1
|
Nasif D, Real S, Roqué M, Branham MT. CDC42 as an epigenetic regulator of ID4 in triple-negative breast tumors. Breast Cancer 2022; 29:562-573. [DOI: 10.1007/s12282-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/09/2022] [Indexed: 12/01/2022]
|
2
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Wang X, Lu Q, Fei X, Zhao Y, Shi B, Li C, Chen H. Expression and Prognostic Value of Id-4 in Patients with Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:1225-1234. [PMID: 32103990 PMCID: PMC7024802 DOI: 10.2147/ott.s230678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
Background Our previous study demonstrated that Id-1 may promote the tumorigenicity of esophageal squamous cell carcinoma (ESCC). Id-4 is another member of Id family, which is rare to be studied in ESCC. In this study, we investigated the expression of Id-4 in human ESCC specimens and determined whether Id-4 expression was associated with the clinicopathologic characteristic and the prognosis of ESCC patients. Methods We examined Id-4 expression using immunohistochemistry in 92 ESCC tissues and adjacent normal tissues. The association between Id-4 expression and clinical parameters and survival was evaluated by statistical analysis. Cox regression analyses were conducted to identify prognostic factors associated with overall survival (OS). In addition, we explored the functional mechanism of Id-4 in ESCC. Results Id-4 expression was significantly downregulated in ESCC tissues compared with adjacent normal tissues. The expression of Id-4 was associated negatively with pT stage (p=0.002), AJCC stage (p=0.008) and histologic differentiation (p<0.001). OS was more unfavorable in patients with low expression of Id-4 than those with high expression of ESCC patients (p=0.007). In subgroup analysis, low expression of Id-4 could reveal unfavorable OS of patients with pT1b/T2 stage (p=0.024) or with pN0/N1 stage (p=0.004). By univariate analysis, pT stage and Id-4 expression showed statistically significant associations with OS (p=0.025, p=0.01, respectively). By multivariate analysis, Id-4 expression was an independent prognostic factor in ESCC (p =0.038). In addition, we observed that Id-4 could decrease the levels of the p-Smad2, p-Smad3 and TGF-β1 in both Eca109 and TE1 cells, indicating Id-4 may inactivate the TGF-β signaling pathway. Conclusion Low expression of Id-4 suggested unfavorable prognosis for ESCC patients and could identify the prognosis in patients of early-stage tumors. The potential mechanism for Id-4’s tumor suppressor role in ESCC may be related to its inhibitory effect on TGF-β signaling pathway. Thus, we believe that Id-4 may be a promising prognostic marker and a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Qijue Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Bowen Shi
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chunguang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
4
|
TIP5 primes prostate luminal cells for the oncogenic transformation mediated by PTEN-loss. Proc Natl Acad Sci U S A 2020; 117:3637-3647. [PMID: 32024754 PMCID: PMC7035629 DOI: 10.1073/pnas.1911673117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell of origin and the temporal order of oncogenic events in tumors play important roles for disease state. This is of particular interest for PCa due to its highly variable clinical outcome. However, these features are difficult to analyze in tumors. We established an in vitro murine PCa organoid model taking into account the cell of origin and the temporal order of events. We found that TIP5 primes luminal prostate cells for Pten-loss mediated oncogenic transformation whereas it is dispensable once the transformation is established. Cross-species transcriptomic analyses revealed a PTEN-loss gene signature that identified a set of aggressive tumors with PTEN-del, or low PTEN expression, and high-TIP5 expression. This paper provides a powerful tool to elucidate PCa mechanisms. Prostate cancer (PCa) is the second leading cause of cancer death in men. Its clinical and molecular heterogeneities and the lack of in vitro models outline the complexity of PCa in the clinical and research settings. We established an in vitro mouse PCa model based on organoid technology that takes into account the cell of origin and the order of events. Primary PCa with deletion of the tumor suppressor gene PTEN (PTEN-del) can be modeled through Pten-down-regulation in mouse organoids. We used this system to elucidate the contribution of TIP5 in PCa initiation, a chromatin regulator that is implicated in aggressive PCa. High TIP5 expression correlates with primary PTEN-del PCa and this combination strongly associates with reduced prostate-specific antigen (PSA) recurrence-free survival. TIP5 is critical for the initiation of PCa of luminal origin mediated by Pten-loss whereas it is dispensable once Pten-loss mediated transformation is established. Cross-species analyses revealed a PTEN gene signature that identified a group of aggressive primary PCas characterized by PTEN-del, high-TIP5 expression, and a TIP5-regulated gene expression profile. The results highlight the modeling of PCa with organoids as a powerful tool to elucidate the role of genetic alterations found in recent studies in their time orders and cells of origin, thereby providing further optimization for tumor stratification to improve the clinical management of PCa.
Collapse
|
5
|
Xu R, Xu Q, Huang G, Yin X, Zhu J, Peng Y, Song J. Combined Analysis of the Aberrant Epigenetic Alteration of Pancreatic Ductal Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9379864. [PMID: 31956659 PMCID: PMC6949667 DOI: 10.1155/2019/9379864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains one of the most fatal malignancies due to its high morbidity and mortality. DNA methylation exerts a vital part in the development of PDAC. However, a mechanistic role of mutual interactions between DNA methylation and mRNA as epigenetic regulators on transcriptomic alterations and its correlation with clinical outcomes such as survival have remained largely uncovered in cancer. Therefore, elucidation of aberrant epigenetic alteration in the development of PDAC is an urgent problem to be solved. In this work, we conduct an integrative epigenetic analysis of PDAC to identify aberrant DNA methylation-driven cancer genes during the occurrence of cancer. METHODS DNA methylation matrix and mRNA profile were obtained from the TCGA database. The integration of methylation and gene expression datasets was analyzed using an R package MethylMix. The genes with hypomethylation/hypermethylation were further validated in the Kaplan-Meier analysis. The correlation analysis of gene expression and aberrant DNA methylation was also conducted. We performed a pathway analysis on aberrant DNG methylation genes identified by MethylMix criteria using ConsensusPathDB. RESULTS 188 patients with both methylation data and mRNA data were considered eligible. A mixture model was constructed, and differential methylation genes in normal and tumor groups using the Wilcoxon rank test was performed. With the inclusion criteria, 95 differential methylation genes were detected. Among these genes, 74 hypermethylation and 21 hypomethylation genes were found. The pathway analysis revealed an increase in hypermethylation of genes involved in ATP-sensitive potassium channels, Robo4, and VEGF signaling pathways crosstalk, and generic transcription pathway. CONCLUSION Integrated analysis of the aberrant epigenetic alteration in pancreatic ductal adenocarcinoma indicated that differentially methylated genes could play a vital role in the occurrence of PDAC by bioinformatics analysis. The present work can help clinicians to elaborate on the function of differentially methylated expressed genes and pathways in PDAC. CDO1, GJD2, ID4, NOL4, PAX6, TRIM58, and ZNF382 might act as aberrantly DNA-methylated biomarkers for early screening and therapy of PDAC in the future.
Collapse
Affiliation(s)
- Rui Xu
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Qiuyan Xu
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Guanglei Huang
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xinhai Yin
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yikun Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Zhao C, Zhang W, Zhu X, Xu Y, Yang K, Wei D, Liang S, Zhao F, Zhang Y, Chen X, Sun L, Yuan H, Shi X, Wang X, Liu M, Yang F, Wang J, Yang Z. TWIST2: A new candidate tumor suppressor in prostate cancer. Prostate 2019; 79:1647-1657. [PMID: 31433071 PMCID: PMC6771699 DOI: 10.1002/pros.23889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is a leading cause of cancer morbidity and mortality in men worldwide; however, PCa incidence and mortality rates vary widely across geographic regions and ethnic groups. The current study was designed to elucidate the pivotal factors involved in PCa occurrence and development. METHODS We performed RNA sequencing on the prostate tumor and adjacent normal tissues from Chinese PCa patients. Genes identified via genome-wide expression profile analysis were validated by quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. Hypermethylation of CpG islands was assessed by nested methylation-specific PCR. Whole genome microarray analysis was performed using an Affymetrix GeneChip. RESULTS We identified nine possible abnormally expressed genes (P < .05) and then revealed TWIST2 as having strikingly lower expression in tumors than in control tissues (P < .01). Low messenger RNA expression levels of TWIST2 were associated with hypermethylation of CpG islands in its promoter region. In accordance with these findings, PCa tumor tissues showed markedly decreased TWIST2 protein expression compared to that in both normal and prostatic intraepithelial neoplasia tissues by immunohistochemical staining. Ectopic expression of TWIST2 in LNCap cells not only inhibited cell proliferation and colony formation in vitro and tumor growth in vivo but also induced transcriptional repression of a cell proliferation-related gene cohort, including androgen receptor signaling mediators, cyclins, homeobox genes, forkhead box genes, and SOX2. CONCLUSIONS Our results suggest that TWIST2 could function as a tumor suppressor involved in the pathogenesis of PCa by influencing the expression of target genes and that hypermethylation of the TWIST2 promoter in prostate tumors may be an underlying mechanism for TWIST2 transcriptional silencing.
Collapse
Affiliation(s)
- Chengxiao Zhao
- School of Pharmaceutical ScienceShanxi Medical UniversityTaiyuanShanxiChina
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of GeriatricsMinistry of HealthBeijingChina
| | - Wei Zhang
- Department of PathologyBeijing HospitalBeijingChina
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of GeriatricsMinistry of HealthBeijingChina
| | - Yong Xu
- Department of UrologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Kuo Yang
- Department of UrologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Dong Wei
- Department of UrologyBeijing HospitalBeijingChina
| | - Siying Liang
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of GeriatricsMinistry of HealthBeijingChina
| | - Fan Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of GeriatricsMinistry of HealthBeijingChina
| | | | - Xin Chen
- Department of UrologyBeijing HospitalBeijingChina
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of GeriatricsMinistry of HealthBeijingChina
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of GeriatricsMinistry of HealthBeijingChina
| | - Xiaohong Shi
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of GeriatricsMinistry of HealthBeijingChina
| | - Xin Wang
- Department of UrologyBeijing HospitalBeijingChina
| | - Ming Liu
- School of Basic Medical ScienceShanxi Medical UniversityTaiyuanShanxiChina
| | - Fan Yang
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of GeriatricsMinistry of HealthBeijingChina
| | - Jianye Wang
- Department of UrologyBeijing HospitalBeijingChina
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of GeriatricsMinistry of HealthBeijingChina
| |
Collapse
|
7
|
Nasif D, Campoy E, Laurito S, Branham R, Urrutia G, Roqué M, Branham MT. Epigenetic regulation of ID4 in breast cancer: tumor suppressor or oncogene? Clin Epigenetics 2018; 10:111. [PMID: 30139383 PMCID: PMC6108146 DOI: 10.1186/s13148-018-0542-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Inhibitor of differentiation protein 4 (ID4) is a dominant negative regulator of the basic helix-loop-helix (bHLH) family of transcription factors. During tumorigenesis, ID4 may act as a tumor suppressor or as an oncogene in different tumor types. However, the role of ID4 in breast cancer is not clear where both an oncogenic and a tumor suppressor function have been attributed. Here, we hypothesize that ID4 behaves as both, but its role in breast differs according to the estrogen receptor (ER) status of the tumor. Methods ID4 expression was retrieved from TCGA database using UCSC Xena. Association between overall survival (OS) and ID4 was assessed using Kaplan–Meier plotter. Correlation between methylation and expression was analyzed using the MEXPRESS tool. In vitro experiments involved ectopic expression of ID4 in MCF-7, T47D, and MDA-MB231 breast cancer cell lines. Migration and colony formation capacity were assessed after transfection treatments. Gene expression was analyzed by ddPCR and methylation by MSP, MS-MLPA, or ddMSP. Results Data mining analysis revealed that ID4 expression is significantly lower in ER+ tumors with respect to ER− tumors or normal tissue. We also demonstrate that ID4 is significantly methylated in ER+ tumors. Kaplan–Meier analysis indicated that low ID4 expression levels were associated with poor overall survival in patients with ER+ tumors. In silico expression analysis indicated that ID4 was associated with the expression of key genes of the ER pathway only in ER+ tumors. In vitro experiments revealed that ID4 overexpression in ER+ cell lines resulted in decreased migration capacity and reduced number of colonies. ID4 overexpression induced a reduction in ER levels in ER+ cell lines, while estrogen deprivation with fulvestrant did not induce changes neither in ID4 methylation nor in ID4 expression. Conclusions We propose that ID4 is frequently silenced by promoter methylation in ER+ breast cancers and functions as a tumor suppressor gene in these tumors, probably due to its interaction with key genes of the ER pathway. Our present study contributes to the knowledge of the role of ID4 in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13148-018-0542-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Nasif
- IHEM, National University of Cuyo, CONICET, Mendoza, Argentina
| | - Emanuel Campoy
- IHEM, CONICET, Facultad de Ciencias Médicas, National University of Cuyo, Mendoza, Argentina
| | - Sergio Laurito
- IHEM, Faculty of Exact and Natural Sciences, National University of Cuyo, CONICET, Mendoza, Argentina
| | | | | | - María Roqué
- IHEM, Faculty of Exact and Natural Sciences, National University of Cuyo, CONICET, Mendoza, Argentina
| | - María T Branham
- IHEM, National University of Cuyo, CONICET, Mendoza, Argentina.
| |
Collapse
|
8
|
Mauger F, Kernaleguen M, Lallemand C, Kristensen VN, Deleuze JF, Tost J. Enrichment of methylated molecules using enhanced-ice-co-amplification at lower denaturation temperature-PCR (E-ice-COLD-PCR) for the sensitive detection of disease-related hypermethylation. Epigenomics 2018; 10:525-537. [PMID: 29697281 DOI: 10.2217/epi-2017-0166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM The detection of specific DNA methylation patterns bears great promise as biomarker for personalized management of cancer patients. Co-amplification at lower denaturation temperature-PCR (COLD-PCR) assays are sensitive methods, but have previously only been able to analyze loss of DNA methylation. MATERIALS & METHODS Enhanced (E)-ice-COLD-PCR reactions starting from 2 ng of bisulfite-converted DNA were developed to analyze methylation patterns in two promoters with locked nucleic acid (LNA) probes blocking amplification of unmethylated CpGs. The enrichment of methylated molecules was compared to quantitative (q)PCR and quantified using serial dilutions. RESULTS E-ice-COLD-PCR allowed the multiplexed enrichment and quantification of methylated DNA. Assays were validated in primary breast cancer specimens and circulating cell-free DNA from cancer patients. CONCLUSION E-ice-COLD-PCR could prove a useful tool in the context of DNA methylation analysis for personalized medicine.
Collapse
Affiliation(s)
- Florence Mauger
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Magali Kernaleguen
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Céline Lallemand
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Department of Clinical Molecular Biology & Laboratory Science (EpiGen), Akershus University Hospital, Division of Medicine, 1476 Lørenskog, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jean-François Deleuze
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France.,Centre d'Etudes du Polymorphisme Humain, CEPH-Fondation Jean Dausset, Paris, France.,Laboratoire d'Excellence GenMed, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
9
|
Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:343-430. [DOI: 10.1007/978-3-319-43624-1_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Gao XZ, Zhao WG, Wang GN, Cui MY, Zhang YR, Li WC. Inhibitor of DNA binding 4 functions as a tumor suppressor and is targetable by 5-aza-2'-deoxycytosine with potential therapeutic significance in Burkitt's lymphoma. Mol Med Rep 2015; 13:1269-74. [PMID: 26648013 DOI: 10.3892/mmr.2015.4640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 10/23/2015] [Indexed: 11/05/2022] Open
Abstract
Epigenetic gene silencing due to promoter methylation is observed in human neoplasia, including lymphoma and certain cancer types. One important target for gene methylation analysis in non-Hodgkin lymphoma (NHL) is inhibitor of DNA binding 4 (ID4). The present study aimed to investigate the gene methylation status of ID4, the expression of ID4 protein and the effect of demethylating agent 5-aza-2'-deoxycytosine (CdR) in the Raji human Burkitt's lymphoma cell line in vitro. Following assessment of the inhibition of Raji cell growth by various concentrations of CdR, the effects of CdR on the expression of ID4 protein were assessed using the immunocytochemical streptavidin-peroxidase method and semi-quantitative analysis, while apoptosis and cell cycle were determined by flow cytometry. The ID4 gene methylation status of Raji cells was tested using methylation-specific polymerase chain reaction analysis. ID4 was methylated and its protein expression was low in the control group, while ID4 was partly or completely demethylated and its protein expression was upregulated in Raji cells treated with CdR. In addition, CdR induced apoptosis and cell cycle arrest in Raji cells in a dose- and time-dependent manner. These results demonstrated that ID4 is hypermethylated and its protein expression is low in Burkitt's lymphoma cells, while CdR reversed the abnormal DNA methylation and induced re-expression of ID4 protein. Hypermethylation of ID4 promotes the proliferation of Burkitt's lymphoma cells; ID4 may function as a tumor suppressor and can be targeted with demethylating compounds such as CdR for the treatment of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Xian-Zheng Gao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wu-Gan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Guan-Nan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Mei-Ying Cui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yang-Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
11
|
Heterogeneous DNA Methylation Patterns in the GSTP1 Promoter Lead to Discordant Results between Assay Technologies and Impede Its Implementation as Epigenetic Biomarkers in Breast Cancer. Genes (Basel) 2015; 6:878-900. [PMID: 26393654 PMCID: PMC4584334 DOI: 10.3390/genes6030878] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
Altered DNA methylation patterns are found in many diseases, particularly in cancer, where the analysis of DNA methylation holds the promise to provide diagnostic, prognostic and predictive information of great clinical value. Methylation of the promoter-associated CpG island of GSTP1 occurs in many hormone-sensitive cancers, has been shown to be a biomarker for the early detection of cancerous lesions and has been associated with important clinical parameters, such as survival and response to treatment. In the current manuscript, we assessed the performance of several widely-used sodium bisulfite conversion-dependent methods (methylation-specific PCR, MethyLight, pyrosequencing and MALDI mass-spectrometry) for the analysis of DNA methylation patterns in the GSTP1 promoter. We observed large discordances between the results obtained by the different technologies. Cloning and sequencing of the investigated region resolved single-molecule DNA methylation patterns and identified heterogeneous DNA methylation patterns as the underlying cause of the differences. Heterogeneous DNA methylation patterns in the GSTP1 promoter constitute a major obstacle to the implementation of DNA methylation-based analysis of GSTP1 and might explain some of the contradictory findings in the analysis of the significance of GSTP1 promoter methylation in breast cancer.
Collapse
|
12
|
Abstract
Inhibitor of DNA binding/differentiation protein 4 (ID4) is dominant negative helix loop helix transcriptional regulator is epigenetically silenced due to promoter hyper-methylation in many cancers including prostate. However, the underlying mechanism involved in epigenetic silencing of ID4 is not known. Here, we demonstrate that ID4 promoter methylation is initiated by EZH2 dependent tri-methylation of histone 3 at lysine 27 (H3K27me3). ID4 expressing (LNCaP) and non-expressing (DU145 and C81) prostate cancer cell lines were used to investigate EZH2, H3K27me3 and DNMT1 enrichment on ID4 promoter by Chromatin immuno-precipitation (ChIP). Enrichment of EZH2, H3K27Me3 and DNMT1 in DU145 and C81 cell lines compared to ID4 expressing LNCaP cell line. Knockdown of EZH2 in DU145 cell line led to re-expression of ID4 and decrease in enrichment of EZH2, H3K27Me3 and DNMT1 demonstrating that ID4 is regulated in an EZH2 dependent manner. ChIP data on prostate cancer tissue specimens and cell lines suggested EZH2 occupancy and H3K27Me3 marks on the ID4 promoter. Collectively, our data indicate a PRC2 dependent mechanism in ID4 promoter silencing in prostate cancer through recruitment of EZH2 and a corresponding increase in H3K27Me3. Increased EZH2 but decreased ID4 expression in prostate cancer strongly supports this model.
Collapse
|
13
|
Sharma P, Chinaranagari S, Chaudhary J. Inhibitor of differentiation 4 (ID4) acts as an inhibitor of ID-1, -2 and -3 and promotes basic helix loop helix (bHLH) E47 DNA binding and transcriptional activity. Biochimie 2015; 112:139-50. [PMID: 25778840 DOI: 10.1016/j.biochi.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/05/2015] [Indexed: 01/15/2023]
Abstract
The four known ID proteins (ID1-4, Inhibitor of Differentiation) share a homologous helix loop helix (HLH) domain and act as dominant negative regulators of basic-HLH transcription factors. ID proteins also interact with many non-bHLH proteins in complex networks. The expression of ID proteins is increasingly observed in many cancers. Whereas ID-1, ID-2 and ID-3, are generally considered as tumor promoters, ID4 on the contrary has emerged as a tumor suppressor. In this study we demonstrate that ID4 heterodimerizes with ID-1, -2 and -3 and promote bHLH DNA binding, essentially acting as an inhibitor of inhibitors of differentiation proteins. Interaction of ID4 was observed with ID1, ID2 and ID3 that was dependent on intact HLH domain of ID4. Interaction with bHLH protein E47 required almost 3 fold higher concentration of ID4 as compared to ID1. Furthermore, inhibition of E47 DNA binding by ID1 was restored by ID4 in an EMSA binding assay. ID4 and ID1 were also colocalized in prostate cancer cell line LNCaP. The alpha helix forming alanine stretch N-terminal, unique to HLH ID4 domain was required for optimum interaction. Ectopic expression of ID4 in DU145 prostate cancer line promoted E47 dependent expression of CDKNI p21. Thus counteracting the biological activities of ID-1, -2 and -3 by forming inactive heterodimers appears to be a novel mechanism of action of ID4. These results could have far reaching consequences in developing strategies to target ID proteins for cancer therapy and understanding biologically relevant ID-interactions.
Collapse
Affiliation(s)
- Pankaj Sharma
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Swathi Chinaranagari
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA.
| |
Collapse
|
14
|
Patel D, Morton DJ, Carey J, Havrda MC, Chaudhary J. Inhibitor of differentiation 4 (ID4): From development to cancer. Biochim Biophys Acta Rev Cancer 2014; 1855:92-103. [PMID: 25512197 DOI: 10.1016/j.bbcan.2014.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 12/06/2014] [Indexed: 01/25/2023]
Abstract
Highly conserved Inhibitors of DNA-Binding (ID1-ID4) genes encode multi-functional proteins whose transcriptional activity is based on dominant negative inhibition of basic helix-loop-helix (bHLH) transcription factors. Initial animal models indicated a degree of compensatory overlap between ID genes such that deletion of multiple ID genes was required to generate easily recognizable phenotypes. More recently, new model systems have revealed alterations in mice harboring deletions in single ID genes suggesting complex gene and tissue specific functions for members of the ID gene family. Because ID genes are highly expressed during development and their function is associated with a primitive, proliferative cellular phenotype there has been significant interest in understanding their potential roles in neoplasia. Indeed, numerous studies indicate an oncogenic function for ID1, ID2 and ID3. In contrast, the inhibitor of differentiation 4 (ID4) presents a paradigm shift in context of well-established role of ID1, ID2 and ID3 in development and cancer. Apart from some degree of functional redundancy such as HLH dependent interactions with bHLH protein E2A, many of the functions of ID4 are distinct from ID1, ID2 and ID3: ID4 proteins a) regulate distinct developmental processes and tissue expression in the adult, b) promote stem cell survival, differentiation and/or timing of differentiation, c) epigenetic inactivation/loss of expression in several advanced stage cancers and d) increased expression in some cancers such as those arising in the breast and ovary. Thus, in spite of sharing the conserved HLH domain, ID4 defies the established model of ID protein function and expression. The underlying molecular mechanism responsible for the unique role of ID4 as compared to other ID proteins still remains largely un-explored. This review will focus on the current understanding of ID4 in context of development and cancer.
Collapse
Affiliation(s)
- Divya Patel
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Derrick J Morton
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Jason Carey
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mathew C Havrda
- Norris Cotton Cancer Center and Geisel Medical School at Dartmouth, Lebanon, NH, USA
| | - Jaideep Chaudhary
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA.
| |
Collapse
|
15
|
Patel D, Knowell AE, Korang-Yeboah M, Sharma P, Joshi J, Glymph S, Chinaranagari S, Nagappan P, Palaniappan R, Bowen NJ, Chaudhary J. Inhibitor of differentiation 4 (ID4) inactivation promotes de novo steroidogenesis and castration-resistant prostate cancer. Mol Endocrinol 2014; 28:1239-53. [PMID: 24921661 DOI: 10.1210/me.2014-1100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer in men in the Western world. The transition of androgen-dependent PCa to castration-resistant (CRPC) is a major clinical manifestation during disease progression and presents a therapeutic challenge. Our studies have shown that genetic ablation of inhibitor of differentiation 4 (Id4), a dominant-negative helix loop helix protein, in mice results in prostatic intraepithelial neoplasia lesions and decreased Nkx3.1 expression without the loss of androgen receptor (Ar) expression. ID4 is also epigenetically silenced in the majority of PCa. However, the clinical relevance and molecular pathways altered by ID4 inactivation in PCa are not known. This study investigates the effect of loss of ID4 in PCa cell lines on tumorigenicity and addresses the underlying mechanism. Stable silencing of ID4 in LNCaP cells (L-ID4) resulted in increased proliferation, migration, invasion, and anchorage-independent growth. An increase in the rate of tumor growth, weight, and volume was observed in L-ID4 xenografts compared with that in the LNCaP cells transfected with nonspecific short hairpin RNA (L+ns) in noncastrated mice. Interestingly, tumors were also observed in castrated mice, suggesting that loss of ID4 promotes CRPC. RNA sequence analysis revealed a gene signature mimicking that of constitutively active AR in L-ID4, which was consistent with gain of de novo steroidogenesis. Prostate-specific antigen expression as a result of persistent AR activation was observed in L-ID4 cells but not in L+ns cells. The results demonstrate that ID4 acts as a tumor suppressor in PCa, and its loss, frequently observed in PCa, promotes CRPC through constitutive AR activation.
Collapse
Affiliation(s)
- Divya Patel
- Center for Cancer Research and Therapeutic Development (D.P., A.E.K., P.S., J.J., S.G., S.C., P.N., N.J.B., J.C.), Clark Atlanta University, Atlanta, Georgia 30314; and College of Pharmacy (M.K.-Y., R.P.), Mercer University, Atlanta, Georgia 30341
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Id4 dependent acetylation restores mutant-p53 transcriptional activity. Mol Cancer 2013; 12:161. [PMID: 24330748 PMCID: PMC3866570 DOI: 10.1186/1476-4598-12-161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022] Open
Abstract
Background The mechanisms that can restore biological activity of mutant p53 are an area of high interest given that mutant p53 expression is observed in one third of prostate cancer. Here we demonstrate that Id4, an HLH transcriptional regulator and a tumor suppressor, can restore the mutant p53 transcriptional activity in prostate cancer cells. Methods Id4 was over-expressed in prostate cancer cell line DU145 harboring mutant p53 (P223L and V274F) and silenced in LNCaP cells with wild type p53. The cells were used to quantitate apoptosis, p53 localization, p53 DNA binding and transcriptional activity. Immuno-precipitation/-blot studies were performed to demonstrate interactions between Id4, p53 and CBP/p300 and acetylation of specific lysine residues within p53. Results Ectopic expression of Id4 in DU145 cells resulted in increased apoptosis and expression of BAX, PUMA and p21, the transcriptional targets of p53. Mutant p53 gained DNA binding and transcriptional activity in the presence of Id4 in DU145 cells. Conversely, loss of Id4 in LNCaP cells abrogated wild type p53 DNA binding and transactivation potential. Gain of Id4 resulted in increased acetylation of mutant p53 whereas loss of Id4 lead to decreased acetylation in DU145 and LNCaP cells respectively. Id4 dependent acetylation of p53 was in part due to a physical interaction between Id4, p53 and acetyl-transferase CBP/p300. Conclusions Taken together, our results suggest that Id4 regulates the activity of wild type and mutant p53. Id4 promoted the assembly of a macromolecular complex involving CBP/P300 that resulted in acetylation of p53 at K373, a critical post-translational modification required for its biological activity.
Collapse
|
17
|
Sharma P, Knowell AE, Chinaranagari S, Komaragiri S, Nagappan P, Patel D, Havrda MC, Chaudhary J. Id4 deficiency attenuates prostate development and promotes PIN-like lesions by regulating androgen receptor activity and expression of NKX3.1 and PTEN. Mol Cancer 2013; 12:67. [PMID: 23786676 PMCID: PMC3694449 DOI: 10.1186/1476-4598-12-67] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/12/2013] [Indexed: 12/30/2022] Open
Abstract
Background Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. Id4 is expressed in the normal prostate where its expression is also regulated by androgens. In this study we investigated the effect of loss of Id4 (Id4-/-) on adult prostate morphology. Methods Histological analysis was performed on prostates from 6-8 weeks old Id4-/-, Id4+/- and Id4+/+ mice. Expression of Id1, Sox9, Myc, androgen receptor, Akt, p-Akt, Pten and Nkx3.1 was investigated by immunohistochemistry. Androgen receptor binding on NKX3.1 promoter was studied by chromatin immuno-precipitation. Id4 was either over-expressed or silenced in prostate cancer cell lines DU145 and LNCaP respectively followed by analysis of PTEN, NKX3.1 and Sox9 expression. Results Id4-/- mice had smaller prostates with fewer tubules, smaller tubule diameters and subtle mPIN like lesions. Levels of androgen receptor were similar between wild type and Id4-/- prostate. Decreased NKX3.1 expression was in part due to decreased androgen receptor binding on NKX3.1 promoter in Id4-/- mice. The increase in the expression of Myc, Sox9, Id1, Ki67 and decrease in the expression of PTEN, Akt and phospho-AKT was associated with subtle mPIN like lesions in Id4-/- prostates. Finally, prostate cancer cell line models in which Id4 was either silenced or over-expressed confirmed that Id4 regulates NKX3.1, Sox9 and PTEN. Conclusions Our results suggest that loss of Id4 attenuates normal prostate development and promotes hyperplasia/dysplasia with subtle mPIN like lesions characterized by gain of Myc and Id1 and loss of Nkx3.1 and Pten expression. One of the mechanisms by which Id4 may regulate normal prostate development is through regulating androgen receptor binding to respective response elements such as those on NKX3.1 promoter. In spite of these complex alterations, large neoplastic lesions in Id4-/- prostates were not observed suggesting the possibility of mechanisms/pathways such as loss of Akt that could restrain the formation of significant pre-cancerous lesions.
Collapse
|
18
|
Sharma P, Chinaranagari S, Patel D, Carey J, Chaudhary J. Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer. Cancer Med 2012; 1:176-86. [PMID: 23342267 PMCID: PMC3544455 DOI: 10.1002/cam4.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 02/06/2023] Open
Abstract
The inhibitor of DNA-binding (Id) proteins, Id1–4 are negative regulators of basic helix-loop-helix (bHLH) transcription factors. As key regulators of cell cycle and differentiation, expression of Id proteins are increasingly observed in many cancers and associated with aggressiveness of the disease. Of all the four Id proteins, the expression of Id1, Id2, and to a lesser extent, Id3 in prostate cancer and the underlying molecular mechanism is relatively well known. On the contrary, our previous results demonstrated that Id4 acts as a potential tumor suppressor in prostate cancer. In the present study, we extend these observations and demonstrate that Id4 is down-regulated in prostate cancer due to promoter hypermethylation. We used prostate cancer tissue microarrays to investigate Id4 expression. Methylation specific PCR on bisulfite treated DNA was used to determine methylation status of Id4 promoter in laser capture micro-dissected normal, stroma and prostate cancer regions. High Id4 expression was observed in the normal prostate epithelial cells. In prostate cancer, a stage-dependent decrease in Id4 expression was observed with majority of high grade cancers showing no Id4 expression. Furthermore, Id4 expression progressively decreased in prostate cancer cell line LNCaP and with no expression in androgen-insensitive LNCaP-C81 cell line. Conversely, Id4 promoter hypermethylation increased in LNCaP-C81 cells suggesting epigenetic silencing. In prostate cancer samples, loss of Id4 expression was also associated with promoter hypermethylation. Our results demonstrate loss of Id4 expression in prostate cancer due to promoter hypermethylation. The data strongly support the role of Id4 as a tumor suppressor.
Collapse
Affiliation(s)
- Pankaj Sharma
- Center For Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
19
|
Lee C, Zhang Q, Zi X, Dash A, Soares MB, Rahmatpanah F, Jia Z, McClelland M, Mercola D. TGF-β mediated DNA methylation in prostate cancer. Transl Androl Urol 2012; 1:78-88. [PMID: 25133096 PMCID: PMC4131550 DOI: 10.3978/j.issn.2223-4683.2012.05.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/04/2012] [Indexed: 12/15/2022] Open
Abstract
Almost all tumors harbor a defective negative feedback loop of signaling by transforming growth factor-β (TGF-β). Epigenetic mechanisms of gene regulation, including DNA methylation, are fundamental to normal cellular function and also play a major role in carcinogenesis. Recent evidence demonstrated that TGF-β signaling mediates cancer development and progression. Many key events in TGF-β signaling in cancer included auto-induction of TGF-β1 and increased expression of DNA methyltransferases (DNMTs), suggesting that DNA methylation plays a significant role in cancer development and progression. In this review, we performed an extensive survey of the literature linking TGF-β signaling to DNA methylation in prostate cancer. It appeared that almost all DNA methylated genes detected in prostate cancer are directly or indirectly related to TGF-β signaling. This knowledge has provided a basis for our future directions of prostate cancer research and strategies for prevention and therapy for prostate cancer.
Collapse
|
20
|
Wen YH, Ho A, Patil S, Akram M, Catalano J, Eaton A, Norton L, Benezra R, Brogi E. Id4 protein is highly expressed in triple-negative breast carcinomas: possible implications for BRCA1 downregulation. Breast Cancer Res Treat 2012; 135:93-102. [PMID: 22538771 DOI: 10.1007/s10549-012-2070-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 01/08/2023]
Abstract
BRCA1 germline mutation carriers usually develop ER, PR and HER2 negative breast carcinoma. Somatic BRCA1 mutations are rare in sporadic breast cancers, but other mechanisms could impair BRCA1 functions in these tumors, particularly in triple-negative breast carcinomas (TNBCs). Id4, a helix-loop-helix DNA binding factor, blocks BRCA1 gene transcription in vitro and could downregulate BRCA1 in vivo. We compared Id4 immunoreactivity in 101 TNBCs versus 113 non-TNBCs, and correlated the results with tumor morphology and immunoreactivity for CK5/6, CK14, EGFR, and androgen receptor (AR). Id4 was present in 76 out of 101 (75 %) TNBCs: 40 (40 %) TNBCs displayed Id4 positivity in >50 % of neoplastic cells, 23 (23 %) in 5-50 %, and 13 (13 %) in <5 %. In contrast, only 6 (5 %) of 113 non-TNBCs showed focal Id4 positivity, limited to fewer than 5 % of the tumor (p < 0.0001). Id4 expression significantly associated with high histologic grade (p = 0.0002) and mitotic rate (p = 0.006). Id4 decorated all 12 TNBCs with large central acellular zone of necrosis in our series, with positive staining in 10-90 % of the cells. Id4 signal strongly correlated with cytokeratin CK14 reactivity (p < 0.0001), but not with CK5/6 and EGFR. All apocrine carcinomas in our series were positive for AR and most for EGFR, but they were negative for CK5/6, CK14, and Id4, with only two exceptions. Our results document substantial expression of Id4 in most TNBCs, which could result in functional downregulation of BRCA1 pathways in these tumors.
Collapse
Affiliation(s)
- Yong Hannah Wen
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cronauer MV, Culig Z. Molecular aspects of prostate cancer. World J Urol 2012; 30:277-8. [PMID: 22391649 DOI: 10.1007/s00345-012-0853-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 02/27/2012] [Indexed: 01/20/2023] Open
|