1
|
Mooney TA, Smith A, Larsen ON, Hansen KA, Rasmussen M. A field study of auditory sensitivity of the Atlantic puffin, Fratercula arctica. J Exp Biol 2020; 223:jeb228270. [PMID: 32561627 DOI: 10.1242/jeb.228270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
Hearing is vital for birds as they rely on acoustic communication with parents, mates, chicks and conspecifics. Amphibious seabirds face many ecological pressures, having to sense cues in air and underwater. Natural noise conditions have helped shape this sensory modality but anthropogenic noise is increasingly impacting seabirds. Surprisingly little is known about their hearing, despite their imperiled status. Understanding sound sensitivity is vital when we seek to manage the impacts of man-made noise. We measured the auditory sensitivity of nine wild Atlantic puffins, Fratercula arctica, in a capture-and-release setting in an effort to define their audiogram and compare these data with the hearing of other birds and natural rookery noise. Auditory sensitivity was tested using auditory evoked potential (AEP) methods. Responses were detected from 0.5 to 6 kHz. Mean thresholds were below 40 dB re. 20 µPa from 0.75 to 3 kHz, indicating that these were the most sensitive auditory frequencies, similar to other seabirds. Thresholds in the 'middle' frequency range 1-2.5 kHz were often down to 10-20 dB re. 20 µPa. The lowest thresholds were typically at 2.5 kHz. These are the first in-air auditory sensitivity data from multiple wild-caught individuals of a deep-diving alcid seabird. The audiogram was comparable to that of other birds of similar size, thereby indicating that puffins have fully functioning aerial hearing despite the constraints of their deep-diving, amphibious lifestyles. There was some variation in thresholds, yet animals generally had sensitive ears, suggesting aerial hearing is an important sensory modality for this taxon.
Collapse
Affiliation(s)
- T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Adam Smith
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole Næsbye Larsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Marianne Rasmussen
- The University of Iceland's Research Center in Húsavík, 640 Húsavík, Iceland
| |
Collapse
|
2
|
McGee J, Nelson PB, Ponder JB, Marr J, Redig P, Walsh EJ. Auditory performance in bald eagles and red-tailed hawks: a comparative study of hearing in diurnal raptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:793-811. [PMID: 31520117 DOI: 10.1007/s00359-019-01367-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/26/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
Collision with wind turbines is a conservation concern for eagles with population abundance implications. The development of acoustic alerting technologies to deter eagles from entering hazardous air spaces is a potentially significant mitigation strategy to diminish associated morbidity and mortality risks. As a prelude to the engineering of deterrence technologies, auditory function was assessed in bald eagles (Haliaeetus leucocephalus), as well as in red-tailed hawks (Buteo jamaicensis). Auditory brainstem responses (ABRs) to a comprehensive battery of clicks and tone bursts varying in level and frequency were acquired to evaluate response thresholds, as well as suprathreshold response characteristics of wave I of the ABR, which represents the compound potential of the VIII cranial nerve. Sensitivity curves exhibited an asymmetric convex shape similar to those of other avian species, response latencies decreased exponentially with increasing stimulus level and response amplitudes grew with level in an orderly manner. Both species were responsive to a frequency band at least four octaves wide, with a most sensitive frequency of 2 kHz, and a high-frequency limit of approximately 5.7 kHz in bald eagles and 8 kHz in red-tailed hawks. Findings reported here provide a framework within which acoustic alerting signals might be developed.
Collapse
Affiliation(s)
- JoAnn McGee
- Department of Speech-Language-Hearing Sciences and the Center for Applied and Translational Sensory Science, University of Minnesota, 164 Pillsbury Dr. SE, Minneapolis, MN, 55455, USA.
| | - Peggy B Nelson
- Department of Speech-Language-Hearing Sciences and the Center for Applied and Translational Sensory Science, University of Minnesota, 164 Pillsbury Dr. SE, Minneapolis, MN, 55455, USA
| | - Julia B Ponder
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeffrey Marr
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Patrick Redig
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Edward J Walsh
- Department of Speech-Language-Hearing Sciences and the Center for Applied and Translational Sensory Science, University of Minnesota, 164 Pillsbury Dr. SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Köppl C. Internally coupled middle ears enhance the range of interaural time differences heard by the chicken. ACTA ACUST UNITED AC 2019; 222:jeb.199232. [PMID: 31138639 DOI: 10.1242/jeb.199232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022]
Abstract
Interaural time differences (ITDs) are one of several principal cues for localizing sounds. However, ITDs are in the sub-millisecond range for most animals. Because the neural processing of such small ITDs pushes the limit of temporal resolution, the precise ITD range for a given species and its usefulness - relative to other localization cues - has been a powerful selective force in the evolution of the neural circuits involved. Birds and other non-mammals have internally coupled middle ears working as pressure-difference receivers that may significantly enhance ITDs, depending on the precise properties of the interaural connection. Here, the extent of this internal coupling was investigated in chickens, specifically under the same experimental conditions as typically used in investigations of the neurophysiology of ITD-coding circuits, i.e. with headphone stimulation and skull openings. Cochlear microphonics (CM) were recorded simultaneously from both ears of anesthetized chickens under monaural and binaural stimulation, using pure tones from 0.1 to 3 kHz. Interaural transmission peaked at 1.5 kHz at a loss of only -5.5 dB; the mean interaural delay was 264 µs. CM amplitude was strongly modulated as a function of ITD, confirming significant interaural coupling. The 'ITD heard' derived from the CM phases in both ears showed enhancement, compared with the acoustic stimuli, by a factor of up to 1.8. However, the experimental conditions impaired interaural transmission at low frequencies (<1 kHz). I identify factors that need to be considered when interpreting neurophysiological data obtained under these conditions and relating them to the natural free-field condition.
Collapse
Affiliation(s)
- Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany .,Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Gas Anesthesia Impairs Peripheral Auditory Sensitivity in Barn Owls ( Tyto alba). eNeuro 2018; 5:eN-NWR-0140-18. [PMID: 30713995 PMCID: PMC6354786 DOI: 10.1523/eneuro.0140-18.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
Auditory nerve single-unit recordings were obtained from two groups of young barn owls (age, between posthatching days 11 and 86) in terminal experiments under two different anesthetic regimes: ketamine (6-11 mg/kg) plus xylazine (∼2 mg/kg); or isoflurane (1-1.5%) in oxygen, delivered via artificial respiration. In a second series of minimally invasive experiments, auditory brainstem responses (ABRs) were recorded in the same four adult barn owls (Tyto alba; age, between 5 and 32 months) under three different anesthetic protocols: ketamine (10 mg/kg) plus xylazine (3 mg/kg), isoflurane (1-1.5%), and sevoflurane (2-3%) in carbogen. Finally, the ABR measurements on adult owls were repeated in terminal experiments including more invasive procedures such as artificial respiration and higher isoflurane dosage. The main finding was a significant deterioration of auditory sensitivity in barn owls under gas anesthesia, at the level of the auditory nerve (i.e., a very peripheral level of the auditory system). The effect was drastic in the young animals that experienced threshold elevations in auditory nerve single-unit responses of ≥20 dB. ABR thresholds assessed repeatedly in experiments on adult owls were also significantly higher under isoflurane and sevoflurane, on average by 7 and 15 dB, compared with ketamine/xylazine. This difference already occurred with minimal dosages and was reversibly enlarged with increased isoflurane concentration. Finally, there was evidence for confounding detrimental effects associated with artificial respiration over many hours, which suggested oxygen toxicity.
Collapse
|
5
|
Beatini JR, Proudfoot GA, Gall MD. Frequency sensitivity in Northern saw-whet owls (Aegolius acadicus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:145-154. [DOI: 10.1007/s00359-017-1216-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/24/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
6
|
Wolf SE, Swaddle JP, Cristol DA, Buchser WJ. Methylmercury Exposure Reduces the Auditory Brainstem Response of Zebra Finches (Taeniopygia guttata ). J Assoc Res Otolaryngol 2017; 18:569-579. [PMID: 28361373 DOI: 10.1007/s10162-017-0619-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
Mercury contamination from mining and fossil fuel combustion causes damage to humans and animals worldwide. Mercury exposure has been implicated in mammalian hearing impairment, but its effect on avian hearing is unknown. In this study, we examined whether lifetime dietary mercury exposure affected hearing in domestic zebra finches (Taeniopygia guttata) by studying their auditory brainstem responses (ABRs). Zebra finches exposed to mercury exhibited elevated hearing thresholds, decreased amplitudes, and longer latencies in the ABR, the first evidence of mercury-induced hearing impairment in birds. Birds are a more appropriate model for the human auditory spectrum than most mammals because of similarities in frequency discrimination, vocal learning, and communication behavior. When mercury is considered in combination with other anthropogenic stressors such as noise pollution and habitat alteration, the hearing impairments we document here could substantially degrade avian auditory communication in wild birds.
Collapse
Affiliation(s)
- Sarah E Wolf
- Biology Department, College of William & Mary, Williamsburg, VA, 23185, USA
| | - John P Swaddle
- Biology Department, College of William & Mary, Williamsburg, VA, 23185, USA
| | - Daniel A Cristol
- Biology Department, College of William & Mary, Williamsburg, VA, 23185, USA
| | - William J Buchser
- Biology Department, College of William & Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
7
|
The Binaural Interaction Component in Barn Owl (Tyto alba) Presents few Differences to Mammalian Data. J Assoc Res Otolaryngol 2016; 17:577-589. [PMID: 27562803 DOI: 10.1007/s10162-016-0583-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/15/2016] [Indexed: 01/21/2023] Open
Abstract
The auditory brainstem response (ABR) is an evoked potential that reflects the responses to sound by brainstem neural centers. The binaural interaction component (BIC) is obtained by subtracting the sum of the monaural ABR responses from the binaural response. Its latency and amplitude change in response to variations in binaural cues. The BIC is thus thought to reflect the activity of binaural nuclei and is used to non-invasively test binaural processing. However, any conclusions are limited by a lack of knowledge of the relevant processes at the level of individual neurons. The aim of this study was to characterize the ABR and BIC in the barn owl, an animal where the ITD-processing neural circuits are known in great detail. We recorded ABR responses to chirps and to 1 and 4 kHz tones from anesthetized barn owls. General characteristics of the barn owl ABR were similar to those observed in other bird species. The most prominent peak of the BIC was associated with nucleus laminaris and is thus likely to reflect the known processes of ITD computation in this nucleus. However, the properties of the BIC were very similar to previously published mammalian data and did not reveal any specific diagnostic features. For example, the polarity of the BIC was negative, which indicates a smaller response to binaural stimulation than predicted by the sum of monaural responses. This is contrary to previous predictions for an excitatory-excitatory system such as nucleus laminaris. Similarly, the change in BIC latency with varying ITD was not distinguishable from mammalian data. Contrary to previous predictions, this behavior appears unrelated to the known underlying neural delay-line circuitry. In conclusion, the generation of the BIC is currently inadequately understood and common assumptions about the BIC need to be reconsidered when interpreting such measurements.
Collapse
|
8
|
Christensen CB, Lauridsen H, Christensen-Dalsgaard J, Pedersen M, Madsen PT. Better than fish on land? Hearing across metamorphosis in salamanders. Proc Biol Sci 2016; 282:rspb.2014.1943. [PMID: 25652830 DOI: 10.1098/rspb.2014.1943] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early 'lepospondyl' microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.
Collapse
Affiliation(s)
- Christian Bech Christensen
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C. F. Moellers Allé 3, Aarhus C 8000, Denmark
| | - Henrik Lauridsen
- Comparative Medicine Lab, Aarhus University Hospital Skejby, Aarhus N 8200, Denmark
| | | | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital Skejby, Aarhus N 8200, Denmark
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C. F. Moellers Allé 3, Aarhus C 8000, Denmark
| |
Collapse
|
9
|
Jang JH, Lee HS, Oh SH, Park MH. Efficacy of the cat deafening method: Co-administration of ethacrynic acid and kanamycin. Acta Otolaryngol 2015; 136:289-92. [PMID: 26605909 DOI: 10.3109/00016489.2015.1110751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study was designed to determine if hearing status monitoring during intravenous infusion of EA reduces individual variability and to evaluate the correlation between EA dose and Bwt. MATERIALS AND METHODS Twenty-five cats with the mean age of 24 ± 3.7 weeks (range = 20.6-28.3) and a mean weight of 3.21 ± 0.84 kg (range = 1.9-5.1) were administered a subcutaneous injection of KM (300 mg/kg) followed by an intravenous infusion of EA (1 mg/min). Click-evoked auditory brainstem responses (ABRs) were recorded to monitor hearing during the infusion. When ABR thresholds exceeded a 90 dB sound pressure level, the infusion of EA was terminated. Histopathology forapex, middle, and base sections of the cochlea were examined after 6 months. RESULTS The dose of EA was optimized for deafening through simultaneous ABR measurements. Bwt was positively correlated with EA dose (mg) (p < 0.001, R(2) = 0.548), which was different from a study previously reported. Cochlear histopathology assessments revealed an absence of organ of Corti in the majority of cochleae. CONCLUSION Co-administration of kanamycin (KM) and ethacrynic acid (EA) was an easy and effective method for deafening procedures in adult animals. Body weight (Bwt) was positively correlated with EA dose (mg) and an optimal EA dose can be calculated.
Collapse
Affiliation(s)
- Jeong Hun Jang
- a Department of Otorhinolaryngology , Kyungpook National University College of Medicine , Daegu , Korea
| | - Ho Sun Lee
- b Department of Otorhinolaryngology , Boramae Medical Center, Seoul Metropolitan Government-Seoul National University , Seoul , Korea
| | - Seung Ha Oh
- c Department of Otorhinolarynogology , Seoul National University College of Medicine , Seoul , Korea
- d Research Center for Sensory Organs, Medical Research Center, Seoul National University College of Medicine , Seoul , Korea
| | - Min-Hyun Park
- b Department of Otorhinolaryngology , Boramae Medical Center, Seoul Metropolitan Government-Seoul National University , Seoul , Korea
| |
Collapse
|
10
|
Crowell SE, Wells-Berlin AM, Carr CE, Olsen GH, Therrien RE, Yannuzzi SE, Ketten DR. A comparison of auditory brainstem responses across diving bird species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:803-15. [PMID: 26156644 DOI: 10.1007/s00359-015-1024-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676-680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.
Collapse
Affiliation(s)
- Sara E Crowell
- US Geological Survey Patuxent Wildlife Research Center, 12100 Beech Forest Rd., Laurel, MD, 20708, USA,
| | | | | | | | | | | | | |
Collapse
|
11
|
Bierman HS, Thornton JL, Jones HG, Koka K, Young BA, Brandt C, Christensen-Dalsgaard J, Carr CE, Tollin DJ. Biophysics of directional hearing in the American alligator (Alligator mississippiensis). ACTA ACUST UNITED AC 2014; 217:1094-107. [PMID: 24671963 DOI: 10.1242/jeb.092866] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Physiological and anatomical studies have suggested that alligators have unique adaptations for spatial hearing. Sound localization cues are primarily generated by the filtering of sound waves by the head. Different vertebrate lineages have evolved external and/or internal anatomical adaptations to enhance these cues, such as pinnae and interaural canals. It has been hypothesized that in alligators, directionality may be enhanced via the acoustic coupling of middle ear cavities, resulting in a pressure difference receiver (PDR) mechanism. The experiments reported here support a role for a PDR mechanism in alligator sound localization by demonstrating that (1) acoustic space cues generated by the external morphology of the animal are not sufficient to generate location cues that match physiological sensitivity, (2) continuous pathways between the middle ears are present to provide an anatomical basis for coupling, (3) the auditory brainstem response shows some directionality, and (4) eardrum movement is directionally sensitive. Together, these data support the role of a PDR mechanism in crocodilians and further suggest this mechanism is a shared archosaur trait, most likely found also in the extinct dinosaurs.
Collapse
Affiliation(s)
- Hilary S Bierman
- Center for Comparative and Evolutionary Biology of Hearing, Department of Biology, University of Maryland College Park, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reverse correlation analysis of auditory-nerve fiber responses to broadband noise in a bird, the barn owl. J Assoc Res Otolaryngol 2014; 16:101-19. [PMID: 25315358 DOI: 10.1007/s10162-014-0494-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022] Open
Abstract
While the barn owl has been extensively used as a model for sound localization and temporal coding, less is known about the mechanisms at its sensory organ, the basilar papilla (homologous to the mammalian cochlea). In this paper, we characterize, for the first time in the avian system, the auditory nerve fiber responses to broadband noise using reverse correlation. We use the derived impulse responses to study the processing of sounds in the cochlea of the barn owl. We characterize the frequency tuning, phase, instantaneous frequency, and relationship to input level of impulse responses. We show that, even features as complex as the phase dependence on input level, can still be consistent with simple linear filtering. Where possible, we compare our results with mammalian data. We identify salient differences between the barn owl and mammals, e.g., a much smaller frequency glide slope and a bimodal impulse response for the barn owl, and discuss what they might indicate about cochlear mechanics. While important for research on the avian auditory system, the results from this paper also allow us to examine hypotheses put forward for the mammalian cochlea.
Collapse
|
13
|
Christensen-Dalsgaard J, Brandt C, Willis KL, Christensen CB, Ketten D, Edds-Walton P, Fay RR, Madsen PT, Carr CE. Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans. Proc Biol Sci 2012; 279:2816-24. [PMID: 22438494 PMCID: PMC3367789 DOI: 10.1098/rspb.2012.0290] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/01/2012] [Indexed: 11/12/2022] Open
Abstract
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500-600 Hz with a maximum of 300 µm s(-1) Pa(-1), approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300-500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20-30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc.
Collapse
Affiliation(s)
- Jakob Christensen-Dalsgaard
- Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Christian Brandt
- Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Katie L. Willis
- Department of Biology and CCEBH, University of Maryland, College Park, MD 20742, USA
| | | | - Darlene Ketten
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Peggy Edds-Walton
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Parmly Hearing Institute, Loyola University Chicago, IL 60626, USA
| | - Richard R. Fay
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Parmly Hearing Institute, Loyola University Chicago, IL 60626, USA
| | - Peter T. Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Catherine E. Carr
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Biology and CCEBH, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Auditory capabilities of birds in relation to the structural diversity of the basilar papilla. Hear Res 2011; 273:80-8. [DOI: 10.1016/j.heares.2010.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/18/2010] [Accepted: 01/22/2010] [Indexed: 11/18/2022]
|
15
|
Brittan-Powell EF, Christensen-Dalsgaard J, Tang Y, Carr C, Dooling RJ. The auditory brainstem response in two lizard species. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:787-94. [PMID: 20707448 PMCID: PMC2933256 DOI: 10.1121/1.3458813] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 05/25/2010] [Accepted: 06/02/2010] [Indexed: 05/29/2023]
Abstract
Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform in response to click stimulation showed one prominent and several smaller peaks occurring within 10 ms of the stimulus onset. ABRs to brief tone bursts revealed that geckos and anoles were most sensitive between 1.6-2 kHz and had similar hearing sensitivity up to about 5 kHz (thresholds typically 20-50 dB SPL). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than in most bird species.
Collapse
|
16
|
Hausmann L, von Campenhausen M, Wagner H. Properties of low-frequency head-related transfer functions in the barn owl (Tyto alba). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:601-12. [DOI: 10.1007/s00359-010-0546-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/26/2010] [Accepted: 06/03/2010] [Indexed: 11/30/2022]
|
17
|
Manley GA, Kraus JEM. Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. J Exp Biol 2010; 213:1876-85. [DOI: 10.1242/jeb.040196] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We describe exceptional high-frequency hearing and vocalizations in a genus of pygopod lizards (Delma) that is endemic to Australia. Pygopods are a legless subfamily of geckos and share their highly specialized hearing organ. Hearing and vocalizations of amniote vertebrates were previously thought to differ clearly in their frequency ranges according to their systematic grouping. The upper frequency limit would thus be lowest in chelonians and increasingly higher in crocodilians, lizards, birds and mammals. We report data from four Delma species (D. desmosa, D. fraseri, D. haroldi, D. pax) from the Pilbara region of Western Australia that were studied using recordings of auditory-nerve compound action potentials (CAP) under remote field conditions. Hearing limits and vocalization energy of Delma species extended to frequencies far above those reported for any other lizard group, 14 kHz and >20 kHz, respectively. Their remarkable high-frequency hearing derives from the basilar papilla, and forward masking of CAP responses suggests a unique division of labor between groups of sensory cells within the hearing organ. These data also indicate that rather than having only strictly group-specific frequency ranges, amniote vertebrate hearing is strongly influenced by species-specific physical and ecological constraints.
Collapse
Affiliation(s)
- Geoffrey A. Manley
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann-Str. 4, 85350 Freising, Germany
- School of Biomedical Sciences (Physiology), University of Western Australia, Crawley, WA 6009, Australia
| | - Johanna E. M. Kraus
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann-Str. 4, 85350 Freising, Germany
| |
Collapse
|
18
|
Wagner H, Brill S, Kempter R, Carr CE. Auditory responses in the barn owl's nucleus laminaris to clicks: impulse response and signal analysis of neurophonic potential. J Neurophysiol 2009; 102:1227-40. [PMID: 19535487 DOI: 10.1152/jn.00092.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used acoustic clicks to study the impulse response of the neurophonic potential in the barn owl's nucleus laminaris. Clicks evoked a complex oscillatory neural response with a component that reflected the best frequency measured with tonal stimuli. The envelope of this component was obtained from the analytic signal created using the Hilbert transform. The time courses of the envelope and carrier waveforms were characterized by fitting them with filters. The envelope was better fitted with a Gaussian than with the envelope of a gamma-tone function. The carrier was better fitted with a frequency glide than with a constant instantaneous frequency. The change of the instantaneous frequency with time was better fitted with a linear fit than with a saturating nonlinearity. Frequency glides had not been observed in the bird's auditory system before. The glides were similar to those observed in the mammalian auditory nerve. Response amplitude, group delay, frequency, and phase depended in a systematic way on click level. In most cases, response amplitude decreased linearly as stimulus level decreased, while group delay, phase, and frequency increased linearly as level decreased. Thus the impulse response of the neurophonic potential in the nucleus laminaris of barn owls reflects many characteristics also observed in responses of the basilar membrane and auditory nerve in mammals.
Collapse
Affiliation(s)
- Hermann Wagner
- Institute for Biology II, RWTH Aachen, D-52074 Aachen, Germany.
| | | | | | | |
Collapse
|
19
|
Köppl C, Nickel R. Prolonged maturation of cochlear function in the barn owl after hatching. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:613-24. [PMID: 17323066 DOI: 10.1007/s00359-007-0216-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/22/2007] [Accepted: 02/03/2007] [Indexed: 11/29/2022]
Abstract
Cochlear microphonics (CMs), which represent the electrical activity of hair cells, and compound action potentials (CAPs), which represent the activity of the auditory nerve, were recorded from the round window of the inner ear, in owlets aged between 5 and 97 days posthatching, i.e., from soon after hatching to beyond fledgling. At the earliest ages examined, animals showed very insensitive CM and virtually no CAP responses. Thus, hearing in barn owls develops entirely posthatching and the birds appear to be profoundly deaf well into the second week. Thresholds improved gradually after that and CMs reached their adult sensitivity at 5 weeks posthatching at all frequencies. Compound action potential responses appeared progressively later with increasing frequency. Adult neural sensitivity was achieved about 1 week later than for the CM responses at most frequencies, but took until 9-10 weeks posthatching at the highest frequencies (8-10 kHz). This indicates an apex-to-base maturation sequence of neural sensitivity within the cochlea, with a disproportionately long period to maturity for the most basal regions. Compound action potential amplitudes matured even later, at about 3 months posthatching, at all frequencies. This suggests a prolonged immaturity in the temporal synchrony of spiking in the auditory nerve.
Collapse
Affiliation(s)
- Christine Köppl
- Lehrstuhl für Zoologie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| | | |
Collapse
|