1
|
Atterholt J, Wedel MJ, Tykoski R, Fiorillo AR, Holwerda F, Nalley TK, Lepore T, Yasmer J. Neural canal ridges: A novel osteological correlate of postcranial neuroanatomy in dinosaurs. Anat Rec (Hoboken) 2025; 308:1349-1368. [PMID: 39192616 PMCID: PMC11967505 DOI: 10.1002/ar.25558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
In this article, we document the widespread presence of bony ridges in the neural canals of non-avian dinosaurs, including a wide diversity of sauropods, two theropods, a thyreophoran, and a hadrosaur. These structures are present only in the caudal vertebrae. They are anteroposteriorly elongate, found on the lateral walls of the canal, and vary in size and position both taxonomically and serially. Similar bony projections into the neural canal have been identified in extant teleosts, dipnoans, and urodelans, in which they are recognized as bony spinal cord supports. In most non-mammals, the dura mater that surrounds the spinal cord is fused to the periosteum of the neural canal, and the denticulate ligaments that support the spinal cord can pass through the dura and periosteum to anchor directly to bone. The function of these structures in dinosaurs remains uncertain, but in sauropods they might have stabilized the spinal cord during bilateral movement of the tail and use of the tail as a weapon. Of broader significance, this study emphasizes that important new discoveries at the gross anatomical level can continue to be made in part by closely examining previously overlooked features of known specimens.
Collapse
Affiliation(s)
- Jessie Atterholt
- College of Osteopathic Medicine of the PacificWestern University of Health SciencesPomonaCaliforniaUSA
| | - Mathew J. Wedel
- College of Osteopathic Medicine of the PacificWestern University of Health SciencesPomonaCaliforniaUSA
- College of Podiatric MedicineWestern University of Health SciencesPomonaCaliforniaUSA
| | - Ron Tykoski
- Perot Museum of Nature and ScienceDallasTexasUSA
| | | | - Femke Holwerda
- Royal Tyrrell Museum of PaleontologyDrumhellerAlbertaCanada
- Department of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Thierra K. Nalley
- College of Osteopathic Medicine of the PacificWestern University of Health SciencesPomonaCaliforniaUSA
| | - Taormina Lepore
- Department of Integrative BiologyUniversity of California Museum of Paleontology, University of CaliforniaBerkeleyCaliforniaUSA
| | - John Yasmer
- College of Osteopathic Medicine of the PacificWestern University of Health SciencesPomonaCaliforniaUSA
| |
Collapse
|
2
|
Stanchak KE, Miller KE, Shikiar D, Brunton BW, Perkel DJ. Mechanistic Hypotheses for Proprioceptive Sensing Within the Avian Lumbosacral Spinal Cord. Integr Comp Biol 2023; 63:474-483. [PMID: 37279454 DOI: 10.1093/icb/icad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Animals need to accurately sense changes in their body position to perform complex movements. It is increasingly clear that the vertebrate central nervous system contains a variety of cells capable of detecting body motion, in addition to the comparatively well-understood mechanosensory cells of the vestibular system and the peripheral proprioceptors. One such intriguing system is the lower spinal cord and column in birds, also known as the avian lumbosacral organ (LSO), which is thought to act as a set of balance sensors that allow birds to detect body movements separately from head movements detected by the vestibular system. Here, we take what is known about proprioceptive, mechanosensory spinal neurons in other vertebrates to explore hypotheses for how the LSO might sense mechanical information related to movement. Although the LSO is found only in birds, recent immunohistochemical studies of the avian LSO have hinted at similarities between cells in the LSO and the known spinal proprioceptors in other vertebrates. In addition to describing possible connections between avian spinal anatomy and recent findings on spinal proprioception as well as sensory and sensorimotor spinal networks, we also present some new data that suggest a role for sensory afferent peptides in LSO function. Thus, this perspective articulates a set of testable ideas on mechanisms of LSO function grounded in the emerging spinal proprioception scientific literature.
Collapse
Affiliation(s)
| | - Kimberly E Miller
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Devany Shikiar
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - David J Perkel
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Otolaryngology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Jadwiszczak P, Svensson-Marcial A, Mörs T. An integrative insight into the synsacral canal of fossil and extant Antarctic penguins. Integr Zool 2023; 18:237-253. [PMID: 36239550 DOI: 10.1111/1749-4877.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lumbosacral-canal system in birds most likely operates as a sense organ involved in the control of balanced walking and perching, but our knowledge of it is superficial. Penguins constitute interesting objects for the study of this system due to their upright walking, but only the Humboldt penguin, Spheniscus humboldti, and some incomplete fossil penguin synsacra have been studied in this respect. Here, we give an integrative comparative insight into the synsacral canal of extant Emperor penguin, Aptenodytes forsteri, Adelie penguin, Pygoscelis adeliae, and Eocene giant Anthropornis and/or Palaeeudyptes Antarctic penguins, using computed tomography imaging and associated data-extraction methodologies, complemented by analytical approaches ranging from geometric morphometrics to modularity, curvature, and wavelet analyses. We document that the variability in the number of synsacro-lumbar vertebrae is evolutionarily conserved, and all studied synsacra possess osteological correlates of the lumbosacral-canal system. We also found that Eocene and extant Antarctic penguins were separable on the basis of the main direction of the shape-related (size-independent) variability within said system, and A. forsteri was unique in the entire studied set in terms of the relative cranial shift of this compound structure. Moreover, we suggest that the evolutionary processes, shaping both the terrestrial posture and gait, were responsible, in extant penguins, for the increased simplicity and stability of the synsacral canal cross-sectional periodic patterns, as well as pave the way for the lumbosacral-canal system modularity characterized by reduced atomization/complexity.
Collapse
Affiliation(s)
| | - Anders Svensson-Marcial
- Department of Clinical Science, Intervention and Technology at Karolinska Institute, Stockholm, Sweden
| | - Thomas Mörs
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
4
|
Benito J, Chen A, Wilson LE, Bhullar BAS, Burnham D, Field DJ. Forty new specimens of Ichthyornis provide unprecedented insight into the postcranial morphology of crownward stem group birds. PeerJ 2022; 10:e13919. [PMID: 36545383 PMCID: PMC9762251 DOI: 10.7717/peerj.13919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/28/2022] [Indexed: 12/23/2022] Open
Abstract
Ichthyornis has long been recognized as a pivotally important fossil taxon for understanding the latest stages of the dinosaur-bird transition, but little significant new postcranial material has been brought to light since initial descriptions of partial skeletons in the 19th Century. Here, we present new information on the postcranial morphology of Ichthyornis from 40 previously undescribed specimens, providing the most complete morphological assessment of the postcranial skeleton of Ichthyornis to date. The new material includes four partially complete skeletons and numerous well-preserved isolated elements, enabling new anatomical observations such as muscle attachments previously undescribed for Mesozoic euornitheans. Among the elements that were previously unknown or poorly represented for Ichthyornis, the new specimens include an almost-complete axial series, a hypocleideum-bearing furcula, radial carpal bones, fibulae, a complete tarsometatarsus bearing a rudimentary hypotarsus, and one of the first-known nearly complete three-dimensional sterna from a Mesozoic avialan. Several pedal phalanges are preserved, revealing a remarkably enlarged pes presumably related to foot-propelled swimming. Although diagnosable as Ichthyornis, the new specimens exhibit a substantial degree of morphological variation, some of which may relate to ontogenetic changes. Phylogenetic analyses incorporating our new data and employing alternative morphological datasets recover Ichthyornis stemward of Hesperornithes and Iaceornis, in line with some recent hypotheses regarding the topology of the crownward-most portion of the avian stem group, and we establish phylogenetically-defined clade names for relevant avialan subclades to help facilitate consistent discourse in future work. The new information provided by these specimens improves our understanding of morphological evolution among the crownward-most non-neornithine avialans immediately preceding the origin of crown group birds.
Collapse
Affiliation(s)
- Juan Benito
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom.,Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Albert Chen
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom.,Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Laura E Wilson
- Fort Hays State University, Sternberg Museum of Natural History and Department of Geosciences, Hays, Kansas, United States
| | - Bhart-Anjan S Bhullar
- Yale Peabody Museum of Natural History, New Haven, Conneticut, United States.,Department of Earth & Planetary Sciences, Yale University, New Haven, Conneticut, United States
| | - David Burnham
- University of Kansas, Biodiversity Institute and Natural History Museum, Lawrence, Kansas, United States
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom.,University Museum of Zoology, Cambridge, United Kingdom
| |
Collapse
|
5
|
Roderick WRT, Cutkosky MR, Lentink D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci Robot 2021; 6:eabj7562. [PMID: 34851710 DOI: 10.1126/scirobotics.abj7562] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Birds take off and land on a wide range of complex surfaces. In contrast, current robots are limited in their ability to dynamically grasp irregular objects. Leveraging recent findings on how birds take off, land, and grasp, we developed a biomimetic robot that can dynamically perch on complex surfaces and grasp irregular objects. To accommodate high-speed collisions, the robot’s two legs passively transform impact energy into grasp force, while the underactuated grasping mechanism wraps around irregularly shaped objects in less than 50 milliseconds. To determine the range of hardware design, kinematic, behavior, and perch parameters that are sufficient for perching success, we launched the robot at tree branches. The results corroborate our mathematical model, which shows that larger isometrically scaled animals and robots must accommodate disproportionately larger angular momenta, relative to their mass, to achieve similar landing performance. We find that closed-loop balance control serves an important role in maximizing the range of parameters sufficient for perching. The performance of the robot’s biomimetic features attests to the functionality of their avian counterparts, and the robot enables us to study aspects of bird legs in ways that are infeasible in vivo. Our data show that pronounced differences in modern avian toe arrangements do not yield large changes in perching performance, suggesting that arboreal perching does not represent a strong selection pressure among common bird toe topographies. These findings advance our understanding of the avian perching apparatus and highlight design concepts that enable robots to perch on natural surfaces for environmental monitoring.
Collapse
Affiliation(s)
- W R T Roderick
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - M R Cutkosky
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - D Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.,Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Picton LD, Bertuzzi M, Pallucchi I, Fontanel P, Dahlberg E, Björnfors ER, Iacoviello F, Shearing PR, El Manira A. A spinal organ of proprioception for integrated motor action feedback. Neuron 2021; 109:1188-1201.e7. [PMID: 33577748 DOI: 10.1016/j.neuron.2021.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network.
Collapse
Affiliation(s)
- Laurence D Picton
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Irene Pallucchi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pierre Fontanel
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elin Dahlberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Francesco Iacoviello
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK
| | | |
Collapse
|
7
|
Kamska V, Daley M, Badri-Spröwitz A. 3D Anatomy of the Quail Lumbosacral Spinal Canal-Implications for Putative Mechanosensory Function. Integr Org Biol 2020; 2:obaa037. [PMID: 33791575 PMCID: PMC7810575 DOI: 10.1093/iob/obaa037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Birds are diverse and agile vertebrates capable of aerial, terrestrial, aquatic, and arboreal locomotion. Evidence suggests that birds possess a novel balance sensing organ in the lumbosacral spinal canal, a structure referred to as the "lumbosacral organ" (LSO), which may contribute to their locomotor agility and evolutionary success. The mechanosensing mechanism of this organ remains unclear. Here we quantify the 3D anatomy of the lumbosacral region of the common quail, focusing on establishing the geometric and biomechanical properties relevant to potential mechanosensing functions. We combine digital and classic dissection to create a 3D anatomical model of the quail LSO and estimate the capacity for displacement and deformation of the soft tissues. We observe a hammock-like network of denticulate ligaments supporting the lumbosacral spinal cord, with a close association between the accessory lobes and ligamentous intersections. The relatively dense glycogen body has the potential to apply loads sufficient to pre-stress denticulate ligaments, enabling external accelerations to excite tuned oscillations in the LSO soft tissue, leading to strain-based mechanosensing in the accessory lobe neurons. Considering these anatomical features together, the structure of the LSO is reminiscent of a mass-spring-based accelerometer.
Collapse
Affiliation(s)
- Viktoriia Kamska
- Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Monica Daley
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Alexander Badri-Spröwitz
- Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Muller M. Mechanical aspects of the semicircular ducts in the vestibular system. BIOLOGICAL CYBERNETICS 2020; 114:421-442. [PMID: 32889629 PMCID: PMC7554018 DOI: 10.1007/s00422-020-00842-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The semicircular ducts (SCDs) of the vestibular system play an instrumental role in equilibration and rotation perception of vertebrates. The present paper is a review of quantitative approaches and shows how SCDs function. It consists of three parts. First, the biophysical mechanisms of an SCD system composed of three mutually connected ducts, allowing endolymph to flow from one duct into another one, are analysed. The flow is quantified by solving the continuity equations in conjunction with the equations of motion of the SCD hydrodynamics. This leads to mathematical expressions that are suitable for further analytical and numerical analysis. Second, analytical solutions are derived through four simplifying steps while keeping the essentials of the coupled system intact. Some examples of flow distributions for different rotations are given. Third, the focus is on the transducer function of the SCDs. The complex structure of the mechano-electrical transduction apparatus inside the ampullae is described, and the consequences for sensitivity and frequency response are evaluated. Furthermore, both the contributions of the different terms of the equations of motion and the influence of Brownian motion are analysed. Finally, size limitations, allometry and evolutionary aspects are taken into account.
Collapse
Affiliation(s)
- Mees Muller
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands.
- Physical Biology Institute Momchilovtsi, Ulica Bor 56, 4750, Momchilovtsi, Bulgaria.
| |
Collapse
|
9
|
Stanchak KE, French C, Perkel DJ, Brunton BW. The Balance Hypothesis for the Avian Lumbosacral Organ and an Exploration of Its Morphological Variation. Integr Org Biol 2020; 2:obaa024. [PMID: 33791565 PMCID: PMC7751001 DOI: 10.1093/iob/obaa024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Birds (Aves) exhibit exceptional and diverse locomotor behaviors, including the exquisite ability to balance on two feet. How birds so precisely control their movements may be partly explained by a set of intriguing modifications in their lower spine. These modifications are collectively known as the lumbosacral organ (LSO) and are found in the fused lumbosacral vertebrae called the synsacrum. They include a set of transverse canal-like recesses in the synsacrum that align with lateral lobes of the spinal cord, as well as a dorsal groove in the spinal cord that houses an egg-shaped glycogen body. Based on compelling but primarily observational data, the most recent functional hypotheses for the LSO consider it to be a secondary balance organ, in which the transverse canals are analogous to the semicircular canals of the inner ear. If correct, this hypothesis would reshape our understanding of avian locomotion, yet the LSO has been largely overlooked in the recent literature. Here, we review the current evidence for this hypothesis and then explore a possible relationship between the LSO and balance-intensive locomotor ecologies. Our comparative morphological dataset consists of micro-computed tomography (μ-CT) scans of synsacra from ecologically diverse species. We find that birds that perch tend to have more prominent transverse canals, suggesting that the LSO is useful for balance-intensive behaviors. We then identify the crucial outstanding questions about LSO structure and function. The LSO may be a key innovation that allows independent but coordinated motion of the head and the body, and a full understanding of its function and evolution will require multiple interdisciplinary research efforts.
Collapse
Affiliation(s)
- K E Stanchak
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - C French
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - D J Perkel
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Otolaryngology, University of Washington, Seattle, WA 98195, USA
| | - B W Brunton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Rattenborg NC, van der Meij J, Beckers GJL, Lesku JA. Local Aspects of Avian Non-REM and REM Sleep. Front Neurosci 2019; 13:567. [PMID: 31231182 PMCID: PMC6560081 DOI: 10.3389/fnins.2019.00567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Birds exhibit two types of sleep that are in many respects similar to mammalian rapid eye movement (REM) and non-REM (NREM) sleep. As in mammals, several aspects of avian sleep can occur in a local manner within the brain. Electrophysiological evidence of NREM sleep occurring more deeply in one hemisphere, or only in one hemisphere - the latter being a phenomenon most pronounced in dolphins - was actually first described in birds. Such asymmetric or unihemispheric NREM sleep occurs with one eye open, enabling birds to visually monitor their environment for predators. Frigatebirds primarily engage in this form of sleep in flight, perhaps to avoid collisions with other birds. In addition to interhemispheric differences in NREM sleep intensity, the intensity of NREM sleep is homeostatically regulated in a local, use-depended manner within each hemisphere. Furthermore, the intensity and temporo-spatial distribution of NREM sleep-related slow waves varies across layers of the avian hyperpallium - a primary visual area - with the slow waves occurring first in, and propagating through and outward from, thalamic input layers. Slow waves also have the greatest amplitude in these layers. Although most research has focused on NREM sleep, there are also local aspects to avian REM sleep. REM sleep-related reductions in skeletal muscle tone appear largely restricted to muscles involved in maintaining head posture. Other local aspects of sleep manifest as a mixture of features of NREM and REM sleep occurring simultaneously in different parts of the neuroaxis. Like monotreme mammals, ostriches often exhibit brainstem-mediated features of REM sleep (muscle atonia and REMs) while the hyperpallium shows EEG slow waves typical of NREM sleep. Finally, although mice show slow waves in thalamic input layers of primary sensory cortices during REM sleep, this is not the case in the hyperpallium of pigeons, suggesting that this phenomenon is not a universal feature of REM sleep. Collectively, the local aspects of sleep described in birds and mammals reveal that wakefulness, NREM sleep, and REM sleep are not always discrete states.
Collapse
Affiliation(s)
| | | | - Gabriël J. L. Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - John A. Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Matsushita Y, Kitamura N, Higuchi M, Z Hosaka Y, Shibuya I. Neuron-like cells in the chick spinal accessory lobe express neuronal-type voltage-gated sodium channels. Biomed Res 2018; 39:189-196. [PMID: 30101839 DOI: 10.2220/biomedres.39.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ten pairs of protrusions, called accessory lobes (ALs), exist at the lateral sides of the avian lumbosacral spinal cord. Histological evidence indicates that neuron-like cells gather in the ALs, and behavioral evidence suggests that the ALs act as a sensory organ of equilibrium during bipedal walking. Recently, using an electrophysiological method, we reported that cells showing Na+ currents and action potentials exist among cells that were dissociated from the ALs. However, it was unclear which isoforms of the voltage-gated sodium channel (VGSC) are expressed in the ALs and whether cells having neuronal morphology in the ALs express VGSCs. To elucidate these points, RT-PCR and immunohistochemical experiments were performed. In RT-PCR analysis, PCR products for Nav 1.1-1.7 were detected in the ALs. The signal intensities of the Nav 1.1 and 1.6 isoforms were stronger than those of the other isoforms. We confirmed that an antibody raised against an epitope peptide of the rat VGSC had cross-reactivity to chick tissues by Western blotting, and we performed immunofluorescence staining using the antibody. The AL contained cells having neuron-like morphology and VGSC-like immunoreactivity at their cytoplasm and/or cell membranes. Filament-like structures showing GFAP-like immunoreactivity infilled intercellular spaces. The VGSC- and GFAP-like immunoreactivities did not overlap. These results indicate that the neuronal isoforms of the VGSC are mainly expressed in the AL and that the neuron-like cells in the ALs express VGSCs. Our findings indicate that AL neurons generate action potentials and send sensory information to the motor systems on the contralateral side of the spinal segment.
Collapse
Affiliation(s)
- Yumi Matsushita
- Laboratory of Veterinary Physiology, Faculty of Agriculture, Tottori University
| | - Naoki Kitamura
- Laboratory of Veterinary Physiology, Faculty of Agriculture, Tottori University
| | - Masashi Higuchi
- Laboratory of Veterinary Biochemistry, Faculty of Agriculture, Tottori University
| | - Yoshinao Z Hosaka
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Tottori University
| | - Izumi Shibuya
- Laboratory of Veterinary Physiology, Faculty of Agriculture, Tottori University
| |
Collapse
|
12
|
Stańczyk EK, Velasco Gallego ML, Nowak M, Hatt JM, Kircher PR, Carrera I. 3.0 Tesla magnetic resonance imaging anatomy of the central nervous system, eye, and inner ear in birds of prey. Vet Radiol Ultrasound 2018; 59:705-714. [PMID: 29978528 DOI: 10.1111/vru.12657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/18/2018] [Accepted: 03/23/2018] [Indexed: 11/28/2022] Open
Abstract
Despite the increasing interest in the clinical neurology of birds, little is known about the magnetic resonance imaging (MRI) appearance of the avian central nervous system, eye, and inner ear. The objective of this cadaveric study was to document the MRI anatomic features of the aforementioned structures using a high-resolution 3.0 Tesla MRI system. The final study group consisted of 13 cadavers of the diurnal birds of prey belonging to six species. Images were acquired in sagittal, dorsal, and transverse planes using T1-weighted and T2-weighted turbo spin echo sequences. A necropsy with macroscopic analysis of the brain and spinal cord was performed on all cadavers. Microscopic examination of the brain was performed on one cadaver of each species; the spinal cord was examined in three subjects. Anatomic structures were identified on the magnetic resonance images based on histologic slices and available literature. Very good resolution of anatomic detail was obtained. The olfactory bulbs; cerebral hemispheres; diencephalon; optic lobe; cerebellum; pons; ventricular system; optic, trigeminal, and facial nerves; pineal and pituitary glands; as well as the semicircular canals of the inner ear were identified. Exquisite detail was achieved on the ocular structures. In the spinal cord, the gray and white matter differentiation and the glycogen body were identified. This study establishes normal MRI anatomy of the central nervous system, eye, and inner ear of the birds of prey; and may be used as a reference in the assessment of neurologic disorders or visual impairment in this group of birds.
Collapse
Affiliation(s)
- Ewa K Stańczyk
- Clinic for Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - María L Velasco Gallego
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Maricn Nowak
- Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Patrick R Kircher
- Clinic for Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Inés Carrera
- Southern Counties Veterinary Specialist, Hangersley, UK
| |
Collapse
|
13
|
Urbina-Meléndez D, Jalaleddini K, Daley MA, Valero-Cuevas FJ. A Physical Model Suggests That Hip-Localized Balance Sense in Birds Improves State Estimation in Perching: Implications for Bipedal Robots. Front Robot AI 2018; 5:38. [PMID: 33500924 PMCID: PMC7806032 DOI: 10.3389/frobt.2018.00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
In addition to a vestibular system, birds uniquely have a balance-sensing organ within the pelvis, called the lumbosacral organ (LSO). The LSO is well developed in terrestrial birds, possibly to facilitate balance control in perching and terrestrial locomotion. No previous studies have quantified the functional benefits of the LSO for balance. We suggest two main benefits of hip-localized balance sense: reduced sensorimotor delay and improved estimation of foot-ground acceleration. We used system identification to test the hypothesis that hip-localized balance sense improves estimates of foot acceleration compared to a head-localized sense, due to closer proximity to the feet. We built a physical model of a standing guinea fowl perched on a platform, and used 3D accelerometers at the hip and head to replicate balance sense by the LSO and vestibular systems. The horizontal platform was attached to the end effector of a 6 DOF robotic arm, allowing us to apply perturbations to the platform analogous to motions of a compliant branch. We also compared state estimation between models with low and high neck stiffness. Cross-correlations revealed that foot-to-hip sensing delays were shorter than foot-to-head, as expected. We used multi-variable output error state-space (MOESP) system identification to estimate foot-ground acceleration as a function of hip- and head-localized sensing, individually and combined. Hip-localized sensors alone provided the best state estimates, which were not improved when fused with head-localized sensors. However, estimates from head-localized sensors improved with higher neck stiffness. Our findings support the hypothesis that hip-localized balance sense improves the speed and accuracy of foot state estimation compared to head-localized sense. The findings also suggest a role of neck muscles for active sensing for balance control: increased neck stiffness through muscle co-contraction can improve the utility of vestibular signals. Our engineering approach provides, to our knowledge, the first quantitative evidence for functional benefits of the LSO balance sense in birds. The findings support notions of control modularity in birds, with preferential vestibular sense for head stability and gaze, and LSO for body balance control,respectively. The findings also suggest advantages for distributed and active sensing for agile locomotion in compliant bipedal robots.
Collapse
Affiliation(s)
- Darío Urbina-Meléndez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- School of Engineering, National Autonomous University of Mexico, Mexico City, Mexico
| | - Kian Jalaleddini
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Monica A Daley
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Francisco J Valero-Cuevas
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Theunissen LM, Troje NF. Head Stabilization in the Pigeon: Role of Vision to Correct for Translational and Rotational Disturbances. Front Neurosci 2017; 11:551. [PMID: 29051726 PMCID: PMC5633612 DOI: 10.3389/fnins.2017.00551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Stabilization of the head in animals with limited capacity to move their eyes is key to maintain a stable image on the retina. In many birds, including pigeons, a prominent example for the important role of head stabilization is the characteristic head-bobbing behavior observed during walking. Multimodal sensory feedback from the eyes, the vestibular system and proprioceptors in body and neck is required to control head stabilization. Here, we trained unrestrained pigeons (Columba livia) to stand on a perch that was sinusoidally moved with a motion platform along all three translational and three rotational degrees of freedom. We varied the frequency of the perturbation and we recorded the pigeons' responses under both light and dark conditions. Head, body, and platform movements were assessed with a high-speed motion capture system and the data were used to compute gain and phase of head and body movements in response to the perturbations. Comparing responses under dark and light conditions, we estimated the contribution of visual feedback to the control of the head. Our results show that the head followed the movement of the motion platform to a large extent during translations, but it was almost perfectly stabilized against rotations. Visual feedback only improved head stabilization during translations but not during rotations. The body compensated rotations around the forward-backward and the lateral axis, but did not contribute to head stabilization during translations and rotations around the vertical axis. From the results, we conclude that head stabilization in response to translations and rotations depends on different sensory feedback and that visual feedback plays only a limited role for head stabilization during standing.
Collapse
Affiliation(s)
- Leslie M Theunissen
- Biomotion Lab, Department of Psychology, Department of Biology, School of Computing, Queen's University Kingston, Kingston, ON, Canada.,Applied Cognitive Psychology, Faculty of Engineering, Computer Science and Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Nikolaus F Troje
- Biomotion Lab, Department of Psychology, Department of Biology, School of Computing, Queen's University Kingston, Kingston, ON, Canada
| |
Collapse
|
15
|
Abstract
The purpose of the present study was to evaluate locomotor strategies during development in domestic chickens (Gallus gallus domesticus); we were motivated, in part, by current efforts to improve the design of housing systems for laying hens which aim to reduce injury and over-exertion. Using four strains of laying hens (Lohmann Brown, Lohmann LSL lite, Dekalb White and Hyline Brown) throughout this longitudinal study, we investigated their locomotor style and climbing capacity in relation to the degree (0 to 70°) of incline, age (2 to 36 weeks) and the surface substrate (sandpaper or wire grid). Chicks and adult fowl performed only walking behavior to climb inclines ⩽40° and performed a combination of wing-assisted incline running (WAIR) or aerial ascent on steeper inclines. Fewer birds used their wings to aid their hind limbs when climbing 50° inclines on wire grid surface compared with sandpaper. The steepness of angle achieved during WAIR and the tendency to fly instead of using WAIR increased with increasing age and experience. White-feathered strains performed more wing-associated locomotor behavior compared with brown-feathered strains. A subset of birds was never able to climb incline angles >40° even when using WAIR. Therefore, we suggest that inclines of up to 40° should be provided for hens in three-dimensional housing systems, which are easily negotiated (without wing use) by chicks and adult fowl.
Collapse
|
16
|
Massarelli N, Yau AL, Hoffman KA, Kiemel T, Tytell ED. Characterization of the encoding properties of intraspinal mechanosensory neurons in the lamprey. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:831-841. [DOI: 10.1007/s00359-017-1196-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
|
17
|
Hubbard JM, Böhm UL, Prendergast A, Tseng PEB, Newman M, Stokes C, Wyart C. Intraspinal Sensory Neurons Provide Powerful Inhibition to Motor Circuits Ensuring Postural Control during Locomotion. Curr Biol 2016; 26:2841-2853. [PMID: 27720623 DOI: 10.1016/j.cub.2016.08.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 01/13/2023]
Abstract
In the vertebrate spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic neurons whose functions are only beginning to unfold. Recent evidence indicates that CSF-cNs detect local spinal bending and relay this mechanosensory feedback information to motor circuits, yet many CSF-cN targets remain unknown. Using optogenetics, patterned illumination, and in vivo electrophysiology, we show here that CSF-cNs provide somatic inhibition to fast motor neurons and excitatory sensory interneurons involved in the escape circuit. Ventral CSF-cNs respond to longitudinal spinal contractions and induce large inhibitory postsynaptic currents (IPSCs) sufficient to silence spiking of their targets. Upon repetitive stimulation, these IPSCs promptly depress, enabling the mechanosensory response to the first bend to be the most effective. When CSF-cNs are silenced, postural control is compromised, resulting in rollovers during escapes. Altogether, our data demonstrate how GABAergic sensory neurons provide powerful inhibitory feedback to the escape circuit to maintain balance during active locomotion.
Collapse
Affiliation(s)
- Jeffrey Michael Hubbard
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Urs Lucas Böhm
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Andrew Prendergast
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Po-En Brian Tseng
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Morgan Newman
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Caleb Stokes
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; INSERM UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75005 Paris, France; UPMC University Paris 06, 75005 Paris, France.
| |
Collapse
|
18
|
LeBlanc S, Tobalske B, Quinton M, Springthorpe D, Szkotnicki B, Wuerbel H, Harlander-Matauschek A. Physical Health Problems and Environmental Challenges Influence Balancing Behaviour in Laying Hens. PLoS One 2016; 11:e0153477. [PMID: 27078835 PMCID: PMC4831827 DOI: 10.1371/journal.pone.0153477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
With rising public concern for animal welfare, many major food chains and restaurants are changing their policies, strictly buying their eggs from non-cage producers. However, with the additional space in these cage-free systems to perform natural behaviours and movements comes the risk of injury. We evaluated the ability to maintain balance in adult laying hens with health problems (footpad dermatitis, keel damage, poor wing feather cover; n = 15) using a series of environmental challenges and compared such abilities with those of healthy birds (n = 5). Environmental challenges consisted of visual and spatial constraints, created using a head mask, perch obstacles, and static and swaying perch states. We hypothesized that perch movement, environmental challenges, and diminished physical health would negatively impact perching performance demonstrated as balance (as measured by time spent on perch and by number of falls of the perch) and would require more exaggerated correctional movements. We measured perching stability whereby each bird underwent eight 30-second trials on a static and swaying perch: with and without disrupted vision (head mask), with and without space limitations (obstacles) and combinations thereof. Video recordings (600 Hz) and a three-axis accelerometer/gyroscope (100 Hz) were used to measure the number of jumps/falls, latencies to leave the perch, as well as magnitude and direction of both linear and rotational balance-correcting movements. Laying hens with and without physical health problems, in both challenged and unchallenged environments, managed to perch and remain off the ground. We attribute this capacity to our training of the birds. Environmental challenges and physical state had an effect on the use of accelerations and rotations to stabilize themselves on a perch. Birds with physical health problems performed a higher frequency of rotational corrections to keep the body centered over the perch, whereas, for both health categories, environmental challenges required more intense and variable movement corrections. Collectively, these results provide novel empirical support for the effectiveness of training, and highlight that overcrowding, visual constraints, and poor physical health all reduce perching performance.
Collapse
Affiliation(s)
- Stephanie LeBlanc
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Bret Tobalske
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Margaret Quinton
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Dwight Springthorpe
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Bill Szkotnicki
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Hanno Wuerbel
- Division of Animal Welfare, VPH Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
19
|
Cavinatto CC, Armando AP, Cruz LK, Lima EMD, Santana MI. Descrição anatômica de esqueletos de papagaios do gênero Amazona através da utilização de radiografias. PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000200010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo: O esqueleto de papagaios da espécie Amazona aestiva foi descrito e comparado com representantes de outras espécies do gênero Amazona. Para tanto, foram utilizados 22 exemplares da espécie Amazona aestiva; dois das espécies Amazona vinacea; Amazona rhodocorythae, Amazona farinosa, além de um exemplar das espécies Amazona brasiliensis e Amazona pretrei, doados após morte natural pelo Criadouro Poços de Caldas. Foram realizadas radiografias de corpo inteiro, variando de decúbito lateral direito ou esquerdo, no caso das projeções latero-laterais, e em decúbito dorsal, no caso da projeção ventro-dorsal. Independentemente da espécie, os crânios dos papagaios estudados puderam ser classificados como pró-cinéticos, por apresentarem liberdade de movimentos em sua porção rostral. Na maioria dos casos, a coluna vertebral esteve formada por 12 vértebras cervicais, seis vértebras torácicas livres, sinsacro (formado pela fusão da última vértebra torácica, 7 lombosacrais e uma caudal), cinco vértebras caudais livres e pelo pigóstilo (formado por três vértebras caudais fusionadas) e, apesar de diferenças pontuais, o esqueleto apendicular torácico e pélvico se mostrou muito semelhante ao observado para outros gêneros de aves e, inclusive, não foi possível observar dimorfismo sexual através das características anatômicas dos esqueletos dos papagaios trabalhados.
Collapse
|
20
|
Takahashi K, Kitamura N, Suzuki Y, Yamanaka Y, Shinohara H, Shibuya I. Activation of muscarinic acetylcholine receptors elevates intracellular Ca(2+) concentrations in accessory lobe neurons of the chick. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:385-94. [PMID: 25481714 DOI: 10.1007/s00359-014-0971-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
Accessory lobes are protrusions located at the lateral sides of the spinal cord of chicks and it has been proposed that they play a role as a sensory organ for equilibrium during walking. We have reported that functional neurons exist in the accessory lobe. As there is histological evidence that synaptic terminals of cholinergic nerves exist near the somata of accessory lobe neurons, we examined the effects of acetylcholine on changes in intracellular Ca2+ concentrations ([Ca2+]i), as an index of cellular activities. Acetylcholine (0.1-100 µM) caused a transient rise in the [Ca2+]i. Acetylcholine-evoked [Ca2+]i rises were observed in the absence of extracellular Ca2+, and they were abolished in the presence of cyclopiazonic acid, an inhibitor of Ca2+-ATPase of intracellular Ca2+ stores or atropine, a muscarinic receptor antagonist. mRNAs coding M3 and M5 isoforms of the muscarinic receptors were detected in accessory lobes by the RT-PCR. These results indicate that chick accessory lobe neurons express functional muscarinic acetylcholine receptors, and that acetylcholine stimulates Ca2+ mobilization from intracellular Ca2+ stores, which elevates the [Ca2+]i in the somata of accessory lobe neurons, through activation of these receptors. Cholinergic synaptic transmission to the accessory lobe neurons may regulate some cellular functions through muscarinic receptors.
Collapse
Affiliation(s)
- Keita Takahashi
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori, 680-8553, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Voltage-gated Ca2+ channels in accessory lobe neurons of the chick. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:739-48. [PMID: 24842482 DOI: 10.1007/s00359-014-0917-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Birds have ten pairs of protrusions, "accessory lobes", on the lateral sides of the lumbosacral spinal cord. It has been proposed that accessory lobes act as a sensory organ of equilibrium and neurons in accessory lobes transmit sensory information to the motor center. We have reported that cells in chick accessory lobes express functional voltage-gated Na(+) and K(+) channels and generate action potentials. In this study, we examined properties of voltage-gated Ca(2+) channels (VGCCs). The amplitude of voltage-gated Ca(2+) channel currents carried by Ca(2+) and Ba(2+) increased gradually during 10 min rather than showing the usual run-down. The current-voltage relationship of Ba(2+) currents was consistent with that of the high-voltage-activated Ca(2+) channel. The proportion of Ba(2+) currents inhibited by ω-conotoxin GVIA was larger than 80%, indicating that the major subtype is N type. Amplitudes of tail currents of Ca(2+) currents evoked by repetitive pulses at 50 Hz are stable for 1 s. If the major subtype of VGCCs at synaptic terminals is also N type, this property may contribute to the establishment of stable synaptic connections between accessory lobe neurons, which are reported to fire at frequencies higher than 15 Hz, and postsynaptic neurons in the spinal cord.
Collapse
|
22
|
Glutamate evokes firing through activation of kainate receptors in chick accessory lobe neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 199:35-43. [DOI: 10.1007/s00359-012-0766-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/26/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
|
23
|
Analysis of GABA-induced inhibition of spontaneous firing in chick accessory lobe neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 198:229-37. [DOI: 10.1007/s00359-011-0703-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
24
|
Abourachid A, Hackert R, Herbin M, Libourel PA, Lambert F, Gioanni H, Provini P, Blazevic P, Hugel V. Bird terrestrial locomotion as revealed by 3D kinematics. ZOOLOGY 2011; 114:360-8. [DOI: 10.1016/j.zool.2011.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 06/06/2011] [Accepted: 07/04/2011] [Indexed: 10/16/2022]
|
25
|
Gioanni H, Vidal PP. Possible cues driving context-specific adaptation of optocollic reflex in pigeons (Columba livia). J Neurophysiol 2011; 107:704-17. [PMID: 22049337 DOI: 10.1152/jn.00684.2011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Context-specific adaptation (Shelhamer M, Clendaniel R. Neurosci Lett 332: 200-204, 2002) explains that reflexive responses can be maintained with different "calibrations" for different situations (contexts). Which context cues are crucial and how they combine to evoke context-specific adaptation is not fully understood. Gaze stabilization in birds is a nice model with which to tackle that question. Previous data showed that when pigeons (Columba livia) were hung in a harness and subjected to a frontal airstream provoking a flying posture ("flying condition"), the working range of the optokinetic head response [optocollic reflex (OCR)] extended toward higher velocities compared with the "resting condition." The present study was aimed at identifying which context cues are instrumental in recalibrating the OCR. We investigated that question by using vibrating stimuli delivered during the OCR provoked by rotating the visual surroundings at different velocities. The OCR gain increase and the boost of the fast phase velocity observed during the "flying condition" were mimicked by body vibration. On the other hand, the newly emerged relationship between the fast-phase and slow-phase velocities in the "flying condition" was mimicked by head vibration. Spinal cord lesion at the lumbosacral level decreased the effects of body vibration, whereas lesions of the lumbosacral apparatus had no effect. Our data suggest a major role of muscular proprioception in the context-specific adaptation of the stabilizing behavior, while the vestibular system could contribute to the context-specific adaptation of the orienting behavior. Participation of an efferent copy of the motor command driving the flight cannot be excluded.
Collapse
Affiliation(s)
- Henri Gioanni
- Centre d’étude de la Sensorimotricité, Université Paris Descartes, Sorbonne Paris Cité, UMR-CNRS 8194, Paris, France.
| | | |
Collapse
|
26
|
Boistel R, Herrel A, Lebrun R, Daghfous G, Tafforeau P, Losos JB, Vanhooydonck B. Shake Rattle and Roll: The Bony Labyrinth and Aerial Descent in Squamates. Integr Comp Biol 2011; 51:957-68. [DOI: 10.1093/icb/icr034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
27
|
Yamanaka Y, Kitamura N, Shibuya I. Chick spinal accessory lobes contain functional neurons expressing voltagegated sodium channels generating action potentials. Biomed Res 2008; 29:205-11. [DOI: 10.2220/biomedres.29.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Cnotka J, Frahm HD, Mpotsaris A, Rehkämper G. Motor incoordination, intracranial fat bodies, and breeding strategy in Crested ducks (Anas platyrhynchos f.d.). Poult Sci 2007; 86:1850-5. [PMID: 17704370 DOI: 10.1093/ps/86.9.1850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some Crested ducks (CR) are burdened with an intracranial fat body that, depending on the size and location, may lead to varying degrees of motor incoordination. A behavioral test is proposed that helps to identify those CR individuals bearing the problematical fat body. The test consists of putting the ducks on their backs and measuring the time required to right themselves. This was repeated 13 times per animal, and means were calculated. The minimum time required was 0.5 s, and the maximum was 62.6 s. Individuals that show motor incoordination need more time than ducks without such problems (14.3 s in contrast to 1.2 s) and exhibit a larger intracranial fat body. Ducks used for breeding should require no more than approximately 1 to 2 s to right themselves. In an allometric comparison with 3 other domestic duck breeds, CR show a significantly smaller brain; specifically, the cerebellum, tegmentum, apicale hyperpallium, and olfactory bulb are reduced. The relationship between fat body and these structures was discussed.
Collapse
Affiliation(s)
- J Cnotka
- C. and O. Vogt Institute of Brain Research (Behaviour and Brain), University of Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
29
|
Necker R. Head-bobbing of walking birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:1177-83. [DOI: 10.1007/s00359-007-0281-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 09/13/2007] [Accepted: 10/17/2007] [Indexed: 11/29/2022]
|