP7A cause Menkes disease, an infantile-onset, lethal condition. Neonatal diagnosis and early treatment with copper injections enhance survival in patients with this disease, and can normalize clinical outcomes if mutant ATP7A molecules retain small amounts of residual activity. Gene replacement rescues a mouse model of Menkes disease, suggesting a potential therapeutic approach for patients with complete loss-of-function ATP7A mutations. Remarkably, a newly discovered ATP7A disorder-isolated distal motor neuropathy-has none of the characteristic clinical or biochemical abnormalities of Menkes disease or its milder allelic variant occipital horn syndrome (OHS), instead resembling Charcot-Marie-Tooth disease type 2. These findings indicate that ATP7A has a crucial but previously unappreciated role in motor neuron maintenance, and that the mechanism underlying ATP7A-related distal motor neuropathy is distinct from Menkes disease and OHS pathophysiology. Collectively, these insights refine our knowledge of the neurology of ATP7A-related copper transport diseases and pave the way for further progress in understanding ATP7A function.
Collapse
Affiliation(s)
- Stephen G Kaler
- National Institute of Child Health and Human Development, NIH, Building 10 Room 10N313, 10 Center Drive MSC 1853, Bethesda, MD 20892-1853, USA.
| |
Collapse
|
10
|
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Chemical Toxicology and Environmental Health and High Technology Research Center, Showa Pharmaceutical University
| |
Collapse
|
11
|
Tümer Z, Møller LB. Menkes disease. Eur J Hum Genet 2010; 18:511-8. [PMID: 19888294 PMCID: PMC2987322 DOI: 10.1038/ejhg.2009.187] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/02/2009] [Accepted: 09/23/2009] [Indexed: 12/11/2022] Open
Abstract
Menkes disease (MD) is a lethal multisystemic disorder of copper metabolism. Progressive neurodegeneration and connective tissue disturbances, together with the peculiar 'kinky' hair are the main manifestations. MD is inherited as an X-linked recessive trait, and as expected the vast majority of patients are males. MD occurs due to mutations in the ATP7A gene and the vast majority of ATP7A mutations are intragenic mutations or partial gene deletions. ATP7A is an energy dependent transmembrane protein, which is involved in the delivery of copper to the secreted copper enzymes and in the export of surplus copper from cells. Severely affected MD patients die usually before the third year of life. A cure for the disease does not exist, but very early copper-histidine treatment may correct some of the neurological symptoms.
Collapse
|
12
|
|
13
|
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87:1011-46. [PMID: 17615395 DOI: 10.1152/physrev.00004.2006] [Citation(s) in RCA: 598] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B function is associated with severe metabolic disorders, Menkes disease, and Wilson disease. In cells, the Cu-ATPases maintain intracellular copper concentration by transporting copper from the cytosol across cellular membranes. They also contribute to protein biosynthesis by delivering copper into the lumen of the secretory pathway where metal ion is incorporated into copper-dependent enzymes. The biosynthetic and homeostatic functions of Cu-ATPases are performed in different cell compartments; targeting to these compartments and the functional activity of Cu-ATPase are both regulated by copper. In recent years, significant progress has been made in understanding the structure, function, and regulation of these essential transporters. These studies raised many new questions related to specific physiological roles of Cu-ATPases in various tissues and complex mechanisms that control the Cu-ATPase function. This review summarizes current data on the structural organization and functional properties of ATP7A and ATP7B as well as their localization and functions in various tissues, and discusses the current models of regulated trafficking of human Cu-ATPases.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
14
|
de Bie P, Muller P, Wijmenga C, Klomp LWJ. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 2007; 44:673-88. [PMID: 17717039 PMCID: PMC2752173 DOI: 10.1136/jmg.2007.052746] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The trace metal copper is essential for a variety of biological processes, but extremely toxic when present in excessive amounts. Therefore, concentrations of this metal in the body are kept under tight control. Central regulators of cellular copper metabolism are the copper-transporting P-type ATPases ATP7A and ATP7B. Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease), respectively. ATP7A and ATP7B exert their functions in copper transport through a variety of interdependent mechanisms and regulatory events, including their catalytic ATPase activity, copper-induced trafficking, post-translational modifications and protein-protein interactions. This paper reviews the extensive efforts that have been undertaken over the past few years to dissect and characterise these mechanisms, and how these are affected in Menkes and Wilson disease. As both disorders are characterised by an extensive clinical heterogeneity, we will discus how the underlying genetic defects correlate with the molecular functions of ATP7A and ATP7B and with the clinical expression of these disorders.
Collapse
Affiliation(s)
- P de Bie
- Laboratory of Metabolic and Endocrine Diseases, Room KC.02.069.1, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
15
|
Kim BE, Petris MJ. Phenotypic diversity of Menkes disease in mottled mice is associated with defects in localisation and trafficking of the ATP7A protein. J Med Genet 2007; 44:641-6. [PMID: 17483305 PMCID: PMC2597975 DOI: 10.1136/jmg.2007.049627] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Owing to mutations in the copper-transporting P-type ATPase, ATP7A (or MNK), patients with Menkes disease (MD) have an inadequate supply of copper to various copper-dependent enzymes. The ATP7A protein is located in the trans-Golgi network, where it transports copper via secretory compartments to copper-dependent enzymes. Raised copper concentrations result in the trafficking of ATP7A to the plasma membrane, where it functions in copper export. An important model of MD is the Mottled mouse, which possesses mutations in Atp7A. The Mottled mouse displays three distinct phenotypic severities: embryonic lethal, perinatal lethal and a longer-lived viable phenotype. However, the effects of mutations from these phenotypic classes on the ATP7A protein are unknown. In this study, we found that these classes of mutation differentially affect the copper transport and trafficking functions of the ATP7A protein. The embryonic lethal mutation, Atp7a(mo11H) (11H), caused mislocalisation of the protein to the endoplasmic reticulum, impaired glycosylation, and abolished copper delivery to the secretory pathway. In contrast, the perinatal lethal and viable mutations, Atp7a(moMac) (Macular) and Atp7a(moVbr) (Viable brindle) both resulted in a reduction in copper delivery to the secretory pathway and constitutive trafficking of the ATP7A protein to the plasma membrane in the absence of additional copper. In the case of Viable brindle, this hypertrafficking response was dependent on the catalytic phosphorylation site of ATP7A, whereas no such requirement was found for the Macular mutation. These findings provide evidence that the degree of MD severity in mice is associated with both copper transport and trafficking defects in the ATP7A protein.
Collapse
|
16
|
Møller LB, Bukrinsky JT, Mølgaard A, Paulsen M, Lund C, Tümer Z, Larsen S, Horn N. Identification and analysis of 21 novel disease-causing amino acid substitutions in the conserved part of ATP7A. Hum Mutat 2006; 26:84-93. [PMID: 15981243 DOI: 10.1002/humu.20190] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ATP7A encodes a copper-translocating ATPase that belongs to the large family of P-type ATPases. Eight conserved regions define the core of the P-type ATPase superfamily. We report here the identification of 21 novel missense mutations in the conserved part of ATP7A that encodes the residues p.V842-p.S1404. Using the coordinates of X-ray crystal structures of the sarcoplasmic reticulum Ca(2+)-ATPase, as determined in the presence and absence of Ca(2+), we created structural homology models of ATP7A. By mapping the substituted residues onto the models, we found that these residues are more clustered three-dimensionally than expected from the primary sequence. The location of the substituted residues in conserved regions supports the functional similarities between the two types of P-type ATPases. An immunofluorescence analysis of Menkes fibroblasts suggested that the localization of a large number of the mutated ATP7A protein variants was correct. In the absence of copper, they were located in perinuclear regions of the cells, just like the wild type. However, two of the mutated ATP7A variants showed only partly correct localization, and in five cultures no ATP7A protein could be detected. These findings suggest that although a disease-causing mutation may indicate a functional significance of the affected residue, this is not always the case.
Collapse
|
17
|
Abstract
Mottled mice have mutations in the copper-transporting ATPase Atp7a. They are proven models for the human disorder Menkes disease (MD), which results from mutations in a homologous gene. Mottled mice can be divided into three classes: class 1, in which affected males die before birth; class 2, in which affected males die in the early postnatal period; and class 3, in which affected males survive to adulthood. In humans, it has been shown that mutations that lead to a complete absence of functional protein cause classical MD, which is characterized by death of boys in early childhood. We hypothesized that the most severely affected mottled alleles would be the most likely to carry mutations equivalent to those causing classical MD and therefore undertook mutational analysis of several class 1 mottled alleles to assess whether these were appropriate models for the disease at the molecular level. Two novel mutations, a deletion of exons 11-14 in mottled spot and an insertion in exon 10 leading to missplicing in mottled candy, were identified. However, these are both "in-frame" mutations, as are the other eight Atp7a mutations reported to date, and therefore no frameshift or nonsense mutations have yet been associated with the mottled phenotype. This contrasts with the mutation spectrum associated with MD, emphasizing the need for caution when mottled mice are used as models for the clinical disorder.
Collapse
Affiliation(s)
- P Cunliffe
- University Department of Medical Genetics, St. Mary's Hospital, Hathersage Road, Manchester, M13 OJH, United Kingdom
| | | | | |
Collapse
|
18
|
Abstract
The molecular genetics and pathophysiology of Menkes disease and an animal model for this disease are reviewed. The Menkes gene, located on chromosome X13.3, encodes a copper-transporting ATPase, as shown by the sequencing of a cDNA of 4500 bp. Mutations in the Menkes gene in patients with Menkes disease show great variety, including missense, nonsense, deletion and insertion mutations. Mutations in the Menkes gene have also been identified in patients with mild Menkes disease or occipital horn syndrome, showing that these diseases are allelic variants of Menkes disease. Mutations in the mottled gene, the murine homolog of the Menkes gene, have been demonstrated in mottled mutant mice that display biochemical and phenotypic abnormalities similar to those observed in patients with Menkes disease. In affected cells, copper significantly accumulates as metallothionein-bound copper in the cytosol and copper transport to the organelles, as well as copper efflux, is disturbed. As a result, cuproenzymes cannot receive the copper necessary for their normal function. Thus, the objective in treatment of Menkes disease and occipital horn syndrome is to deliver copper to the intracellular compartments where cuproenzymes are synthesized.
Collapse
Affiliation(s)
- H Kodama
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
19
|
Tümer Z, Møller LB, Horn N. Mutation spectrum of ATP7A, the gene defective in Menkes disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 448:83-95. [PMID: 10079817 DOI: 10.1007/978-1-4615-4859-1_7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Our knowledge about Menkes disease (MD) has expanded greatly since its description in 1962 as a new X-linked recessive neurodegenerative disorder of early infancy. Ten years later a defect in copper metabolism was established as the underlying biochemical deficiency. In the beginning of 1990s efforts were concentrated on the molecular genetic aspects. The disease locus was mapped to Xq13.3 and the gene has been isolated by means of positional cloning. This was the beginning of a series of new findings which have greatly enhanced our understanding of copper metabolism not only in human, but also in other species. This review will focus on the molecular genetic aspects of Menkes disease and its allelic form occipital horn syndrome. The mutations will be compared briefly with those described in the animal model mottled mouse, and in Wilson disease, the autosomal recessive disorder of copper metabolism.
Collapse
Affiliation(s)
- Z Tümer
- Department of Medical Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
20
|
Mercer JF, Ambrosini L, Horton S, Gazeas S, Grimes A. Animal models of Menkes disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 448:97-108. [PMID: 10079818 DOI: 10.1007/978-1-4615-4859-1_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J F Mercer
- Murdoch Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|