1
|
Günzel Y, Schmitz J, Dürr V. Locomotor resilience through load-dependent modulation of muscle co-contraction. J Exp Biol 2022; 225:276888. [PMID: 36039914 DOI: 10.1242/jeb.244361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Terrestrial locomotor behavior in variable environments requires resilience to sudden changes in substrate properties. For example, walking animals can adjust to substantial changes in slope and corresponding changes in load distribution among legs. In insects, slope-dependent adjustments have mainly been examined under steady-state conditions, whereas the transition dynamics have been largely neglected. In a previous study, we showed that steady-state adjustments of stick insects to ±45° slopes involve substantial changes in joint torques and muscle activity with only minor changes in leg kinematics. Here, we take a close look at the time course of these adjustments as stick insects compensate for various kinds of disturbances to load distribution. In particular, we test whether the transition from one steady state to another involves distinct transition steps or follows a graded process. To resolve this, we combined simultaneous recordings of whole-body kinematics and hind leg muscle activity to elucidate how freely walking Carausius morosus negotiated a step-change in substrate slope. Step-by-step adjustments reveal that muscle activity changed in a graded manner as a function of body pitch relative to gravity. We further show analogous transient adjustment of muscle activity in response to destabilizing lift-off events of neighboring legs and the disappearance of antagonist co-activation during crawling episodes. Given these three examples of load-dependent regulation of antagonist muscle co-contraction, we conclude that stick insects respond to both transient and sustained changes in load distribution by regulating joint stiffness rather than through distinct transition steps.
Collapse
Affiliation(s)
- Yannick Günzel
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
2
|
Arroyave-Tobon S, Drapin J, Kaniewski A, Linares JM, Moretto P. Kinematic Modeling at the Ant Scale: Propagation of Model Parameter Uncertainties. Front Bioeng Biotechnol 2022; 10:767914. [PMID: 35299633 PMCID: PMC8921731 DOI: 10.3389/fbioe.2022.767914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
Quadrupeds and hexapods are known by their ability to adapt their locomotive patterns to their functions in the environment. Computational modeling of animal movement can help to better understand the emergence of locomotive patterns and their body dynamics. Although considerable progress has been made in this subject in recent years, the strengths and limitations of kinematic simulations at the scale of small moving animals are not well understood. In response to this, this work evaluated the effects of modeling uncertainties on kinematic simulations at small scale. In order to do so, a multibody model of a Messor barbarus ant was developed. The model was built from 3D scans coming from X-ray micro-computed tomography. Joint geometrical parameters were estimated from the articular surfaces of the exoskeleton. Kinematic data of a free walking ant was acquired using high-speed synchronized video cameras. Spatial coordinates of 49 virtual markers were used to run inverse kinematics simulations using the OpenSim software. The sensitivity of the model’s predictions to joint geometrical parameters and marker position uncertainties was evaluated by means of two Monte Carlo simulations. The developed model was four times more sensitive to perturbations on marker position than those of the joint geometrical parameters. These results are of interest for locomotion studies of small quadrupeds, octopods, and other multi-legged animals.
Collapse
Affiliation(s)
- Santiago Arroyave-Tobon
- Institut Des Sciences Du Mouvement, Faculté Des Sciences Du Sport, Aix-Marseille Université, CNRS, Marseille, France
- *Correspondence: Santiago Arroyave-Tobon,
| | - Jordan Drapin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anton Kaniewski
- Institut Des Sciences Du Mouvement, Faculté Des Sciences Du Sport, Aix-Marseille Université, CNRS, Marseille, France
| | - Jean-Marc Linares
- Institut Des Sciences Du Mouvement, Faculté Des Sciences Du Sport, Aix-Marseille Université, CNRS, Marseille, France
| | - Pierre Moretto
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
3
|
Weihmann T. The Smooth Transition From Many-Legged to Bipedal Locomotion—Gradual Leg Force Reduction and its Impact on Total Ground Reaction Forces, Body Dynamics and Gait Transitions. Front Bioeng Biotechnol 2022; 9:769684. [PMID: 35186911 PMCID: PMC8855104 DOI: 10.3389/fbioe.2021.769684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Most terrestrial animals move with a specific number of propulsive legs, which differs between clades. The reasons for these differences are often unknown and rarely queried, despite the underlying mechanisms being indispensable for understanding the evolution of multilegged locomotor systems in the animal kingdom and the development of swiftly moving robots. Moreover, when speeding up, a range of species change their number of propulsive legs. The reasons for this behaviour have proven equally elusive. In animals and robots, the number of propulsive legs also has a decisive impact on the movement dynamics of the centre of mass. Here, I use the leg force interference model to elucidate these issues by introducing gradually declining ground reaction forces in locomotor apparatuses with varying numbers of leg pairs in a first numeric approach dealing with these measures’ impact on locomotion dynamics. The effects caused by the examined changes in ground reaction forces and timing thereof follow a continuum. However, the transition from quadrupedal to a bipedal locomotor system deviates from those between multilegged systems with different numbers of leg pairs. Only in quadrupeds do reduced ground reaction forces beneath one leg pair result in increased reliability of vertical body oscillations and therefore increased energy efficiency and dynamic stability of locomotion.
Collapse
|
4
|
Wöhrl T, Richter A, Guo S, Reinhardt L, Nowotny M, Blickhan R. Comparative analysis of a geometric and an adhesive righting strategy against toppling in inclined hexapedal locomotion. J Exp Biol 2021; 224:271172. [PMID: 34342358 DOI: 10.1242/jeb.242677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
Animals are known to exhibit different walking behaviors in hilly habitats. For instance, cats, rats, squirrels, tree frogs, desert iguana, stick insects and desert ants were observed to lower their body height when traversing slopes, whereas mound-dwelling iguanas and wood ants tend to maintain constant walking kinematics regardless of the slope. This paper aims to understand and classify these distinct behaviors into two different strategies against toppling for climbing animals by looking into two factors: (i) the torque of the center of gravity (CoG) with respect to the critical tipping axis, and (ii) the torque of the legs, which has the potential to counterbalance the CoG torque. Our comparative locomotion analysis on level locomotion and inclined locomotion exhibited that primarily only one of the proposed two strategies was chosen for each of our sample species, despite the fact that a combined strategy could have reduced the animal's risk of toppling over even more. We found that Cataglyphis desert ants (species Cataglyphis fortis) maintained their upright posture primarily through the adjustment of their CoG torque (geometric strategy), and Formica wood ants (species Formica rufa), controlled their posture primarily by exerting leg torques (adhesive strategy). We further provide hints that the geometric strategy employed by Cataglyphis could increase the risk of slipping on slopes as the leg-impulse substrate angle of Cataglyphis hindlegs was lower than that of Formica hindlegs. In contrast, the adhesion strategy employed by Formica front legs not only decreased the risk of toppling but also explained the steeper leg-impulse substrate angle of Formica hindlegs which should relate to more bending of the tarsal structures and therefore to more microscopic contact points, potentially reducing the risk of hindleg slipping.
Collapse
Affiliation(s)
- Toni Wöhrl
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany.,Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Adrian Richter
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | - Shihui Guo
- School of Informatics, Xiamen University, Xiamen, 361005 Fujian Province, China
| | - Lars Reinhardt
- Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | | |
Collapse
|
5
|
Weihmann T. Survey of biomechanical aspects of arthropod terrestrialisation - Substrate bound legged locomotion. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100983. [PMID: 33160205 DOI: 10.1016/j.asd.2020.100983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Arthropods are the most diverse clade on earth with regard to both species number and variability of body plans. Their general body plan is characterised by variable numbers of legs, and many-legged locomotion is an essential aspect of many aquatic and terrestrial arthropod species. Moreover, arthropods belong to the first groups of animals to colonise subaerial habitats, and they did so repeatedly and independently in a couple of clades. Those arthropod clades that colonised land habitats were equipped with highly variable body plans and locomotor apparatuses. Proceeding from their respective specific anatomies, they were challenged with strongly changing environmental conditions as well as altered physical and physiological constraints. This review explores the transitions from aquatic to terrestrial habitats across the different arthropod body plans and explains the major mechanisms and principles that constrain design and function of a range of locomotor apparatuses. Important aspects of movement physiology addressed here include the effects of different numbers of legs, different body sizes, miniaturisation and simplification of body plans and different ratios of inertial and damping forces. The article's focus is on continuous legged locomotion, but related ecological and behavioural aspects are also taken into account.
Collapse
Affiliation(s)
- Tom Weihmann
- Dept. of Animal Physiology, Institute of Zoology, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany.
| |
Collapse
|
6
|
Clifton GT, Holway D, Gravish N. Vision does not impact walking performance in Argentine ants. ACTA ACUST UNITED AC 2020; 223:223/20/jeb228460. [PMID: 33067354 DOI: 10.1242/jeb.228460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022]
Abstract
Many walking insects use vision for long-distance navigation, but the influence of vision on rapid walking performance that requires close-range obstacle detection and directing the limbs towards stable footholds remains largely untested. We compared Argentine ant (Linepithema humile) workers in light versus darkness while traversing flat and uneven terrain. In darkness, ants reduced flat-ground walking speeds by only 5%. Similarly, the approach speed and time to cross a step obstacle were not significantly affected by lack of lighting. To determine whether tactile sensing might compensate for vision loss, we tracked antennal motion and observed shifts in spatiotemporal activity as a result of terrain structure but not illumination. Together, these findings suggest that vision does not impact walking performance in Argentine ant workers. Our results help contextualize eye variation across ants, including subterranean, nocturnal and eyeless species that walk in complete darkness. More broadly, our findings highlight the importance of integrating vision, proprioception and tactile sensing for robust locomotion in unstructured environments.
Collapse
Affiliation(s)
- Glenna T Clifton
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA .,Department of Biology, University of Portland, Portland, OR 97203, USA
| | - David Holway
- Division of Biological Science, Section of Ecology, Behavior and Evolution, University of California, San Diego , La Jolla, CA 92093, USA
| | - Nicholas Gravish
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Stark AY, Yanoviak SP. Adhesion and Running Speed of a Tropical Arboreal Ant (Cephalotes atratus) on Rough, Narrow, and Inclined Substrates. Integr Comp Biol 2020; 60:829-839. [PMID: 32533841 DOI: 10.1093/icb/icaa078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Arboreal ants must navigate variably sized and inclined linear structures across a range of substrate roughness when foraging tens of meters above the ground. To achieve this, arboreal ants use specialized adhesive pads and claws to maintain effective attachment to canopy substrates. Here, we explored the effect of substrate structure, including small and large-scale substrate roughness, substrate diameter, and substrate orientation (inclination), on adhesion and running speed of workers of one common, intermediately-sized, arboreal ant species. Normal (orthogonal) and shear (parallel) adhesive performance varied on sandpaper and natural leaf substrates, particularly at small size scales, but running speed on these substrates remained relatively constant. Running speed also varied minimally when running up and down inclined substrates, except when the substrate was positioned completely vertical. On vertical surfaces, ants ran significantly faster down than up. Ant running speed was slower on relatively narrow substrates. The results of this study show that variation in the physical properties of tree surfaces differentially affects arboreal ant adhesive and locomotor performance. Specifically, locomotor performance was much more robust to surface roughness than was adhesive performance. The results provide a basis for understanding how performance correlates of functional morphology contribute to determining local ant distributions and foraging decisions in the tropical rainforest canopy.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave, Villanova, PA 19085, USA
| | - Stephen P Yanoviak
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA.,Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
8
|
Path integration in a three-dimensional world: the case of desert ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:379-387. [PMID: 32020292 PMCID: PMC7192874 DOI: 10.1007/s00359-020-01401-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/03/2022]
Abstract
Desert ants use path integration to return from foraging excursions on a shortcut way to their nests. Intriguingly, when walking over hills, the ants incorporate the ground distance, the paths’ projection to the horizontal plane, into their path integrator. This review discusses how Cataglyphis may solve this computational feat. To infer ground distance, ants must incorporate the inclination of path segments into the assessment of distance. Hair fields between various joints have been eliminated as likely sensors for slope measurement, without affecting slope detection; nor do postural adaptations or changes in gait provide the relevant information. Changes in the sky’s polarization pattern due to different head inclinations on slopes were ruled out as cues. Thus, the mechanisms by which ants may measure slopes still await clarification. Remarkably, the precision of slope measurement is roughly constant up to a 45° inclination, but breaks down at 60°. An encounter of sloped path segments during a foraging trip induces a general acceptance of slopes, however, slopes are not associated with specific values of the home vector. All current evidence suggests that Cataglyphis does not compute a vector in 3-D: path integration seems to operate exclusively in the horizontal plane.
Collapse
|
9
|
Silva-Pereyra V, Fábrica CG, Biancardi CM, Pérez-Miles F. Kinematics of male Eupalaestrus weijenberghi (Araneae, Theraphosidae) locomotion on different substrates and inclines. PeerJ 2019; 7:e7748. [PMID: 31579616 PMCID: PMC6766366 DOI: 10.7717/peerj.7748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/25/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The mechanics and energetics of spider locomotion have not been deeply investigated, despite their importance in the life of a spider. For example, the reproductive success of males of several species is dependent upon their ability to move from one area to another. The aim of this work was to describe gait patterns and analyze the gait parameters of Eupalaestrus weijenberghi (Araneae, Theraphosidae) in order to investigate the mechanics of their locomotion and the mechanisms by which they conserve energy while traversing different inclinations and surfaces. METHODS Tarantulas were collected and marked for kinematic analysis. Free displacements, both level and on an incline, were recorded using glass and Teflon as experimental surfaces. Body segments of the experimental animals were measured, weighed, and their center of mass was experimentally determined. Through reconstruction of the trajectories of the body segments, we were able to estimate their internal and external mechanical work and analyze their gait patterns. RESULTS Spiders mainly employed a walk-trot gait. Significant differences between the first two pairs and the second two pairs were detected. No significant differences were detected regarding the different planes or surfaces with respect to duty factor, time lags, stride frequency, and stride length. However, postural changes were observed on slippery surfaces. The mechanical work required for traversing a level plane was lower than expected. In all conditions, the external work, and within it the vertical work, accounted for almost all of the total mechanical work. The internal work was extremely low and did not rise as the gradient increased. DISCUSSION Our results support the idea of considering the eight limbs functionally divided into two quadrupeds in series. The anterior was composed of the first two pairs of limbs, which have an explorative and steering purpose and the posterior was more involved in supporting the weight of the body. The mechanical work to move one unit of mass a unit distance is almost constant among the different species tested. However, spiders showed lower values than expected. Minimizing the mechanical work could help to limit metabolic energy expenditure that, in small animals, is relatively very high. However, energy recovery due to inverted pendulum mechanics only accounts for only a small fraction of the energy saved. Adhesive setae present in the tarsal, scopulae, and claw tufts could contribute in different ways during different moments of the step cycle, compensating for part of the energetic cost on gradients which could also help to maintain constant gait parameters.
Collapse
Affiliation(s)
- Valentina Silva-Pereyra
- Unidad de Investigación en Biomecánica de la Locomoción Humana, Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - C Gabriel Fábrica
- Unidad de Investigación en Biomecánica de la Locomoción Humana, Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlo M. Biancardi
- Laboratorio de Biomecánica y Análisis del Movimiento, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Fernando Pérez-Miles
- Sección Entomología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Humeau A, Piñeirua M, Crassous J, Casas J. Locomotion of Ants Walking up Slippery Slopes of Granular Materials. Integr Org Biol 2019; 1:obz020. [PMID: 33791535 PMCID: PMC7671155 DOI: 10.1093/iob/obz020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many insects encounter locomotory difficulties in walking up sand inclines. This is masterfully exploited by some species for building traps from which prey are rarely able to escape, as the antlion and its deadly pit. The aim of this work is to tear apart the relative roles of granular material properties and slope steepness on the insect leg kinematics, gait patterns, and locomotory stability. For this, we used factorial manipulative experiments with different granular media inclines and the ant Aphaenogaster subterranea. Our results show that its locomotion is similar on granular and solid media, while for granular inclined slopes we observe a loss of stability followed by a gait pattern transition from tripod to metachronal. This implies that neither the discrete nature nor the roughness properties of sand alone are sufficient to explain the struggling of ants on sandy slopes: the interaction between sand properties and slope is key. We define an abnormality index that allows us to quantify the locomotory difficulties of insects walking up a granular incline. The probability of its occurrence reveals the local slipping of the granular media as a consequence of the pressure exerted by the ant's legs. Our findings can be extended to other models presenting locomotory difficulties for insects, such as slippery walls of urns of pitcher plants. How small arthropods walking on granular and brittle materials solve their unique stability trade-off will require a thorough understanding of the transfer of energy from leg to substrate at the particle level.
Collapse
Affiliation(s)
- A Humeau
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS—Université François—Rabelais, Tours 37200, France
| | - M Piñeirua
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS—Université François—Rabelais, Tours 37200, France
| | - J Crassous
- Institut de Physique de Rennes (UMR UR1–CNRS 6251), Université Rennes 1, Campus de Beaulieu, Rennes F-35042, France
| | - J Casas
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS—Université François—Rabelais, Tours 37200, France
- Institut Universitaire de France, Paris, 75231, France
| |
Collapse
|
11
|
Dallmann CJ, Dürr V, Schmitz J. Motor control of an insect leg during level and incline walking. ACTA ACUST UNITED AC 2019; 222:222/7/jeb188748. [PMID: 30944163 DOI: 10.1242/jeb.188748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
During walking, the leg motor system must continually adjust to changes in mechanical conditions, such as the inclination of the ground. To understand the underlying control, it is important to know how changes in leg muscle activity relate to leg kinematics (movements) and leg dynamics (forces, torques). Here, we studied these parameters in hindlegs of stick insects (Carausius morosus) during level and uphill/downhill (±45 deg) walking, using a combination of electromyography, 3D motion capture and ground reaction force measurements. We find that some kinematic parameters including leg joint angles and body height vary across walking conditions. However, kinematics vary little compared with dynamics: horizontal leg forces and torques at the thorax-coxa joint (leg protraction/retraction) and femur-tibia joint (leg flexion/extension) tend to be stronger during uphill walking and are reversed in sign during downhill walking. At the thorax-coxa joint, the different mechanical demands are met by adjustments in the timing and magnitude of antagonistic muscle activity. Adjustments occur primarily in the first half of stance after the touch-down of the leg. When insects transition from level to incline walking, the characteristic adjustments in muscle activity occur with the first step of the leg on the incline, but not in anticipation. Together, these findings indicate that stick insects adjust leg muscle activity on a step-by-step basis so as to maintain a similar kinematic pattern under different mechanical demands. The underlying control might rely primarily on feedback from leg proprioceptors signaling leg position and movement.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| |
Collapse
|
12
|
Motor flexibility in insects: adaptive coordination of limbs in locomotion and near-range exploration. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2412-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Weihmann T, Brun PG, Pycroft E. Speed dependent phase shifts and gait changes in cockroaches running on substrates of different slipperiness. Front Zool 2017; 14:54. [PMID: 29225659 PMCID: PMC5719566 DOI: 10.1186/s12983-017-0232-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/28/2017] [Indexed: 01/29/2023] Open
Abstract
Background Many legged animals change gaits when increasing speed. In insects, only one gait change has been documented so far, from slow walking to fast running, which is characterised by an alternating tripod. Studies on some fast-running insects suggested a further gait change at higher running speeds. Apart from speed, insect gaits and leg co-ordination have been shown to be influenced by substrate properties, but the detailed effects of speed and substrate on gait changes are still unclear. Here we investigate high-speed locomotion and gait changes of the cockroach Nauphoeta cinerea, on two substrates of different slipperiness. Results Analyses of leg co-ordination and body oscillations for straight and steady escape runs revealed that at high speeds, blaberid cockroaches changed from an alternating tripod to a rather metachronal gait, which to our knowledge, has not been described before for terrestrial arthropods. Despite low duty factors, this new gait is characterised by low vertical amplitudes of the centre of mass (COM), low vertical accelerations and presumably reduced total vertical peak forces. However, lateral amplitudes and accelerations were higher in the faster gait with reduced leg synchronisation than in the tripod gait with distinct leg synchronisation. Conclusions Temporally distributed leg force application as resulting from metachronal leg coordination at high running speeds may be particularly useful in animals with limited capabilities for elastic energy storage within the legs, as energy efficiency can be increased without the need for elasticity in the legs. It may also facilitate locomotion on slippery surfaces, which usually reduce leg force transmission to the ground. Moreover, increased temporal overlap of the stance phases of the legs likely improves locomotion control, which might result in a higher dynamic stability.
Collapse
Affiliation(s)
- Tom Weihmann
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | | | - Emily Pycroft
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| |
Collapse
|
14
|
Wöhrl T, Reinhardt L, Blickhan R. Propulsion in hexapod locomotion: how do desert ants traverse slopes? ACTA ACUST UNITED AC 2017; 220:1618-1625. [PMID: 28183867 DOI: 10.1242/jeb.137505] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/07/2017] [Indexed: 11/20/2022]
Abstract
The employment of an alternating tripod gait to traverse uneven terrains is a common characteristic shared among many Hexapoda. Because this could be one specific cause for their ecological success, we examined the alternating tripod gait of the desert ant Cataglyphis fortis together with their ground reaction forces and weight-specific leg impulses for level locomotion and on moderate (±30 deg) and steep (±60 deg) slopes in order to understand mechanical functions of individual legs during inclined locomotion. There were three main findings from the experimental data. (1) The hind legs acted as the main brake (negative weight-specific impulse in the direction of progression) on both the moderate and steep downslopes while the front legs became the main motor (positive weight-specific impulse in the direction of progression) on the steep upslope. In both cases, the primary motor or brake was found to be above the centre of mass. (2) Normalised double support durations were prolonged on steep slopes, which could enhance the effect of lateral shear loading between left and right legs with the presence of direction-dependent attachment structures. (3) The notable directional change in the lateral ground reaction forces between the moderate and steep slopes implied the utilisation of different coordination programs in the extensor-flexor system.
Collapse
Affiliation(s)
- Toni Wöhrl
- Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
| | - Lars Reinhardt
- Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
| | - Reinhard Blickhan
- Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
| |
Collapse
|
15
|
Yanoviak SP, Silveri C, Stark AY, Van Stan JT, Levia DF. Surface roughness affects the running speed of tropical canopy ants. Biotropica 2016. [DOI: 10.1111/btp.12349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Stephen P. Yanoviak
- Department of Biology University of Louisville 139 Life Sciences Building Louisville KY 40292 U.S.A
- Smithsonian Tropical Research Institute Apartado Postal 0843‐03092 Panamá Republic of Panama
| | - Cheryl Silveri
- Department of Biological Sciences University of Arkansas Fayetteville AR 72701 U.S.A
| | - Alyssa Y. Stark
- Department of Biology University of Louisville 139 Life Sciences Building Louisville KY 40292 U.S.A
| | - John T. Van Stan
- Department of Geology and Geography Georgia Southern University Statesboro GA 30460 U.S.A
| | - Delphis F. Levia
- Departments of Geography and Plant & Soil Sciences University of Delaware Newark DE 19716 U.S.A
| |
Collapse
|
16
|
Raderschall CA, Narendra A, Zeil J. Head roll stabilisation in the nocturnal bull ant Myrmecia pyriformis: implications for visual navigation. ACTA ACUST UNITED AC 2016; 219:1449-57. [PMID: 26994172 DOI: 10.1242/jeb.134049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Ant foragers are known to memorise visual scenes that allow them to repeatedly travel along idiosyncratic routes and to return to specific places. Guidance is provided by a comparison between visual memories and current views, which critically depends on how well the attitude of the visual system is controlled. Here we show that nocturnal bull ants stabilise their head to varying degrees against locomotion-induced body roll movements, and this ability decreases as light levels fall. There are always un-compensated head roll oscillations that match the frequency of the stride cycle. Head roll stabilisation involves both visual and non-visual cues as ants compensate for body roll in complete darkness and also respond with head roll movements when confronted with visual pattern oscillations. We show that imperfect head roll control degrades navigation-relevant visual information and discuss ways in which navigating ants may deal with this problem.
Collapse
Affiliation(s)
- Chloé A Raderschall
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Ajay Narendra
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia Department of Biological Sciences, Macquarie University, W19F, 205 Culloden Road, Sydney, New South Wales 2109, Australia
| | - Jochen Zeil
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
17
|
Weihmann T, Reinhardt L, Weißing K, Siebert T, Wipfler B. Fast and Powerful: Biomechanics and Bite Forces of the Mandibles in the American Cockroach Periplaneta americana. PLoS One 2015; 10:e0141226. [PMID: 26559671 PMCID: PMC4641686 DOI: 10.1371/journal.pone.0141226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
Knowing the functionality and capabilities of masticatory apparatuses is essential for the ecological classification of jawed organisms. Nevertheless insects, especially with their outstanding high species number providing an overwhelming morphological diversity, are notoriously underexplored with respect to maximum bite forces and their dependency on the mandible opening angles. Aiming for a general understanding of insect biting, we examined the generalist feeding cockroach Periplaneta americana, characterized by its primitive chewing mouth parts. We measured active isometric bite forces and passive forces caused by joint resistance over the entire mandibular range with a custom-built 2D force transducer. The opening angle of the mandibles was quantified by using a video system. With respect to the effective mechanical advantage of the mandibles and the cross-section areas, we calculated the forces exerted by the mandible closer muscles and the corresponding muscle stress values. Comparisons with the scarce data available revealed close similarities of the cockroaches' mandible closer stress values (58 N/cm2) to that of smaller specialist carnivorous ground beetles, but strikingly higher values than in larger stag beetles. In contrast to available datasets our results imply the activity of faster and slower muscle fibres, with the latter becoming active only when the animals chew on tough material which requires repetitive, hard biting. Under such circumstances the coactivity of fast and slow fibres provides a force boost which is not available during short-term activities, since long latencies prevent a specific effective employment of the slow fibres in this case.
Collapse
Affiliation(s)
- Tom Weihmann
- Dept. of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Lars Reinhardt
- Science of Motion, Friedrich Schiller University Jena, Jena, Germany
| | - Kevin Weißing
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Benjamin Wipfler
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
18
|
Ardin P, Mangan M, Wystrach A, Webb B. How variation in head pitch could affect image matching algorithms for ant navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:585-97. [PMID: 25895895 PMCID: PMC4439443 DOI: 10.1007/s00359-015-1005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 10/29/2022]
Abstract
Desert ants are a model system for animal navigation, using visual memory to follow long routes across both sparse and cluttered environments. Most accounts of this behaviour assume retinotopic image matching, e.g. recovering heading direction by finding a minimum in the image difference function as the viewpoint rotates. But most models neglect the potential image distortion that could result from unstable head motion. We report that for ants running across a short section of natural substrate, the head pitch varies substantially: by over 20 degrees with no load; and 60 degrees when carrying a large food item. There is no evidence of head stabilisation. Using a realistic simulation of the ant's visual world, we demonstrate that this range of head pitch significantly degrades image matching. The effect of pitch variation can be ameliorated by a memory bank of densely sampled along a route so that an image sufficiently similar in pitch and location is available for comparison. However, with large pitch disturbance, inappropriate memories sampled at distant locations are often recalled and navigation along a route can be adversely affected. Ignoring images obtained at extreme pitches, or averaging images over several pitches, does not significantly improve performance.
Collapse
Affiliation(s)
- Paul Ardin
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh, EH8 9AB UK
| | - Michael Mangan
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh, EH8 9AB UK
| | - Antoine Wystrach
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh, EH8 9AB UK
| | - Barbara Webb
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh, EH8 9AB UK
| |
Collapse
|
19
|
Walking and running in the desert ant Cataglyphis fortis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:645-56. [PMID: 25829304 PMCID: PMC4439428 DOI: 10.1007/s00359-015-0999-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/03/2022]
Abstract
Path integration, although inherently error-prone, is a common navigation strategy in animals, particularly where environmental orientation cues are rare. The desert ant Cataglyphis fortis is a prominent example, covering large distances on foraging excursions. The stride integrator is probably the major source of path integration errors. A detailed analysis of walking behaviour in Cataglyphis is thus of importance for assessing possible sources of errors and potential compensation strategies. Zollikofer (J Exp Biol 192:95–106, 1994a) demonstrated consistent use of the tripod gait in Cataglyphis, and suggested an unexpectedly constant stride length as a possible means of reducing navigation errors. Here, we extend these studies by more detailed analyses of walking behaviour across a large range of walking speeds. Stride length increases linearly and stride amplitude of the middle legs increases slightly linearly with walking speed. An initial decrease of swing phase duration is observed at lower velocities with increasing walking speed. Then it stays constant across the behaviourally relevant range of walking speeds. Walking speed is increased by shortening of the stance phase and of the stance phase overlap. At speeds larger than 370 mms−1, the stride frequency levels off, the duty factor falls below 0.5, and Cataglyphis transitions to running with aerial phases.
Collapse
|
20
|
Theunissen LM, Bekemeier HH, Dürr V. Comparative whole-body kinematics of closely related insect species with different body morphology. ACTA ACUST UNITED AC 2014; 218:340-52. [PMID: 25524984 DOI: 10.1242/jeb.114173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Legged locomotion through natural environments is very complex and variable. For example, leg kinematics may differ strongly between species, but even within the same species it is adaptive and context-dependent. Inter-species differences in locomotion are often difficult to interpret, because both morphological and ecological differences among species may be strong and, as a consequence, confound each other's effects. In order to understand better how body morphology affects legged locomotion, we compare unrestrained whole-body kinematics of three stick insect species with different body proportions, but similar feeding ecology: Carausius morosus, Aretaon asperrimus and Medauroidea extradentata (=Cuniculina impigra). In order to co-vary locomotory context, we introduced a gradually increasing demand for climbing by varying the height of stairs in the setup. The species were similar in many aspects, for example in using distinct classes of steps, with minor differences concerning the spread of corrective short steps. Major differences were related to antenna length, segment lengths of thorax and head, and the ratio of leg length to body length. Whereas all species continuously moved their antennae, only Medauroidea executed high swing movements with its front legs to search for obstacles in the near-range environment. Although all species adjusted their body inclination, the range in which body segments moved differed considerably, with longer thorax segments tending to be moved more. Finally, leg posture, time courses of leg joint angles and intra-leg coordination differed most strongly in long-legged Medauroidea.
Collapse
Affiliation(s)
- Leslie M Theunissen
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany Cognitive Interaction Technology - Center of Excellence, Bielefeld University, Inspiration 1, 33615 Bielefeld, Germany
| | - Holger H Bekemeier
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany Cognitive Interaction Technology - Center of Excellence, Bielefeld University, Inspiration 1, 33615 Bielefeld, Germany
| | - Volker Dürr
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany Cognitive Interaction Technology - Center of Excellence, Bielefeld University, Inspiration 1, 33615 Bielefeld, Germany
| |
Collapse
|
21
|
Reinhardt L, Blickhan R. Level locomotion in wood ants: evidence for grounded running. ACTA ACUST UNITED AC 2014; 217:2358-70. [PMID: 24744414 DOI: 10.1242/jeb.098426] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to better understand the strategies of locomotion in small insects, we have studied continuous level locomotion of the wood ant species Formica polyctena. We determined the three-dimensional centre of mass kinematics during the gait cycle and recorded the ground reaction forces of single legs utilising a self-developed test site. Our findings show that the animals used the same gait dynamics across a wide speed range without dissolving the tripodal stride pattern. To achieve higher velocities, the ants proportionally increased stride length and stepping frequency. The centre of mass energetics indicated a bouncing gait, in which horizontal kinetic and gravitational potential energy fluctuated in close phase. We determined a high degree of compliance especially in the front legs, as the effective leg length was nearly halved during the contact phase. This leads to only small vertical oscillations of the body, which are important in maintaining ground contact. Bouncing gaits without aerial phases seem to be a common strategy in small runners and can be sufficiently described by the bipedal spring-loaded inverted pendulum model. Thus, with our results, we provide evidence that wood ants perform 'grounded running'.
Collapse
Affiliation(s)
- Lars Reinhardt
- Science of Motion, Friedrich-Schiller-University Jena, Seidelstr. 20, 07749 Jena, Germany
| | - Reinhard Blickhan
- Science of Motion, Friedrich-Schiller-University Jena, Seidelstr. 20, 07749 Jena, Germany
| |
Collapse
|
22
|
Khuong A, Lecheval V, Fournier R, Blanco S, Weitz S, Bezian JJ, Gautrais J. How do ants make sense of gravity? A Boltzmann Walker analysis of Lasius niger trajectories on various inclines. PLoS One 2013; 8:e76531. [PMID: 24204636 PMCID: PMC3812222 DOI: 10.1371/journal.pone.0076531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by [Formula: see text] rad ([Formula: see text] data points). At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ([Formula: see text] segments), this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the [Formula: see text] incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines.
Collapse
Affiliation(s)
- Anaïs Khuong
- Centre de Recherche sur la Cognition Animale, Université de Toulouse, UPS, Toulouse, France
- The French National Centre for Scientific Research, CRCA, Toulouse, France
| | - Valentin Lecheval
- Centre de Recherche sur la Cognition Animale, Université de Toulouse, UPS, Toulouse, France
- The French National Centre for Scientific Research, CRCA, Toulouse, France
| | - Richard Fournier
- Laboratoire Plasma et Conversion d'Energie, Université de Toulouse, UPS, Toulouse, France
- The French National Centre for Scientific Research, Laboratoire Plasma et Conversion d'Energie, Toulouse, France
| | - Stéphane Blanco
- Laboratoire Plasma et Conversion d'Energie, Université de Toulouse, UPS, Toulouse, France
- The French National Centre for Scientific Research, Laboratoire Plasma et Conversion d'Energie, Toulouse, France
| | - Sébastian Weitz
- Laboratoire Plasma et Conversion d'Energie, Université de Toulouse, UPS, Toulouse, France
- The French National Centre for Scientific Research, Laboratoire Plasma et Conversion d'Energie, Toulouse, France
| | - Jean-Jacques Bezian
- Centre de Recherche d'Albi en Génie des Procédés des Solides Divisés, de l'Energie et de l'Environnement, Université de Toulouse, Mines Albi, France
- The French National Centre for Scientific Research, Centre de Recherche d'Albi en Génie des Procédés des Solides Divisés, de l'Energie et de l'Environnement, Albi, France
| | - Jacques Gautrais
- Centre de Recherche sur la Cognition Animale, Université de Toulouse, UPS, Toulouse, France
- The French National Centre for Scientific Research, CRCA, Toulouse, France
| |
Collapse
|
23
|
McGinley RH, Prenter J, Taylor PW. Whole-organism performance in a jumping spider,Servaea incana(Araneae: Salticidae): links with morphology and between performance traits. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rowan H. McGinley
- Department of Biological Sciences; Macquarie University; Sydney; New South Wales; Australia
| | | | - Phillip W. Taylor
- Department of Biological Sciences; Macquarie University; Sydney; New South Wales; Australia
| |
Collapse
|
24
|
Crawling at High Speeds: Steady Level Locomotion in the Spider Cupiennius salei-Global Kinematics and Implications for Centre of Mass Dynamics. PLoS One 2013; 8:e65788. [PMID: 23805189 PMCID: PMC3689776 DOI: 10.1371/journal.pone.0065788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/30/2013] [Indexed: 12/05/2022] Open
Abstract
Spiders are an old yet very successful predatory group of arthropods. Their locomotor system differs from those of most other arthropods by the lack of extensor muscles in two major leg joints. Though specific functional characteristics can be expected regarding the locomotion dynamics of spiders, this aspect of movement physiology has been only scarcely examined so far. This study presents extensive analyses of a large dataset concerning global kinematics and the implications for dynamics of adult female specimens of the large Central American spider Cupiennius salei (Keyserling). The experiments covered the entire speed-range of straight runs at constant speeds. The analyses revealed specific characteristics of velocity dependent changes in the movements of the individual legs, as well as in the translational and rotational degrees of freedom of both the centre of mass and the body. In contrast to many other fast moving arthropods, C. salei avoid vertical fluctuations of their centre of mass during fast locomotion. Accordingly, aerial phases were not observed here. This behaviour is most likely a consequence of optimising energy expenditure with regard to the specific requirements of spiders' leg anatomy. A strong synchronisation of two alternating sets of legs appears to play only a minor role in the locomotion of large spiders. Reduced frequency and low centre of mass amplitudes as well as low angular changes of the body axes, in turn, seems to be the result of relatively low leg coordination.
Collapse
|
25
|
|
26
|
Cataglyphis desert ants improve their mobility by raising the gaster. J Theor Biol 2012; 297:17-25. [DOI: 10.1016/j.jtbi.2011.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 11/18/2022]
|
27
|
Wintergerst S, Ronacher B. Discrimination of inclined path segments by the desert ant Cataglyphis fortis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:363-73. [DOI: 10.1007/s00359-012-0714-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
|
28
|
Climbing in hexapods: a plain model for heavy slopes. J Theor Biol 2012; 293:82-6. [PMID: 22019507 DOI: 10.1016/j.jtbi.2011.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
Abstract
Usually, a climbing cockroach attaches with three legs to a substrate. According to a recent model study, pulling forces underneath the front leg are required at some critical slope angle in upward locomotion. This critical angle depends on the animal's anatomy and leg positioning. In this study, we asked especially how this critical angle can be biased by one parameter that may be controlled during climbing: the body height above the substrate. We found that the typical ratio between body height and length (0.2) adopted by cockroaches is slightly higher than the very ratio (0.15) at which the critical slope angle can be increased most strongly for a given decrease in body height. In other words, it is likely that a geometrical body design of cockroaches evolved, which enables a delicate reduction in body height perfectly suitable for preventing the danger of slipping or even falling over rearwards at steepening slopes (approaching the vertical). In that sense, our model predicts, not just for hexapods but rather for any three-point climber, that taking up a low ratio of body height to the distance between the foremost and the hindmost attachment point (very crouched posture) makes body height a good parameter for climbing control.
Collapse
|
29
|
Moll K, Roces F, Federle W. Foraging grass-cutting ants (Atta vollenweideri) maintain stability by balancing their loads with controlled head movements. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:471-80. [PMID: 20473675 DOI: 10.1007/s00359-010-0535-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/27/2010] [Accepted: 04/29/2010] [Indexed: 12/01/2022]
Abstract
Grass-cutting ants (Atta vollenweideri) carry leaf fragments several times heavier and longer than the workers themselves over considerable distances back to their nest. Workers transport fragments in an upright, slightly backwards-tilted position. To investigate how they maintain stability and control the carried fragment's position, we measured head and fragment positions from video recordings. Load-transporting ants often fell over, demonstrating the biomechanical difficulty of this behavior. Long fragments were carried at a significantly steeper angle than short fragments of the same mass. Workers did not hold fragments differently between the mandibles, but performed controlled up and down head movements at the neck joint. By attaching additional mass at the fragment's tip to load-carrying ants, we demonstrated that they are able to adjust the fragment angle. When we forced ants to transport loads across inclines, workers walking uphill carried fragments at a significantly steeper angle, and downhill at a shallower angle than ants walking horizontally. However, we observed similar head movements in unladen workers, indicating a generalized reaction to slopes that may have other functions in addition to maintaining stability. Our results underline the importance of proximate, biomechanical factors for the understanding of the foraging process in leaf-cutting ants.
Collapse
Affiliation(s)
- Karin Moll
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | | | | |
Collapse
|
30
|
Seidl T, Wehner R. Walking on inclines: how do desert ants monitor slope and step length. Front Zool 2008; 5:8. [PMID: 18518946 PMCID: PMC2430559 DOI: 10.1186/1742-9994-5-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 06/02/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During long-distance foraging in almost featureless habitats desert ants of the genus Cataglyphis employ path-integrating mechanisms (vector navigation). This navigational strategy requires an egocentric monitoring of the foraging path by incrementally integrating direction, distance, and inclination of the path. Monitoring the latter two parameters involves idiothetic cues and hence is tightly coupled to the ant's locomotor behavior. RESULTS In a kinematic study of desert ant locomotion performed on differently inclined surfaces we aimed at pinpointing the relevant mechanisms of estimating step length and inclination. In a behavioral experiment with ants foraging on slippery surfaces we broke the otherwise tightly coupled relationship between stepping frequency and step length and examined the animals' ability to monitor distances covered even under those adverse conditions. We show that the ants' locomotor system is not influenced by inclined paths. After removing the effect of speed, slope had only marginal influence on kinematic parameters. CONCLUSION From the obtained data we infer that the previously proposed monitoring of angles of the thorax-coxa joint is not involved in inclinometry. Due to the tiny variations in cycle period, we also argue that an efference copy of the central pattern generator coding the step length in its output frequency will most likely not suffice for estimating step length and complementing the pedometer. Finally we propose that sensing forces acting on the ant's legs could provide the desired neuronal correlate employed in monitoring inclination and step length.
Collapse
Affiliation(s)
- Tobias Seidl
- University of Zurich, Institute of Zoology and Center of Neuroscience, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- European Space Agency, Advanced Concepts Team, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
| | - Rüdiger Wehner
- University of Zurich, Institute of Zoology and Center of Neuroscience, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|