1
|
Nowell RW, Wilson CG, Almeida P, Schiffer PH, Fontaneto D, Becks L, Rodriguez F, Arkhipova IR, Barraclough TG. Evolutionary dynamics of transposable elements in bdelloid rotifers. eLife 2021; 10:e63194. [PMID: 33543711 PMCID: PMC7943196 DOI: 10.7554/elife.63194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) are selfish genomic parasites whose ability to spread autonomously is facilitated by sexual reproduction in their hosts. If hosts become obligately asexual, TE frequencies and dynamics are predicted to change dramatically, but the long-term outcome is unclear. Here, we test current theory using whole-genome sequence data from eight species of bdelloid rotifers, a class of invertebrates in which males are thus far unknown. Contrary to expectations, we find a variety of active TEs in bdelloid genomes, at an overall frequency within the range seen in sexual species. We find no evidence that TEs are spread by cryptic recombination or restrained by unusual DNA repair mechanisms. Instead, we find that that TE content evolves relatively slowly in bdelloids and that gene families involved in RNAi-mediated TE suppression have undergone significant expansion, which might mitigate the deleterious effects of active TEs and compensate for the consequences of long-term asexuality.
Collapse
Affiliation(s)
- Reuben W Nowell
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| | - Christopher G Wilson
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| | - Pedro Almeida
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
- Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Philipp H Schiffer
- Institute of Zoology, Section Developmental Biology, University of Cologne, KölnWormlabGermany
| | - Diego Fontaneto
- National Research Council of Italy, Water Research InstituteVerbania PallanzaItaly
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary BiologyPlönGermany
- Aquatic Ecology and Evolution, University of KonstanzKonstanzGermany
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods Hole, MAUnited States
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods Hole, MAUnited States
| | - Timothy G Barraclough
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| |
Collapse
|
2
|
Bourgeois Y, Ruggiero RP, Hariyani I, Boissinot S. Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations. PLoS Genet 2020; 16:e1009082. [PMID: 33017388 PMCID: PMC7561263 DOI: 10.1371/journal.pgen.1009082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/15/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
The interactions between transposable elements (TEs) and their hosts constitute one of the most profound co-evolutionary processes found in nature. The population dynamics of TEs depends on factors specific to each TE families, such as the rate of transposition and insertional preference, the demographic history of the host and the genomic landscape. How these factors interact has yet to be investigated holistically. Here we are addressing this question in the green anole (Anolis carolinensis) whose genome contains an extraordinary diversity of TEs (including non-LTR retrotransposons, SINEs, LTR-retrotransposons and DNA transposons). We observed a positive correlation between recombination rate and frequency of TEs and densities for LINEs, SINEs and DNA transposons. For these elements, there was a clear impact of demography on TE frequency and abundance, with a loss of polymorphic elements and skewed frequency spectra in recently expanded populations. On the other hand, some LTR-retrotransposons displayed patterns consistent with a very recent phase of intense amplification. To determine how demography, genomic features and intrinsic properties of TEs interact we ran simulations using SLiM3. We determined that i) short TE insertions are not strongly counter-selected, but long ones are, ii) neutral demographic processes, linked selection and preferential insertion may explain positive correlations between average TE frequency and recombination, iii) TE insertions are unlikely to have been massively recruited in recent adaptation. We demonstrate that deterministic and stochastic processes have different effects on categories of TEs and that a combination of empirical analyses and simulations can disentangle these mechanisms.
Collapse
Affiliation(s)
- Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
- * E-mail: (YB); (SB)
| | - Robert P. Ruggiero
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, United States of America
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
- * E-mail: (YB); (SB)
| |
Collapse
|
3
|
Xue AT, Ruggiero RP, Hickerson MJ, Boissinot S. Differential Effect of Selection against LINE Retrotransposons among Vertebrates Inferred from Whole-Genome Data and Demographic Modeling. Genome Biol Evol 2018; 10:1265-1281. [PMID: 29688421 PMCID: PMC5963298 DOI: 10.1093/gbe/evy083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/30/2022] Open
Abstract
Variation in LINE composition is one of the major determinants for the substantial size and structural differences among vertebrate genomes. In particular, the larger genomes of mammals are characterized by hundreds of thousands of copies from a single LINE clade, L1, whereas nonmammalian vertebrates possess a much greater diversity of LINEs, yet with orders of magnitude less in copy number. It has been proposed that such variation in copy number among vertebrates is due to differential effect of LINE insertions on host fitness. To investigate LINE selection, we deployed a framework of demographic modeling, coalescent simulations, and probabilistic inference against population-level whole-genome data sets for four model species: one population each of threespine stickleback, green anole, and house mouse, as well as three human populations. Specifically, we inferred a null demographic background utilizing SNP data, which was then exploited to simulate a putative null distribution of summary statistics that was compared with LINE data. Subsequently, we applied the inferred null demographic model with an additional exponential size change parameter, coupled with model selection, to test for neutrality as well as estimate the strength of either negative or positive selection. We found a robust signal for purifying selection in anole and mouse, but a lack of clear evidence for selection in stickleback and human. Overall, we demonstrated LINE insertion dynamics that are not in accordance to a mammalian versus nonmammalian dichotomy, and instead the degree of existing LINE activity together with host-specific demographic history may be the main determinants of LINE abundance.
Collapse
Affiliation(s)
- Alexander T Xue
- Department of Biology: Subprogram in Ecology, Evolutionary Biology, and Behavior, City College and Graduate Center of City University of New York
- Human Genetics Institute of New Jersey and Department of Genetics, Rutgers University, Piscataway
| | - Robert P Ruggiero
- New York University Abu Dhabi, Saadiyat Island Campus, United Arab Emirates
| | - Michael J Hickerson
- Department of Biology: Subprogram in Ecology, Evolutionary Biology, and Behavior, City College and Graduate Center of City University of New York
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island Campus, United Arab Emirates
| |
Collapse
|
4
|
Genomic and Population-Level Effects of Gene Conversion in Caenorhabditis Paralogs. Genes (Basel) 2010; 1:452-68. [PMID: 24710096 PMCID: PMC3966223 DOI: 10.3390/genes1030452] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/22/2010] [Accepted: 12/06/2010] [Indexed: 11/17/2022] Open
|
5
|
Ray DA, Platt RN, Batzer MA. Reading between the LINEs to see into the past. Trends Genet 2009; 25:475-9. [PMID: 19837475 DOI: 10.1016/j.tig.2009.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) are an important source of genome diversity and play a crucial role in genome evolution. A recent study by Zhao et al. describes novel patterns of TE diversification in the genome of the extinct mammoth Mammuthus primigenius. Analysis of Mammuthus has provided a unique genome landscape, a pivotal species for understanding TEs and genome evolution and hints at the diversity we verge on discovering by expanding our taxonomic sampling among genomes. Strategies based on this work might also revolutionize investigations of the interface between TE dynamics and genome diversity.
Collapse
Affiliation(s)
- David A Ray
- Department of Biochemistry and Molecular Biology, Box 9650, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
6
|
Novick PA, Basta H, Floumanhaft M, McClure MA, Boissinot S. The Evolutionary Dynamics of Autonomous Non-LTR Retrotransposons in the Lizard Anolis Carolinensis Shows More Similarity to Fish Than Mammals. Mol Biol Evol 2009; 26:1811-22. [DOI: 10.1093/molbev/msp090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
7
|
Meyer DH, Bailis AM. Telomerase deficiency affects the formation of chromosomal translocations by homologous recombination in Saccharomyces cerevisiae. PLoS One 2008; 3:e3318. [PMID: 18830407 PMCID: PMC2553005 DOI: 10.1371/journal.pone.0003318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/11/2008] [Indexed: 01/17/2023] Open
Abstract
Telomerase is a ribonucleoprotein complex required for the replication and protection of telomeric DNA in eukaryotes. Cells lacking telomerase undergo a progressive loss of telomeric DNA that results in loss of viability and a concomitant increase in genome instability. We have used budding yeast to investigate the relationship between telomerase deficiency and the generation of chromosomal translocations, a common characteristic of cancer cells. Telomerase deficiency increased the rate of formation of spontaneous translocations by homologous recombination involving telomere proximal sequences during crisis. However, telomerase deficiency also decreased the frequency of translocation formation following multiple HO-endonuclease catalyzed DNA double-strand breaks at telomere proximal or distal sequences before, during and after crisis. This decrease correlated with a sequestration of the central homologous recombination factor, Rad52, to telomeres determined by chromatin immuno-precipitation. This suggests that telomerase deficiency results in the sequestration of Rad52 to telomeres, limiting the capacity of the cell to repair double-strand breaks throughout the genome. Increased spontaneous translocation formation in telomerase-deficient yeast cells undergoing crisis is consistent with the increased incidence of cancer in elderly humans, as the majority of our cells lack telomerase. Decreased translocation formation by recombinational repair of double-strand breaks in telomerase-deficient yeast suggests that the reemergence of telomerase expression observed in many human tumors may further stimulate genome rearrangement. Thus, telomerase may exert a substantial effect on global genome stability, which may bear significantly on the appearance and progression of cancer in humans.
Collapse
Affiliation(s)
- Damon H. Meyer
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- City of Hope Graduate School of Biological Sciences, Duarte, California, United States of America
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Walser JC, Ponger L, Furano AV. CpG dinucleotides and the mutation rate of non-CpG DNA. Genome Res 2008; 18:1403-14. [PMID: 18550801 DOI: 10.1101/gr.076455.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The neutral mutation rate is equal to the base substitution rate when the latter is not affected by natural selection. Differences between these rates may reveal that factors such as natural selection, linkage, or a mutator locus are affecting a given sequence. We examined the neutral base substitution rate by measuring the sequence divergence of approximately 30,000 pairs of inactive orthologous L1 retrotransposon sequences interspersed throughout the human and chimpanzee genomes. In contrast to other studies, we related ortholog divergence to the time (age) that the L1 sequences resided in the genome prior to the chimpanzee and human speciation. As expected, the younger orthologs contained more hypermutable CpGs than the older ones because of their conversion to TpGs (and CpAs). Consequently, the younger orthologs accumulated more CpG mutations than the older ones during the approximately 5 million years since the human and chimpanzee lineages separated. But during this same time, the younger orthologs also accumulated more non-CpG mutations than the older ones. In fact, non-CpG and CpG mutations showed an almost perfect (R2 = 0.98) correlation for approximately 97% of the ortholog pairs. The correlation is independent of G + C content, recombination rate, and chromosomal location. Therefore, it likely reflects an intrinsic effect of CpGs, or mutations thereof, on non-CpG DNA rather than the joint manifestation of the chromosomal environment. The CpG effect is not uniform for all regions of non-CpG DNA. Therefore, the mutation rate of non-CpG DNA is contingent to varying extents on local CpG content. Aside from their implications for mutational mechanisms, these results indicate that a precise determination of a uniform genome-wide neutral mutation rate may not be attainable.
Collapse
Affiliation(s)
- Jean-Claude Walser
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
9
|
Niu DK. Protecting exons from deleterious R-loops: a potential advantage of having introns. Biol Direct 2007; 2:11. [PMID: 17459149 PMCID: PMC1863416 DOI: 10.1186/1745-6150-2-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/25/2007] [Indexed: 02/02/2023] Open
Abstract
Background Accumulating evidence indicates that the nascent RNA can invade and pair with one strand of DNA, forming an R-loop structure that threatens the stability of the genome. In addition, the cost and benefit of introns are still in debate. Results At least three factors are likely required for the R-loop formation: 1) sequence complementarity between the nascent RNA and the target DNA, 2) spatial juxtaposition between the nascent RNA and the template DNA, and 3) accessibility of the template DNA and the nascent RNA. The removal of introns from pre-mRNA reduces the complementarity between RNA and the template DNA and avoids the spatial juxtaposition between the nascent RNA and the template DNA. In addition, the secondary structures of group I and group II introns may act as spatial obstacles for the formation of R-loops between nearby exons and the genomic DNA. Conclusion Organisms may benefit from introns by avoiding deleterious R-loops. The potential contribution of this benefit in driving intron evolution is discussed. I propose that additional RNA polymerases may inhibit R-loop formation between preceding nascent RNA and the template DNA. This idea leads to a testable prediction: intermittently transcribed genes and genes with frequently prolonged transcription should have higher intron density. Reviewers This article was reviewed by Dr. Eugene V. Koonin, Dr. Alexei Fedorov (nominated by Dr. Laura F Landweber), and Dr. Scott W. Roy (nominated by Dr. Arcady Mushegian).
Collapse
Affiliation(s)
- Deng-Ke Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
10
|
Jackson AP. Tandem gene arrays in Trypanosoma brucei: comparative phylogenomic analysis of duplicate sequence variation. BMC Evol Biol 2007; 7:54. [PMID: 17408475 PMCID: PMC1855330 DOI: 10.1186/1471-2148-7-54] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 04/04/2007] [Indexed: 11/23/2022] Open
Abstract
Background The genome sequence of the protistan parasite Trypanosoma brucei contains many tandem gene arrays. Gene duplicates are created through tandem duplication and are expressed through polycistronic transcription, suggesting that the primary purpose of long, tandem arrays is to increase gene dosage in an environment where individual gene promoters are absent. This report presents the first account of the tandem gene arrays in the T. brucei genome, employing several related genome sequences to establish how variation is created and removed. Results A systematic survey of tandem gene arrays showed that substantial sequence variation existed across the genome; variation from different regions of an array often produced inconsistent phylogenetic affinities. Phylogenetic relationships of gene duplicates were consistent with concerted evolution being a widespread homogenising force. However, tandem duplicates were not usually identical; therefore, any homogenising effect was coincident with divergence among duplicates. Allelic gene conversion was detected using various criteria and was apparently able to both remove and introduce sequence variation. Tandem arrays containing structural heterogeneity demonstrated how sequence homogenisation and differentiation can occur within a single locus. Conclusion The use of multiple genome sequences in a comparative analysis of tandem gene arrays identified substantial sequence variation among gene duplicates. The distribution of sequence variation is determined by a dynamic balance of conservative and innovative evolutionary forces. Gene trees from various species showed that intraspecific duplicates evolve in concert, perhaps through frequent gene conversion, although this does not prevent sequence divergence, especially where structural heterogeneity physically separates a duplicate from its neighbours. In describing dynamics of sequence variation that have consequences beyond gene dosage, this survey provides a basis for uncovering the hidden functionality within tandem gene arrays in trypanosomatids.
Collapse
Affiliation(s)
- Andrew P Jackson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
11
|
Valtonen-André C, Olsson AY, Kullberg M, Nayudu PL, Lundwall A. The common marmoset (Callithrix jacchus) has two very similar semenogelin genes as the result of gene conversion. Biol Reprod 2006; 76:604-10. [PMID: 17192513 DOI: 10.1095/biolreprod.106.057661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The semen coagulum proteins have undergone substantial structural changes during evolution. In primates, these seminal vesicle-secreted proteins are known as semenogelin I (SEMG1) and semenogelin II (SEMG2). Previous studies on the common marmoset (Callithrix jacchus) showed that ejaculated semen from this New World monkey contains semenogelin, but it remained unclear whether it carries both genes or only SEMG1 and no SEMG2, like the closely related cotton-top tamarin (Saguinus oedipus). In this study we show that there are two genes, both expressed in the seminal vesicles. Surprisingly, the genes show an almost perfect sequence identity in a region of 1.25 kb, encompassing nearly half of the genes and containing exon 1, intron 1, and the first 0.9 kb of exon 2. The underlying molecular mechanism is most likely gene conversion, and a phylogenetic analysis suggests that SEMG1 is the most probable donor gene. The marmoset SEMG1 in this report differs from a previously reported cDNA by a lack of nucleotides encoding one repeat of 60 amino acids, suggesting that marmoset SEMG1 displays allelic size variation. This is similar to what was recently demonstrated in humans, but in marmosets the polymorphism was generated by a repeat duplication, whereas in humans it was a deletion. Together, these studies shed new light on the evolution of semenogelins and the mechanisms that have generated the structural diversity of semen coagulum proteins.
Collapse
Affiliation(s)
- Camilla Valtonen-André
- University Hospital MAS, Division of Clinical Chemistry, Department of Laboratory Medicine, Lund University, S-205 02 Malmö, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Song M, Boissinot S. Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. Gene 2006; 390:206-13. [PMID: 17134851 DOI: 10.1016/j.gene.2006.09.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 11/25/2022]
Abstract
LINE-1 (L1) retrotransposons constitute the most successful family of autonomous retroelements in mammals and they represent at least 17% of the size of the human genome. L1 insertions have occasionally been recruited to perform a beneficial function but the vast majority of L1 inserts are either neutral or deleterious. The basis for the deleterious effect of L1 remains a matter of debate and three possible mechanisms have been suggested: the direct effect of L1 inserts on gene activity, genetic rearrangements caused by L1-mediated ectopic recombination, or the retrotransposition process per se. We performed a genome-wide analysis of the distribution of L1 retrotransposons relative to the local recombination rate and the age and length of the elements. The proportion of L1 elements that are longer than 1.2 Kb is higher in low-recombining regions of the genome than in regions with a high recombination rate, but the genomic distributions of full-length elements (i.e. elements capable of retrotransposition) and long truncated elements were indistinguishable. We also found that the intensity of selection against long elements is proportional to the replicative success of L1 families. This suggests that the deleterious effect of L1 elements results principally from their ability to mediate ectopic recombination.
Collapse
Affiliation(s)
- Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | | |
Collapse
|
13
|
Abrusán G, Krambeck HJ. The distribution of L1 and Alu retroelements in relation to GC content on human sex chromosomes is consistent with the ectopic recombination model. J Mol Evol 2006; 63:484-92. [PMID: 16955238 DOI: 10.1007/s00239-005-0275-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
The distribution of Alu and L1 retroelements in the human genome changes with their age. Active retroelements target AT-rich regions, but their frequency increases in GC- and gene-rich regions of the genome with increasing age of the insertions. Currently there is no consensus on the mechanism generating this pattern. In this paper we test the hypothesis that selection against deleterious deletions caused by ectopic recombination between repeats is the main cause of the inhomogeneous distribution of L1s and Alus, by means of a detailed analysis of the GC distribution of the repeats on the sex chromosomes. We show that (1) unlike on the autosomes and X chromosome, L1s do not accumulate on the Y chromosome in GC-rich regions, whereas Alus accumulate there to a minor extent; (2) on the Y chromosome Alu and L1 densities are positively correlated, unlike the negative correlation on other chromosomes; and (3) in gene-poor regions of chromosome 4 and X, the distribution of Alus and L1s does not shift toward GC-rich regions. In addition, we show that although local GC content of long L1 insertions is lower than average, their selective loss from recombining chromosomes is not the main cause of the enrichment of ancient L1s in GC-rich regions. The results support the hypothesis that ectopic recombination causes the shift of Alu and L1 distributions toward the gene-rich regions of the genome.
Collapse
Affiliation(s)
- György Abrusán
- Max Planck Institute of Limnology, Department of Ecophysiology, August Thienemann Str. 2, 24306, Plön, Germany,
| | | |
Collapse
|
14
|
Boissinot S, Davis J, Entezam A, Petrov D, Furano AV. Fitness cost of LINE-1 (L1) activity in humans. Proc Natl Acad Sci U S A 2006; 103:9590-4. [PMID: 16766655 PMCID: PMC1480451 DOI: 10.1073/pnas.0603334103] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Indexed: 11/18/2022] Open
Abstract
The self-replicating LINE-1 (L1) retrotransposon family is the dominant retrotransposon family in mammals and has generated 30-40% of their genomes. Active L1 families are present in modern mammals but the important question of whether these currently active families affect the genetic fitness of their hosts has not been addressed. This issue is of particular relevance to humans as Homo sapiens contains the active L1 Ta1 subfamily of the human specific Ta (L1Pa1) L1 family. Although DNA insertions generated by the Ta1 subfamily can cause genetic defects in current humans, these are relatively rare, and it is not known whether Ta1-generated inserts or any other property of Ta1 elements have been sufficiently deleterious to reduce the fitness of humans. Here we show that full-length (FL) Ta1 elements, but not the truncated Ta1 elements or SINE (Alu) insertions generated by Ta1 activity, were subject to negative selection. Thus, one or more properties unique to FL L1 elements constitute a genetic burden for modern humans. We also found that the FL Ta1 elements became more deleterious as the expansion of Ta1 has proceeded. Because this expansion is ongoing, the Ta1 subfamily almost certainly continues to decrease the fitness of modern humans.
Collapse
Affiliation(s)
- Stephane Boissinot
- *Department of Biology, Queens College, City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367; and
| | - Jerel Davis
- Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020
| | - Ali Entezam
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 203, 8 Center Drive, MSC O830, Bethesda, MD 20892-0830
| | - Dimitri Petrov
- Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020
| | - Anthony V. Furano
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 203, 8 Center Drive, MSC O830, Bethesda, MD 20892-0830
| |
Collapse
|
15
|
Abstract
Background Alu elements are short (~300 bp) interspersed elements that amplify in primate genomes through a process termed retroposition. The expansion of these elements has had a significant impact on the structure and function of primate genomes. Approximately 10 % of the mass of the human genome is comprised of Alu elements, making them the most abundant short interspersed element (SINE) in our genome. The majority of Alu amplification occurred early in primate evolution, and the current rate of Alu retroposition is at least 100 fold slower than the peak of amplification that occurred 30–50 million years ago. Alu elements are therefore a rich source of inter- and intra-species primate genomic variation. Results A total of 153 Alu elements from the Ye subfamily were extracted from the draft sequence of the human genome. Analysis of these elements resulted in the discovery of two new Alu subfamilies, Ye4 and Ye6, complementing the previously described Ye5 subfamily. DNA sequence analysis of each of the Alu Ye subfamilies yielded average age estimates of ~14, ~13 and ~9.5 million years old for the Alu Ye4, Ye5 and Ye6 subfamilies, respectively. In addition, 120 Alu Ye4, Ye5 and Ye6 loci were screened using polymerase chain reaction (PCR) assays to determine their phylogenetic origin and levels of human genomic diversity. Conclusion The Alu Ye lineage appears to have started amplifying relatively early in primate evolution and continued propagating at a low level as many of its members are found in a variety of hominoid (humans, greater and lesser ape) genomes. Detailed sequence analysis of several Alu pre-integration sites indicated that multiple types of events had occurred, including gene conversions, near-parallel independent insertions of different Alu elements and Alu-mediated genomic deletions. A potential hotspot for Alu insertion in the Fer1L3 gene on chromosome 10 was also identified.
Collapse
|
16
|
Neafsey DE, Blumenstiel JP, Hartl DL. Different regulatory mechanisms underlie similar transposable element profiles in pufferfish and fruitflies. Mol Biol Evol 2004; 21:2310-8. [PMID: 15342795 DOI: 10.1093/molbev/msh243] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Comparative analysis of recently sequenced eukaryotic genomes has uncovered extensive variation in transposable element (TE) abundance, diversity, and distribution. The TE profile in the sequenced pufferfish genomes is more similar to that of Drosophila melanogaster than to human or mouse, in that pufferfish TEs exhibit low overall abundance, high family diversity, and localization in the heterochromatin. It has been suggested that selection against the deleterious effects of ectopic recombination between TEs has structured the TE profile in Drosophila and pufferfish but not in humans. We test this hypothesis by measuring the sample frequency of 48 euchromatic TE insertions in the genome of the green spotted pufferfish (Tetraodon nigroviridis). We estimate the strength of selection acting on recent insertions by analyzing the site frequency spectrum using a maximum-likelihood approach. We show that in contrast to Drosophila, euchromatic TE insertions in Tetraodon are selectively neutral and that the low copy number and compartmentalized distribution of TEs in the Tetraodon genome must be caused by regulation by means other than purifying selection acting on recent insertions. Inference of regulatory processes governing TE profiles should take into account factors such as effective population size, incidence of inbreeding/outcrossing, and other species-specific traits.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
17
|
Tsai TF, Bressler J, Jiang YH, Beaudet AL. Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells. Genesis 2004; 37:151-61. [PMID: 14666508 DOI: 10.1002/gene.10237] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In gene targeting studies of the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) domain in mouse ES cells, we recovered only recombinants with the paternal allele for constructs at exons 2 or 3 of the imprinted, maternally silenced Snurf-Snrpn gene. These sites lie close to the imprinting center (IC) for this domain. In contrast, recombinants for Ube3a within the same imprinted domain were recovered with equal frequency on the maternal and paternal alleles. In addition, gene targeting of the paternal allele for Snurf-Snrpn resulted in partial or complete demethylation in trans with activation of expression for the previously silenced maternal allele. The imprint switching of the maternal allele in trans is not readily explained by competition for trans-acting factors and adds to a growing body of evidence indicating homologous association of oppositely imprinted chromatin domains in somatic mammalian cells.
Collapse
Affiliation(s)
- Ting-Fen Tsai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
18
|
Karn RC, Orth A, Bonhomme F, Boursot P. The complex history of a gene proposed to participate in a sexual isolation mechanism in house mice. Mol Biol Evol 2002; 19:462-71. [PMID: 11919288 DOI: 10.1093/oxfordjournals.molbev.a004102] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous behavioral experiments showed that mouse salivary androgen-binding protein (ABP) was involved in interindividual recognition and might play a role in sexual isolation between house mouse (Mus musculus) subspecies. The pattern of evolution of Abpa, the gene for the alpha subunit of ABP, was found to be consistent with this hypothesis. Abpa apparently diverged rapidly between species and subspecies with a large excess of nonsynonymous substitutions, a lack of exon polymorphism within each of the three subspecies, and a lack of intron polymorphism in the one subspecies studied (M. musculus domesticus). Here we characterized the intron and exon sequence variations of this gene in house mouse populations from central Eurasia, a region yet unsampled and thought to be close to the cradle of the radiation of the subspecies. We also determined the intron and exon sequences in seven other species of the genus Mus. We confirmed the general pattern of rapid evolution by essentially nonsynonymous substitutions, both inter- and intraspecifically, supporting the idea that Darwinian selection has driven the evolution of this gene. We also observed a uniform intron sequence in five samples of M. musculus musculus, suggesting that a selective sweep might have occurred for that allele. In contrast to previous results, however, we found extensive intron and exon polymorphism in some house mouse populations from central Eurasia. We also found evidence for secondary admixture of the subspecies-specific alleles in regions of transition between the subspecies in central Eurasia. Furthermore, an abnormal intron phylogeny suggested that interspecific exchanges had occurred between the house mouse subspecies and three other Palearctic species. These observations appear to be at variance with the simple hypothesis that Abpa is involved in reproductive isolation. Although we do not rule out a role in recognition, the situation appears to be more complex than previously thought. Thus the selective mechanism behind the evolution of Abpa remains to be resolved, and we suggest that it may have changed during the recent colonization history of the house mouse.
Collapse
Affiliation(s)
- Robert C Karn
- Department of Biological Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN 46208, USA.
| | | | | | | |
Collapse
|
19
|
Roy-Engel AM, Carroll ML, El-Sawy M, Salem AH, Garber RK, Nguyen SV, Deininger PL, Batzer MA. Non-traditional Alu evolution and primate genomic diversity. J Mol Biol 2002; 316:1033-40. [PMID: 11884141 DOI: 10.1006/jmbi.2001.5380] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alu elements belonging to the previously identified "young" subfamilies are thought to have inserted in the human genome after the divergence of humans from non-human primates and therefore should not be present in non-human primate genomes. Polymerase chain reaction (PCR) based screening of over 500 Alu insertion loci resulted in the recovery of a few "young" Alu elements that also resided at orthologous positions in non-human primate genomes. Sequence analysis demonstrated these "young" Alu insertions represented gene conversion events of pre-existing ancient Alu elements or independent parallel insertions of older Alu elements in the same genomic region. The level of gene conversion between Alu elements suggests that it may have a significant influence on the single nucleotide diversity within the genome. All the instances of multiple independent Alu insertions within the same small genomic regions were recovered from the owl monkey genome, indicating a higher Alu amplification rate in owl monkeys relative to many other primates. This study suggests that the majority of Alu insertions in primate genomes are the products of unique evolutionary events.
Collapse
Affiliation(s)
- Astrid M Roy-Engel
- Department of Environmental Health Sciences, Tulane Cancer Center SL-66, Tulane University Medical Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li Y, Bernot JP, Illingworth C, Lison W, Bernot KM, Eggleston WB, Fogle KJ, DiPaola JE, Kermicle J, Alleman M. Gene conversion within regulatory sequences generates maize r alleles with altered gene expression. Genetics 2001; 159:1727-40. [PMID: 11779810 PMCID: PMC1461907 DOI: 10.1093/genetics/159.4.1727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The maize r locus encodes a transcription factor that regulates the developmental expression of the plant pigment anthocyanin. In an unusual example of gene regulatory diversity, the R-sc (Sc, strong seed color) and the R-p (P, plant color) alleles of r have nonoverlapping tissue specificity and nonhomologous 5' flanking sequences. Heterozygotes between wild-type P and Sc mutants with Ds6 transposable element inserts (r-sc:m::Ds6 or sc:m) produce colored seed derivatives (Sc+) during meiotic recombination. The sc:m alleles with Ds6 insertion in 3' regions of r produce crossover Sc+ derivatives. sc:m alleles with Ds6 elements inserted in 5' regions produce rare Sc+ derivatives borne on nonrecombinant chromosomes. Among 52 such noncrossover Sc+ derivatives, 18 are indistinguishable from the Sc progenitor in phenotype and DNA sequence [Scp(+) alleles]. The remaining 34 derivatives have strong Sc+ expression, including darkly pigmented aleurone, scutellum, coleoptile, and scutellar node [Scp(e) alleles]. The coleoptile and scutellar node phenotypes are unique from either progenitor but are similar to those of some naturally occurring r alleles. Both classes of Sc+ derivatives are explained by gene conversion between the promoter region of Sc:124 and a homologous region located proximal to P. The recombinational intermediate formed between sc:m alleles and P results in deletion of the Ds6 element alone or both Ds6 and a nearby unrelated transposable element-like sequence.
Collapse
Affiliation(s)
- Y Li
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boissinot S, Entezam A, Furano AV. Selection against deleterious LINE-1-containing loci in the human lineage. Mol Biol Evol 2001; 18:926-35. [PMID: 11371580 DOI: 10.1093/oxfordjournals.molbev.a003893] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We compared sex chromosomal and autosomal regions of similar GC contents and found that the human Y chromosome contains nine times as many full-length (FL) ancestral LINE-1 (L1) elements per megabase as do autosomes and that the X chromosome contains three times as many. In addition, both sex chromosomes contain a ca. twofold excess of elements that are >500 bp but not long enough to be capable of autonomous replication. In contrast, the autosomes are not deficient in short (<500 bp) L1 elements or SINE elements relative to the sex chromosomes. Since neither the Y nor the X chromosome, when present in males, can be cleared of deleterious genetic loci by recombination, we conclude that most FL L1s were deleterious and thus subject to purifying selection. Comparison between nonrecombining and recombining regions of autosome 21 supported this conclusion. We were able to identify a subset of loci in the human DNA database that once contained active L1 elements, and we found by using the polymerase chain reaction that 72% of them no longer contain L1 elements in a representative of each of eight different ethnic groups. Genetic damage produced by both L1 retrotransposition and ectopic (nonallelic) recombination between L1 elements could provide the basis for their negative selection.
Collapse
Affiliation(s)
- S Boissinot
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, NIDDK/NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
22
|
Abstract
Double-strand chromosome breaks can arise in a number of ways, by ionizing radiation, by spontaneous chromosome breaks during DNA replication, or by the programmed action of endonucleases, such as in meiosis. Broken chromosomes can be repaired either by one of several homologous recombination mechanisms, or by a number of nonhomologous repair processes. Many of these pathways compete actively for the repair of a double-strand break. Which of these repair pathways is used appears to be regulated developmentally, genetically and during the cell cycle.
Collapse
Affiliation(s)
- J E Haber
- Rosentiel Basic Medical Sciences Research Center, MS 029 Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
23
|
Abstract
This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.
Collapse
Affiliation(s)
- N V Fedoroff
- Biotechnology Institute, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
24
|
Pittman DL, Schimenti KJ, Hanneman WH, Schimenti JC. Transgenic and mutational analyses of meiotic recombination in mice. Ann N Y Acad Sci 1999; 870:220-2. [PMID: 10415485 DOI: 10.1111/j.1749-6632.1999.tb08882.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D L Pittman
- Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | |
Collapse
|
25
|
Abstract
This review focuses on the epigenetic control of the maize Suppressor-mutator (Spm) transposon and the evolutionary origin of epigenetic mechanisms. Methylation of the Spm promoter prevents transcription and transposition, and the methylation of the adjacent GC-rich sequence renders the inactive state heritable. Spm encodes an epigenetic activator, TnpA, one of the two Spm-encoded transposition proteins. TnpA can reactivate an inactive, methylated Spm both transiently and heritably, and it is also a transcriptional repressor of the unmethylated Spm promoter. Features common to epigenetic mechanisms in general suggest that they originated as a means of decreasing the recombinogenicity of duplicated sequences.
Collapse
Affiliation(s)
- N V Fedoroff
- Biology Department and Biotechnology Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|