1
|
Garcia-Saldivar P, de León C, Mendez Salcido FA, Concha L, Merchant H. White matter structural bases for phase accuracy during tapping synchronization. eLife 2024; 13:e83838. [PMID: 39230417 PMCID: PMC11483129 DOI: 10.7554/elife.83838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/30/2024] [Indexed: 09/05/2024] Open
Abstract
We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum (CC), forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the CC. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the CC define an interval-selective topography.
Collapse
Affiliation(s)
- Pamela Garcia-Saldivar
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Cynthia de León
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Felipe A Mendez Salcido
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
- International Laboratory for Brain, Music and Sound (BRAMS)MontrealCanada
| | - Hugo Merchant
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| |
Collapse
|
2
|
Li H, Wang J, Liu G, Xu J, Huang W, Song C, Wang D, Tao HW, Zhang LI, Liang F. Phasic Off responses of auditory cortex underlie perception of sound duration. Cell Rep 2021; 35:109003. [PMID: 33882311 PMCID: PMC8154544 DOI: 10.1016/j.celrep.2021.109003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
It has been proposed that sound information is separately streamed into onset and offset pathways for parallel processing. However, how offset responses contribute to auditory perception remains unclear. Here, loose-patch and whole-cell recordings in awake mouse primary auditory cortex (A1) reveal that a subset of pyramidal neurons exhibit a transient "Off" response, with its onset tightly time-locked to the sound termination and its frequency tuning similar to that of the transient "On" response. Both responses are characterized by excitation briefly followed by inhibition, with the latter mediated by parvalbumin (PV) inhibitory neurons. Optogenetically manipulating sound-evoked A1 responses at different temporal phases or artificially creating phantom sounds in A1 further reveals that the A1 phasic On and Off responses are critical for perceptual discrimination of sound duration. Our results suggest that perception of sound duration is dependent on precisely encoding its onset and offset timings by phasic On and Off responses.
Collapse
Affiliation(s)
- Haifu Li
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jian Wang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Guilong Liu
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jinfeng Xu
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Weilong Huang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Changbao Song
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Dijia Wang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Huizhong W Tao
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Feixue Liang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China.
| |
Collapse
|
3
|
Sun H, Zhang H, Ross A, Wang TT, Al-Chami A, Wu SH. Developmentally Regulated Rebound Depolarization Enhances Spike Timing Precision in Auditory Midbrain Neurons. Front Cell Neurosci 2020; 14:236. [PMID: 32848625 PMCID: PMC7424072 DOI: 10.3389/fncel.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The inferior colliculus (IC) is an auditory midbrain structure involved in processing biologically important temporal features of sounds. The responses of IC neurons to these temporal features reflect an interaction of synaptic inputs and neuronal biophysical properties. One striking biophysical property of IC neurons is the rebound depolarization produced following membrane hyperpolarization. To understand how the rebound depolarization is involved in spike timing, we made whole-cell patch clamp recordings from IC neurons in brain slices of P9-21 rats. We found that the percentage of rebound neurons was developmentally regulated. The precision of the timing of the first spike on the rebound increased when the neuron was repetitively injected with a depolarizing current following membrane hyperpolarization. The average jitter of the first spikes was only 0.5 ms. The selective T-type Ca2+ channel antagonist, mibefradil, significantly increased the jitter of the first spike of neurons in response to repetitive depolarization following membrane hyperpolarization. Furthermore, the rebound was potentiated by one to two preceding rebounds within a few hundred milliseconds. The first spike generated on the potentiated rebound was more precise than that on the non-potentiated rebound. With the addition of a calcium chelator, BAPTA, into the cell, the rebound potentiation no longer occurred, and the precision of the first spike on the rebound was not improved. These results suggest that the postinhibitory rebound mediated by T-type Ca2+ channel promotes spike timing precision in IC neurons. The rebound potentiation and precise spikes may be induced by increases in intracellular calcium levels.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hui Zhang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Alysia Ross
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Aycheh Al-Chami
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Shu Hui Wu
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
4
|
Logerot P, Smith PF, Wild M, Kubke MF. Auditory processing in the zebra finch midbrain: single unit responses and effect of rearing experience. PeerJ 2020; 8:e9363. [PMID: 32775046 PMCID: PMC7384439 DOI: 10.7717/peerj.9363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/26/2020] [Indexed: 11/26/2022] Open
Abstract
In birds the auditory system plays a key role in providing the sensory input used to discriminate between conspecific and heterospecific vocal signals. In those species that are known to learn their vocalizations, for example, songbirds, it is generally considered that this ability arises and is manifest in the forebrain, although there is no a priori reason why brainstem components of the auditory system could not also play an important part. To test this assumption, we used groups of normal reared and cross-fostered zebra finches that had previously been shown in behavioural experiments to reduce their preference for conspecific songs subsequent to cross fostering experience with Bengalese finches, a related species with a distinctly different song. The question we asked, therefore, is whether this experiential change also changes the bias in favour of conspecific song displayed by auditory midbrain units of normally raised zebra finches. By recording the responses of single units in MLd to a variety of zebra finch and Bengalese finch songs in both normally reared and cross-fostered zebra finches, we provide a positive answer to this question. That is, the difference in response to conspecific and heterospecific songs seen in normal reared zebra finches is reduced following cross-fostering. In birds the virtual absence of mammalian-like cortical projections upon auditory brainstem nuclei argues against the interpretation that MLd units change, as observed in the present experiments, as a result of top-down influences on sensory processing. Instead, it appears that MLd units can be influenced significantly by sensory inputs arising directly from a change in auditory experience during development.
Collapse
Affiliation(s)
- Priscilla Logerot
- Anatomy and Medical Imaging, University of Auckland, University of Auckland, Auckland, New Zealand
| | - Paul F. Smith
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, and Eisdell Moore Centre, University of Otago, Dunedin, New Zealand
| | - Martin Wild
- Anatomy and Medical Imaging and Eisdell Moore Centre, University of Auckland, University of Auckland, Auckland, New Zealand
| | - M. Fabiana Kubke
- Anatomy and Medical Imaging, Centre for Brain Research and Eisdell Moore Centre, University of Auckland, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Salles A, Park S, Sundar H, Macías S, Elhilali M, Moss CF. Neural Response Selectivity to Natural Sounds in the Bat Midbrain. Neuroscience 2020; 434:200-211. [PMID: 31918008 DOI: 10.1016/j.neuroscience.2019.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/29/2022]
Abstract
Little is known about the neural mechanisms that mediate differential action-selection responses to communication and echolocation calls in bats. For example, in the big brown bat, frequency modulated (FM) food-claiming communication calls closely resemble FM echolocation calls, which guide social and orienting behaviors, respectively. Using advanced signal processing methods, we identified fine differences in temporal structure of these natural sounds that appear key to auditory discrimination and behavioral decisions. We recorded extracellular potentials from single neurons in the midbrain inferior colliculus (IC) of passively listening animals, and compared responses to playbacks of acoustic signals used by bats for social communication and echolocation. We combined information obtained from spike number and spike triggered averages (STA) to reveal a robust classification of neuron selectivity for communication or echolocation calls. These data highlight the importance of temporal acoustic structure for differentiating echolocation and food-claiming social calls and point to general mechanisms of natural sound processing across species.
Collapse
Affiliation(s)
- Angeles Salles
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States.
| | - Sangwook Park
- Department of Electrical and Computer Engineering, Johns Hopkins University, United States
| | - Harshavardhan Sundar
- Department of Electrical and Computer Engineering, Johns Hopkins University, United States
| | - Silvio Macías
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| | - Mounya Elhilali
- Department of Electrical and Computer Engineering, Johns Hopkins University, United States
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| |
Collapse
|
6
|
Valdizón-Rodríguez R, Kovaleva D, Faure PA. Effect of sound pressure level on contralateral inhibition underlying duration-tuned neurons in the mammalian inferior colliculus. J Neurophysiol 2019; 122:184-202. [PMID: 31017836 DOI: 10.1152/jn.00653.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Duration tuning in the mammalian inferior colliculus (IC) is created by the interaction of excitatory and inhibitory synaptic inputs. We used extracellular recordings and paired tone stimulation to measure the strength and time course of the contralateral inhibition underlying duration-tuned neurons (DTNs) in the IC of the awake bat. The onset time of a short, best duration (BD), excitatory probe tone set to +10 dB (re threshold) was varied relative to the onset of a longer-duration, nonexcitatory (NE) suppressor tone whose sound pressure level (SPL) was varied. Spikes evoked by the roving BD tone were suppressed when the stationary NE tone amplitude was at or above the BD tone threshold. When the NE tone was increased from 0 to +10 dB, the inhibitory latency became shorter than the excitatory first-spike latency and the duration of inhibition increased, but no further changes occurred at +20 dB (re BD tone threshold). We used the effective duration of inhibition as a function of the NE tone amplitude to obtain suppression-level functions that were used to estimate the inhibitory half-maximum SPL (ISPL50). We also measured rate-level functions of DTNs with single BD tones varied in SPL and modeled the excitatory half-maximum SPL (ESPL50). There was a correlation between the ESPL50 and ISPL50, and the dynamic range of excitation and inhibition were similar. We conclude that the strength of inhibition changes in proportion to excitation as a function of SPL, and this feature likely contributes to the amplitude tolerance of the responses of DTNs. NEW & NOTEWORTHY Duration-tuned neurons arise from excitatory and inhibitory synaptic inputs offset in time. We measured the strength and time course of inhibition to changes in sound level. The onset of inhibition shortened while its duration lengthened as the stimulus level increased from 0 to +10 dB re threshold; however, no further changes were observed at +20 dB. Excitatory rate-level and inhibitory suppression-level response functions were strongly correlated, suggesting a mechanism for level tolerance in duration tuning.
Collapse
Affiliation(s)
| | - Dominika Kovaleva
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario , Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
7
|
Slow NMDA-Mediated Excitation Accelerates Offset-Response Latencies Generated via a Post-Inhibitory Rebound Mechanism. eNeuro 2019; 6:ENEURO.0106-19.2019. [PMID: 31152098 PMCID: PMC6584069 DOI: 10.1523/eneuro.0106-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 01/03/2023] Open
Abstract
In neural circuits, action potentials (spikes) are conventionally caused by excitatory inputs whereas inhibitory inputs reduce or modulate neuronal excitability. We previously showed that neurons in the superior paraolivary nucleus (SPN) require solely synaptic inhibition to generate their hallmark offset response, a burst of spikes at the end of a sound stimulus, via a post-inhibitory rebound mechanism. In addition SPN neurons receive excitatory inputs, but their functional significance is not yet known. Here we used mice of both sexes to demonstrate that in SPN neurons, the classical roles for excitation and inhibition are switched, with inhibitory inputs driving spike firing and excitatory inputs modulating this response. Hodgkin–Huxley modeling suggests that a slow, NMDA receptor (NMDAR)-mediated excitation would accelerate the offset response. We find corroborating evidence from in vitro and in vivo recordings that lack of excitation prolonged offset-response latencies and rendered them more variable to changing sound intensity levels. Our results reveal an unsuspected function for slow excitation in improving the timing of post-inhibitory rebound firing even when the firing itself does not depend on excitation. This shows the auditory system employs highly specialized mechanisms to encode timing-sensitive features of sound offsets which are crucial for sound-duration encoding and have profound biological importance for encoding the temporal structure of speech.
Collapse
|
8
|
Heron J, Fulcher C, Collins H, Whitaker D, Roach NW. Adaptation reveals multi-stage coding of visual duration. Sci Rep 2019; 9:3016. [PMID: 30816131 PMCID: PMC6395619 DOI: 10.1038/s41598-018-37614-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 11/09/2022] Open
Abstract
In conflict with historically dominant models of time perception, recent evidence suggests that the encoding of our environment's temporal properties may not require a separate class of neurons whose raison d'être is the dedicated processing of temporal information. If true, it follows that temporal processing should be imbued with the known selectivity found within non-temporal neurons. In the current study, we tested this hypothesis for the processing of a poorly understood stimulus parameter: visual event duration. We used sensory adaptation techniques to generate duration aftereffects: bidirectional distortions of perceived duration. Presenting adapting and test durations to the same vs different eyes utilises the visual system's anatomical progression from monocular, pre-cortical neurons to their binocular, cortical counterparts. Duration aftereffects exhibited robust inter-ocular transfer alongside a small but significant contribution from monocular mechanisms. We then used novel stimuli which provided duration information that was invisible to monocular neurons. These stimuli generated robust duration aftereffects which showed partial selectivity for adapt-test changes in retinal disparity. Our findings reveal distinct duration encoding mechanisms at monocular, depth-selective and depth-invariant stages of the visual hierarchy.
Collapse
Affiliation(s)
- James Heron
- Bradford School of Optometry and Vision Science, University of Bradford, BD7 1DP, Bradford, UK.
| | - Corinne Fulcher
- Bradford School of Optometry and Vision Science, University of Bradford, BD7 1DP, Bradford, UK
| | - Howard Collins
- Bradford School of Optometry and Vision Science, University of Bradford, BD7 1DP, Bradford, UK
| | - David Whitaker
- School of Optometry & Vision Sciences Maindy Road, Cathays, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Neil W Roach
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
9
|
Kopp-Scheinpflug C, Sinclair JL, Linden JF. When Sound Stops: Offset Responses in the Auditory System. Trends Neurosci 2018; 41:712-728. [DOI: 10.1016/j.tins.2018.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/17/2022]
|
10
|
Morrison JA, Valdizón-Rodríguez R, Goldreich D, Faure PA. Tuning for rate and duration of frequency-modulated sweeps in the mammalian inferior colliculus. J Neurophysiol 2018; 120:985-997. [DOI: 10.1152/jn.00065.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses of auditory duration-tuned neurons (DTNs) are selective for stimulus duration. We used single-unit extracellular recording to investigate how the inferior colliculus (IC) encodes frequency-modulated (FM) sweeps in the big brown bat. It was unclear whether the responses of so-called “FM DTNs” encode signal duration, like classic pure-tone DTNs, or the FM sweep rate. Most FM cells had spiking responses selective for downward FM sweeps. We presented cells with linear FM sweeps whose center frequency (CEF) was set to the best excitatory frequency and whose bandwidth (BW) maximized the spike count. With these baseline parameters, we stimulated cells with linear FM sweeps randomly varied in duration to measure the range of excitatory FM durations and/or sweep rates. To separate FM rate and FM duration tuning, we doubled (and halved) the BW of the baseline FM stimulus while keeping the CEF constant and then recollected each cell’s FM duration tuning curve. If the cell was tuned to FM duration, then the best duration (or range of excitatory durations) should remain constant despite changes in signal BW; however, if the cell was tuned to the FM rate, then the best duration should covary with the same FM rate at each BW. A Bayesian model comparison revealed that the majority of neurons were tuned to the FM sweep rate, although a few cells showed tuning for FM duration. We conclude that the dominant parameter for temporal tuning of FM neurons in the IC is FM sweep rate and not FM duration. NEW & NOTEWORTHY Reports of inferior colliculus neurons with response selectivity to the duration of frequency-modulated (FM) stimuli exist, yet it remains unclear whether such cells are tuned to the FM duration or the FM sweep rate. To disambiguate these hypotheses, we presented neurons with variable-duration FM signals that were systematically manipulated in bandwidth. A Bayesian model comparison revealed that most temporally selective midbrain cells were tuned to the FM sweep rate and not the FM duration.
Collapse
Affiliation(s)
- James A. Morrison
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | | | - Daniel Goldreich
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Paul A. Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
The Synaptic Properties of Cells Define the Hallmarks of Interval Timing in a Recurrent Neural Network. J Neurosci 2018; 38:4186-4199. [PMID: 29615484 DOI: 10.1523/jneurosci.2651-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 11/21/2022] Open
Abstract
Extensive research has described two key features of interval timing. The bias property is associated with accuracy and implies that time is overestimated for short intervals and underestimated for long intervals. The scalar property is linked to precision and states that the variability of interval estimates increases as a function of interval duration. The neural mechanisms behind these properties are not well understood. Here we implemented a recurrent neural network that mimics a cortical ensemble and includes cells that show paired-pulse facilitation and slow inhibitory synaptic currents. The network produces interval selective responses and reproduces both bias and scalar properties when a Bayesian decoder reads its activity. Notably, the interval-selectivity, timing accuracy, and precision of the network showed complex changes as a function of the decay time constants of the modeled synaptic properties and the level of background activity of the cells. These findings suggest that physiological values of the time constants for paired-pulse facilitation and GABAb, as well as the internal state of the network, determine the bias and scalar properties of interval timing.SIGNIFICANCE STATEMENT Timing is a fundamental element of complex behavior, including music and language. Temporal processing in a wide variety of contexts shows two primary features: time estimates exhibit a shift toward the mean (the bias property) and are more variable for longer intervals (the scalar property). We implemented a recurrent neural network that includes long-lasting synaptic currents, which cannot only produce interval-selective responses but also follow the bias and scalar properties. Interestingly, only physiological values of the time constants for paired-pulse facilitation and GABAb, as well as intermediate background activity within the network can reproduce the two key features of interval timing.
Collapse
|
12
|
|
13
|
Fulcher C, McGraw PV, Roach NW, Whitaker D, Heron J. Object size determines the spatial spread of visual time. Proc Biol Sci 2017; 283:rspb.2016.1024. [PMID: 27466452 PMCID: PMC4971211 DOI: 10.1098/rspb.2016.1024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 11/12/2022] Open
Abstract
A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast with the orderly arrangement of neurons tasked with spatial processing. In this study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate after-effects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus' duration. Our results indicate that these after-effects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus-the larger the adapting stimulus the greater the spatial spread of the after-effect. We construct a simple model to test predictions based on overlapping adapted versus non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self-scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing.
Collapse
Affiliation(s)
- Corinne Fulcher
- Bradford School of Optometry and Vision Science, University of Bradford, BD7 1DP Bradford, UK
| | - Paul V McGraw
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Neil W Roach
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham NG7 2RD, UK
| | - David Whitaker
- School of Optometry and Vision Sciences, University of Cardiff, Maindy Road, Cathays, Cardiff CF24 4HQ, UK
| | - James Heron
- Bradford School of Optometry and Vision Science, University of Bradford, BD7 1DP Bradford, UK
| |
Collapse
|
14
|
The effects of stimulus parameters on auditory evoked potentials of Carassius auratus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:945-951. [PMID: 28836038 DOI: 10.1007/s00359-017-1207-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Whole-brain responses to sound are easily measured through auditory evoked potentials (AEP), but it is unclear how differences in experimental parameters affect these responses. The effect of varying parameters is especially unclear in fish studies, the majority of which use simple sound types and then extrapolate to natural conditions. The current study investigated AEPs in goldfish (Carassius auratus) using sounds of different durations (5, 10, and 20 ms) and frequencies (200, 500, 600 and 700 Hz) to test stimulus effects on latency and thresholds. We quantified differences in latency and threshold in comparison to a 10-ms test tone, a duration often used in AEP fish studies. Both response latency and threshold were significantly affected by stimulus duration, with latency patterning suggesting that AEP fires coincident with a decrease in stimulus strength. Response latency was also significantly affected by presentation frequency. These results show that stimulus type has important effects on AEP measures of hearing and call for clearer standards across different measures of AEP. Duration effects also suggest that AEP measures represent summed responses of duration-detecting neural circuit, but more effort is needed to understand the neural drivers of this commonly used technique.
Collapse
|
15
|
Valdizón-Rodríguez R, Faure PA. Frequency tuning of synaptic inhibition underlying duration-tuned neurons in the mammalian inferior colliculus. J Neurophysiol 2017; 117:1636-1656. [PMID: 28100657 PMCID: PMC5380776 DOI: 10.1152/jn.00807.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 11/22/2022] Open
Abstract
Inhibition plays an important role in creating the temporal response properties of duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC). Neurophysiological and computational studies indicate that duration selectivity in the IC is created through the convergence of excitatory and inhibitory synaptic inputs offset in time. We used paired-tone stimulation and extracellular recording to measure the frequency tuning of the inhibition acting on DTNs in the IC of the big brown bat (Eptesicus fuscus). We stimulated DTNs with pairs of tones differing in duration, onset time, and frequency. The onset time of a short, best-duration (BD), probe tone set to the best excitatory frequency (BEF) was varied relative to the onset of a longer-duration, nonexcitatory (NE) tone whose frequency was varied. When the NE tone frequency was near or within the cell's excitatory bandwidth (eBW), BD tone-evoked spikes were suppressed by an onset-evoked inhibition. The onset of the spike suppression was independent of stimulus frequency, but both the offset and duration of the suppression decreased as the NE tone frequency departed from the BEF. We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found that the BIF closely matched the BEF, but the iBW was broader and usually overlapped the eBW measured from the same cell. These data suggest that temporal selectivity of midbrain DTNs is created and preserved by having cells receive an onset-evoked, constant-latency, broadband inhibition that largely overlaps the cell's excitatory receptive field. We conclude by discussing possible neural sources of the inhibition.NEW & NOTEWORTHY Duration-tuned neurons (DTNs) arise from temporally offset excitatory and inhibitory synaptic inputs. We used single-unit recording and paired-tone stimulation to measure the spectral tuning of the inhibitory inputs to DTNs. The onset of inhibition was independent of stimulus frequency; the offset and duration of inhibition systematically decreased as the stimulus departed from the cell's best excitatory frequency. Best inhibitory frequencies matched best excitatory frequencies; however, inhibitory bandwidths were more broadly tuned than excitatory bandwidths.
Collapse
Affiliation(s)
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Macías S, Hechavarría JC, Kössl M. Sharp temporal tuning in the bat auditory midbrain overcomes spectral-temporal trade-off imposed by cochlear mechanics. Sci Rep 2016; 6:29129. [PMID: 27374258 PMCID: PMC4931582 DOI: 10.1038/srep29129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/15/2016] [Indexed: 11/23/2022] Open
Abstract
In the cochlea of the mustached bat, cochlear resonance produces extremely sharp frequency tuning to the dominant frequency of the echolocation calls, around 61 kHz. Such high frequency resolution in the cochlea is accomplished at the expense of losing temporal resolution because of cochlear ringing, an effect that is observable not only in the cochlea but also in the cochlear nucleus. In the midbrain, the duration of sounds is thought to be analyzed by duration-tuned neurons, which are selective to both stimulus duration and frequency. We recorded from 57 DTNs in the auditory midbrain of the mustached bat to assess if a spectral-temporal trade-off is present. Such spectral-temporal trade-off is known to occur as sharp tuning in the frequency domain which results in poorer resolution in the time domain, and vice versa. We found that a specialized sub-population of midbrain DTNs tuned to the bat's mechanical cochlear resonance frequency escape the cochlear spectral-temporal trade-off. We also show evidence that points towards an underlying neuronal inhibition that appears to be specific only at the resonance frequency.
Collapse
Affiliation(s)
- Silvio Macías
- Institut für Zellbiologie und Neurowissenschaft, Goethe Universität Frankfurt am Main, Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe Universität Frankfurt am Main, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe Universität Frankfurt am Main, Germany
| |
Collapse
|
17
|
Phasic, suprathreshold excitation and sustained inhibition underlie neuronal selectivity for short-duration sounds. Proc Natl Acad Sci U S A 2016; 113:E1927-35. [PMID: 26976602 DOI: 10.1073/pnas.1520971113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sound duration is important in acoustic communication, including speech recognition in humans. Although duration-selective auditory neurons have been found, the underlying mechanisms are unclear. To investigate these mechanisms we combined in vivo whole-cell patch recordings from midbrain neurons, extraction of excitatory and inhibitory conductances, and focal pharmacological manipulations. We show that selectivity for short-duration stimuli results from integration of short-latency, sustained inhibition with delayed, phasic excitation; active membrane properties appeared to amplify responses to effective stimuli. Blocking GABAA receptors attenuated stimulus-related inhibition, revealed suprathreshold excitation at all stimulus durations, and decreased short-pass selectivity without changing resting potentials. Blocking AMPA and NMDA receptors to attenuate excitation confirmed that inhibition tracks stimulus duration and revealed no evidence of postinhibitory rebound depolarization inherent to coincidence models of duration selectivity. These results strongly support an anticoincidence mechanism of short-pass selectivity, wherein inhibition and suprathreshold excitation show greatest temporal overlap for long duration stimuli.
Collapse
|
18
|
Naud R, Houtman D, Rose GJ, Longtin A. Counting on dis-inhibition: a circuit motif for interval counting and selectivity in the anuran auditory system. J Neurophysiol 2015; 114:2804-15. [PMID: 26334004 DOI: 10.1152/jn.00138.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023] Open
Abstract
Information can be encoded in the temporal patterning of spikes. How the brain reads these patterns is of general importance and represents one of the greatest challenges in neuroscience. We addressed this issue in relation to temporal pattern recognition in the anuran auditory system. Many species of anurans perform mating decisions based on the temporal structure of advertisement calls. One important temporal feature is the number of sound pulses that occur with a species-specific interpulse interval. Neurons representing this pulse count have been recorded in the anuran inferior colliculus, but the mechanisms underlying their temporal selectivity are incompletely understood. Here, we construct a parsimonious model that can explain the key dynamical features of these cells with biologically plausible elements. We demonstrate that interval counting arises naturally when combining interval-selective inhibition with pulse-per-pulse excitation having both fast- and slow-conductance synapses. Interval-dependent inhibition is modeled here by a simple architecture based on known physiology of afferent nuclei. Finally, we consider simple implementations of previously proposed mechanistic explanations for these counting neurons and show that they do not account for all experimental observations. Our results demonstrate that tens of millisecond-range temporal selectivities can arise from simple connectivity motifs of inhibitory neurons, without recourse to internal clocks, spike-frequency adaptation, or appreciable short-term plasticity.
Collapse
Affiliation(s)
- Richard Naud
- Department of Physics, University of Ottawa, Ottawa, Canada; and
| | - Dave Houtman
- Department of Physics, University of Ottawa, Ottawa, Canada; and
| | - Gary J Rose
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Canada; and
| |
Collapse
|
19
|
Level-tolerant duration selectivity in the auditory cortex of the velvety free-tailed bat Molossus molossus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:461-70. [DOI: 10.1007/s00359-015-0993-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 11/26/2022]
|
20
|
Malone BJ, Scott BH, Semple MN. Diverse cortical codes for scene segmentation in primate auditory cortex. J Neurophysiol 2015; 113:2934-52. [PMID: 25695655 DOI: 10.1152/jn.01054.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022] Open
Abstract
The temporal coherence of amplitude fluctuations is a critical cue for segmentation of complex auditory scenes. The auditory system must accurately demarcate the onsets and offsets of acoustic signals. We explored how and how well the timing of onsets and offsets of gated tones are encoded by auditory cortical neurons in awake rhesus macaques. Temporal features of this representation were isolated by presenting otherwise identical pure tones of differing durations. Cortical response patterns were diverse, including selective encoding of onset and offset transients, tonic firing, and sustained suppression. Spike train classification methods revealed that many neurons robustly encoded tone duration despite substantial diversity in the encoding process. Excellent discrimination performance was achieved by neurons whose responses were primarily phasic at tone offset and by those that responded robustly while the tone persisted. Although diverse cortical response patterns converged on effective duration discrimination, this diversity significantly constrained the utility of decoding models referenced to a spiking pattern averaged across all responses or averaged within the same response category. Using maximum likelihood-based decoding models, we demonstrated that the spike train recorded in a single trial could support direct estimation of stimulus onset and offset. Comparisons between different decoding models established the substantial contribution of bursts of activity at sound onset and offset to demarcating the temporal boundaries of gated tones. Our results indicate that relatively few neurons suffice to provide temporally precise estimates of such auditory "edges," particularly for models that assume and exploit the heterogeneity of neural responses in awake cortex.
Collapse
Affiliation(s)
- Brian J Malone
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California;
| | - Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health/National Institutes of Health, Bethesda, Maryland; and
| | - Malcolm N Semple
- Center for Neural Science at New York University, New York, New York
| |
Collapse
|
21
|
Rocha-Muniz CN, Befi-Lopes DM, Schochat E. Sensitivity, specificity and efficiency of speech-evoked ABR. Hear Res 2014; 317:15-22. [PMID: 25262622 DOI: 10.1016/j.heares.2014.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/29/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
We determined the sensitivity, specificity and efficiency of speech-evoked Auditory Brainstem Response (ABR) as a diagnostic support for Auditory Processing Disorder (APD) and specific language impairment (SLI). Speech-evoked ABRs were elicited using the five-formant syllable/da/. The waveforms V, A, C, D, E, F, and O of all groups were analyzed. The sensitivity and specificity were calculated, and receiver operating characteristic analyses were performed to determine the optimum cut-off. Seventy-five children who were native speakers of Brazilian-Portuguese participated. The participants included 25 children with APD, 25 children with SLI and 25 with typical development. Statistical analysis demonstrated a cut-off for latency values of 6.48, 7.51, 17.82, 22.33, 30.79, 39.54 and 48.00 for V, A, C, D, E, F, and O waves, respectively. The A wave exhibited superior balance for the APD group. For the SLI group, the A, D and O waves exhibited the best balance. Furthermore, when analyzing the APD and SLI groups separately, better sensitivity values were observed for the SLI group than the APD group. Speech-evoked ABR is a useful test to identify auditory processing disorders and language impairment. Furthermore, this study represented an important step forward in establishing the clinical utility of speech-evoked ABR in Brazilian Portuguese-speaking children.
Collapse
Affiliation(s)
| | | | - Eliane Schochat
- University of Sao Paulo School of Medicine (USP), São Paulo, Brazil
| |
Collapse
|
22
|
Aubie B, Sayegh R, Fremouw T, Covey E, Faure PA. Decoding stimulus duration from neural responses in the auditory midbrain. J Neurophysiol 2014; 112:2432-45. [PMID: 25122706 DOI: 10.1152/jn.00360.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons with responses selective for the duration of an auditory stimulus are called duration-tuned neurons (DTNs). Temporal specificity in their spiking suggests that one function of DTNs is to encode stimulus duration; however, the efficacy of duration encoding by DTNs has yet to be investigated. Herein, we characterize the information content of individual cells and a population of DTNs from the mammalian inferior colliculus (IC) by measuring the stimulus-specific information (SSI) and estimated Fisher information (FI) of spike count responses. We found that SSI was typically greatest for those stimulus durations that evoked maximum spike counts, defined as best duration (BD) stimuli, and that FI was maximal for stimulus durations off BD where sensitivity to a change in duration was greatest. Using population data, we demonstrate that a maximum likelihood estimator (MLE) can accurately decode stimulus duration from evoked spike counts. We also simulated a two-alternative forced choice task by having MLE models decide whether two durations were the same or different. With this task we measured the just-noticeable difference threshold for stimulus duration and calculated the corresponding Weber fractions across the stimulus domain. Altogether, these results demonstrate that the spiking responses of DTNs from the mammalian IC contain sufficient information for the CNS to encode, decode, and discriminate behaviorally relevant auditory signal durations.
Collapse
Affiliation(s)
- Brandon Aubie
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Riziq Sayegh
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Thane Fremouw
- Department of Psychology, University of Maine, Orono, Maine; and
| | - Ellen Covey
- Department of Psychology, University of Washington, Seattle, Washington
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada;
| |
Collapse
|
23
|
Sayegh R, Aubie B, Faure PA. Dichotic sound localization properties of duration-tuned neurons in the inferior colliculus of the big brown bat. Front Physiol 2014; 5:215. [PMID: 24959149 PMCID: PMC4050336 DOI: 10.3389/fphys.2014.00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/20/2014] [Indexed: 11/13/2022] Open
Abstract
Electrophysiological studies on duration-tuned neurons (DTNs) from the mammalian auditory midbrain have typically evoked spiking responses from these cells using monaural or free-field acoustic stimulation focused on the contralateral ear, with fewer studies devoted to examining the electrophysiological properties of duration tuning using binaural stimulation. Because the inferior colliculus (IC) receives convergent inputs from lower brainstem auditory nuclei that process sounds from each ear, many midbrain neurons have responses shaped by binaural interactions and are selective to binaural cues important for sound localization. In this study, we used dichotic stimulation to vary interaural level difference (ILD) and interaural time difference (ITD) acoustic cues and explore the binaural interactions and response properties of DTNs and non-DTNs from the IC of the big brown bat (Eptesicus fuscus). Our results reveal that both DTNs and non-DTNs can have responses selective to binaural stimulation, with a majority of IC neurons showing some type of ILD selectivity, fewer cells showing ITD selectivity, and a number of neurons showing both ILD and ITD selectivity. This study provides the first demonstration that the temporally selective responses of DTNs from the vertebrate auditory midbrain can be selective to binaural cues used for sound localization in addition to having spiking responses that are selective for stimulus frequency, amplitude, and duration.
Collapse
Affiliation(s)
- Riziq Sayegh
- McMaster Batlab, Department of Psychology, Neuroscience & Behaviour, McMaster University Hamilton, ON, Canada
| | - Brandon Aubie
- McMaster Batlab, Department of Psychology, Neuroscience & Behaviour, McMaster University Hamilton, ON, Canada
| | - Paul A Faure
- McMaster Batlab, Department of Psychology, Neuroscience & Behaviour, McMaster University Hamilton, ON, Canada
| |
Collapse
|
24
|
Morrison JA, Farzan F, Fremouw T, Sayegh R, Covey E, Faure PA. Organization and trade-off of spectro-temporal tuning properties of duration-tuned neurons in the mammalian inferior colliculus. J Neurophysiol 2014; 111:2047-60. [PMID: 24572091 DOI: 10.1152/jn.00850.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons throughout the mammalian central auditory pathway respond selectively to stimulus frequency and amplitude, and some are also selective for stimulus duration. First found in the auditory midbrain or inferior colliculus (IC), these duration-tuned neurons (DTNs) provide a potential neural mechanism for encoding temporal features of sound. In this study, we investigated how having an additional neural response filter, one selective to the duration of an auditory stimulus, influences frequency tuning and neural organization by recording single-unit responses and measuring the dorsal-ventral position and spectral-temporal tuning properties of auditory DTNs from the IC of the awake big brown bat (Eptesicus fuscus). Like other IC neurons, DTNs were tonotopically organized and had either V-shaped, U-shaped, or O-shaped frequency tuning curves (excitatory frequency response areas). We hypothesized there would be an interaction between frequency and duration tuning in DTNs, as electrical engineering theory for resonant filters dictates a trade-off in spectral-temporal resolution: sharp tuning in the frequency domain results in poorer resolution in the time domain and vice versa. While the IC is a more complex signal analyzer than an electrical filter, a similar operational trade-off could exist in the responses of DTNs. Our data revealed two patterns of spectro-temporal sensitivity and spatial organization within the IC: DTNs with sharp frequency tuning and broad duration tuning were located in the dorsal IC, whereas cells with wide spectral tuning and narrow temporal tuning were found in the ventral IC.
Collapse
Affiliation(s)
- James A Morrison
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Faranak Farzan
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Thane Fremouw
- Department of Psychology, University of Maine, Orono, Maine; and
| | - Riziq Sayegh
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Ellen Covey
- Department of Psychology, University of Washington, Seattle, Washington
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada;
| |
Collapse
|
25
|
Abstract
AbstractOffset neurons which respond to the termination of the sound stimulation may play important roles in auditory temporal information processing, sound signal recognition, and complex distinction. Two additional possible mechanisms were reviewed: neural inhibition and the intrinsic conductance property of offset neuron membranes. The underlying offset response was postulated to be located in the superior paraolivary nucleus of mice. The biological significance of the offset neurons was discussed as well.
Collapse
|
26
|
Heron J, Hotchkiss J, Aaen-Stockdale C, Roach NW, Whitaker D. A neural hierarchy for illusions of time: duration adaptation precedes multisensory integration. J Vis 2013; 13:13.14.4. [PMID: 24306853 DOI: 10.1167/13.14.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Perceived time is inherently malleable. For example, adaptation to relatively long or short sensory events leads to a repulsive aftereffect such that subsequent events appear to be contracted or expanded (duration adaptation). Perceived visual duration can also be distorted via concurrent presentation of discrepant auditory durations (multisensory integration). The neural loci of both distortions remain unknown. In the current study we use a psychophysical approach to establish their relative positioning within the sensory processing hierarchy. We show that audiovisual integration induces marked distortions of perceived visual duration. We proceed to use these distorted durations as visual adapting stimuli yet find subsequent visual duration aftereffects to be consistent with physical rather than perceived visual duration. Conversely, the concurrent presentation of adapted auditory durations with nonadapted visual durations results in multisensory integration patterns consistent with perceived, rather than physical, auditory duration. These results demonstrate that recent sensory history modifies human duration perception prior to the combination of temporal information across sensory modalities and provides support for adaptation mechanisms mediated by duration selective neurons situated in early areas of the visual and auditory nervous system (Aubie, Sayegh, & Faure, 2012; Duysens, Schaafsma, & Orban, 1996; Leary, Edwards, & Rose, 2008).
Collapse
Affiliation(s)
- James Heron
- Bradford School of Optometry and Vision Science, University of Bradford, Bradford, UK
| | | | | | | | | |
Collapse
|
27
|
Lyons-Warren AM, Kohashi T, Mennerick S, Carlson BA. Detection of submillisecond spike timing differences based on delay-line anticoincidence detection. J Neurophysiol 2013; 110:2295-311. [PMID: 23966672 DOI: 10.1152/jn.00444.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Detection of submillisecond interaural timing differences is the basis for sound localization in reptiles, birds, and mammals. Although comparative studies reveal that different neural circuits underlie this ability, they also highlight common solutions to an inherent challenge: processing information on timescales shorter than an action potential. Discrimination of small timing differences is also important for species recognition during communication among mormyrid electric fishes. These fishes generate a species-specific electric organ discharge (EOD) that is encoded into submillisecond-to-millisecond timing differences between receptors. Small, adendritic neurons (small cells) in the midbrain are thought to analyze EOD waveform by comparing these differences in spike timing, but direct recordings from small cells have been technically challenging. In the present study we use a fluorescent labeling technique to obtain visually guided extracellular recordings from individual small cell axons. We demonstrate that small cells receive 1-2 excitatory inputs from 1 or more receptive fields with latencies that vary by over 10 ms. This wide range of excitatory latencies is likely due to axonal delay lines, as suggested by a previous anatomic study. We also show that inhibition of small cells from a calyx synapse shapes stimulus responses in two ways: through tonic inhibition that reduces spontaneous activity and through precisely timed, stimulus-driven, feed-forward inhibition. Our results reveal a novel delay-line anticoincidence detection mechanism for processing submillisecond timing differences, in which excitatory delay lines and precisely timed inhibition convert a temporal code into a population code.
Collapse
|
28
|
Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N. Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2013; 56:31-43. [PMID: 22761320 PMCID: PMC3648418 DOI: 10.1044/1092-4388(2012/12-0043)] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PURPOSE To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) and pure-tone hearing thresholds. METHOD Participants included 111 middle- to older-age adults (range = 45-78) with audiometric configurations ranging from normal hearing levels to moderate sensorineural hearing loss. In addition to using audiometric testing, the authors also used such evaluation measures as the QuickSIN, the SSQ, and the cABR. RESULTS Multiple linear regression analysis indicated that the inclusion of brainstem variables in a model with QuickSIN, hearing thresholds, and age accounted for 30% of the variance in the Speech subtest of the SSQ, compared with significantly less variance (19%) when brainstem variables were not included. CONCLUSION The authors' results demonstrate the cABR's efficacy for predicting self-reported speech-in-noise perception difficulties. The fact that the cABR predicts more variance in self-reported speech-in-noise (SIN) perception than either the QuickSIN or hearing thresholds indicates that the cABR provides additional insight into an individual's ability to hear in background noise. In addition, the findings underscore the link between the cABR and hearing in noise.
Collapse
Affiliation(s)
- Samira Anderson
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA.
| | | | | | | |
Collapse
|
29
|
Lyons-Warren AM, Hollmann M, Carlson BA. Sensory receptor diversity establishes a peripheral population code for stimulus duration at low intensities. ACTA ACUST UNITED AC 2012; 215:2586-600. [PMID: 22786635 DOI: 10.1242/jeb.064733] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Peripheral filtering is a fundamental mechanism for establishing frequency tuning in sensory systems. By contrast, detection of temporal features, such as duration, is generally thought to result from temporal coding in the periphery, followed by an analysis of peripheral response times within the central nervous system. We investigated how peripheral filtering properties affect the coding of stimulus duration in the electrosensory system of mormyrid fishes using behavioral and electrophysiological measures of duration tuning. We recorded from individual knollenorgans, the electrosensory receptors that mediate communication, and found correlated variation in frequency tuning and duration tuning, as predicted by a simple circuit model. In response to relatively high intensity stimuli, knollenorgans responded reliably with fixed latency spikes, consistent with a temporal code for stimulus duration. At near-threshold intensities, however, both the reliability and the temporal precision of responses decreased. Evoked potential recordings from the midbrain, as well as behavioral responses to electrosensory stimulation, revealed changes in sensitivity across the range of durations associated with the greatest variability in receptor sensitivity. Further, this range overlapped with the natural range of variation in species-specific communication signals, suggesting that peripheral duration tuning affects the coding of behaviorally relevant stimuli. We measured knollenorgan, midbrain and behavioral responses to natural communication signals and found that each of them were duration dependent. We conclude that at relatively low intensities for which temporal coding is ineffective, diversity among sensory receptors establishes a population code, in which duration is reflected in the population of responding knollenorgans.
Collapse
Affiliation(s)
- Ariel M Lyons-Warren
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | | | | |
Collapse
|
30
|
Fenton MB, Faure PA, Ratcliffe JM. Evolution of high duty cycle echolocation in bats. J Exp Biol 2012; 215:2935-44. [DOI: 10.1242/jeb.073171] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Duty cycle describes the relative ‘on time’ of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track fluttering insects. Most echolocators (most bats and all birds and odontocete cetaceans) use LDC echolocation, separating pulse and echo in time to avoid forward masking. They emit short duration, broadband, downward frequency modulated (FM) signals separated by relatively long periods of silence. In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements relative to background objects and their prey. HDC echolocators are particularly sensitive to amplitude and frequency glints generated by the wings of fluttering insects. We hypothesize that narrowband/CF calls produced at high duty cycle, and combined with neurobiological specializations for processing Doppler-shifted echoes, were essential to the evolution of HDC echolocation because they allowed bats to detect, lock onto and track fluttering targets. This advantage was especially important in habitats with dense vegetation that produce overlapping, time-smeared echoes (i.e. background acoustic clutter). We make four specific, testable predictions arising from this hypothesis.
Collapse
Affiliation(s)
- M. Brock Fenton
- Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Paul A. Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - John M. Ratcliffe
- Institute of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
31
|
Williams AJ, Fuzessery ZM. Multiple mechanisms shape FM sweep rate selectivity: complementary or redundant? Front Neural Circuits 2012; 6:54. [PMID: 22912604 PMCID: PMC3421451 DOI: 10.3389/fncir.2012.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/30/2012] [Indexed: 11/16/2022] Open
Abstract
Auditory neurons in the inferior colliculus (IC) of the pallid bat have highly rate selective responses to downward frequency modulated (FM) sweeps attributable to the spectrotemporal pattern of their echolocation call (a brief FM pulse). Several mechanisms are known to shape FM rate selectivity within the pallid bat IC. Here we explore how two mechanisms, stimulus duration and high-frequency inhibition (HFI), can interact to shape FM rate selectivity within the same neuron. Results from extracellular recordings indicated that a derived duration-rate function (based on tonal response) was highly predictive of the shape of the FM rate response. Longpass duration selectivity for tones was predictive of slowpass rate selectivity for FM sweeps, both of which required long stimulus durations and remained intact following iontophoretic blockade of inhibitory input. Bandpass duration selectivity for tones, sensitive to only a narrow range of tone durations, was predictive of bandpass rate selectivity for FM sweeps. Conversion of the tone duration response from bandpass to longpass after blocking inhibition was coincident with a change in FM rate selectivity from bandpass to slowpass indicating an active inhibitory component to the formation of bandpass selectivity. Independent of the effect of duration tuning on FM rate selectivity, the presence of HFI acted as a fastpass FM rate filter by suppressing slow FM sweep rates. In cases where both mechanisms were present, both had to be eliminated, by removing inhibition, before bandpass FM rate selectivity was affected. It is unknown why the auditory system utilizes multiple mechanisms capable of shaping identical forms of FM rate selectivity though it may represent distinct but convergent modes of neural signaling directed at shaping response selectivity for important biologically relevant sounds.
Collapse
Affiliation(s)
- Anthony J Williams
- Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | | |
Collapse
|
32
|
Abstract
Signal duration is important for identifying sound sources and determining signal meaning. Duration-tuned neurons (DTNs) respond preferentially to a range of stimulus durations and maximally to a best duration (BD). Duration-tuned neurons are found in the auditory midbrain of many vertebrates, although studied most extensively in bats. Studies of DTNs across vertebrates have identified cells with BDs and temporal response bandwidths that mirror the range of species-specific vocalizations. Neural tuning to stimulus duration appears to be universal among hearing vertebrates. Herein, we test the hypothesis that neural mechanisms underlying duration selectivity may be similar across vertebrates. We instantiated theoretical mechanisms of duration tuning in computational models to systematically explore the roles of excitatory and inhibitory receptor strengths, input latencies, and membrane time constant on duration tuning response profiles. We demonstrate that models of duration tuning with similar neural circuitry can be tuned with species-specific parameters to reproduce the responses of in vivo DTNs from the auditory midbrain. To relate and validate model output to in vivo responses, we collected electrophysiological data from the inferior colliculus of the awake big brown bat, Eptesicus fuscus, and present similar in vivo data from the published literature on DTNs in rats, mice, and frogs. Our results support the hypothesis that neural mechanisms of duration tuning may be shared across vertebrates despite species-specific differences in duration selectivity. Finally, we discuss how the underlying mechanisms of duration selectivity relate to other auditory feature detectors arising from the interaction of neural excitation and inhibition.
Collapse
|
33
|
Kasai M, Ono M, Ohmori H. Distinct neural firing mechanisms to tonal stimuli offset in the inferior colliculus of mice in vivo. Neurosci Res 2012; 73:224-37. [PMID: 22579573 DOI: 10.1016/j.neures.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/09/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
Offset neurons, which fire at the termination of sound, likely encode sound duration and serve to process temporal information. Offset neurons are found in most ascending auditory nuclei; however, the neural mechanisms that evoke offset responses are not well understood. In this study, we examined offset neural responses to tonal stimuli in the inferior colliculus (IC) in vivo with extracellular and intracellular recording techniques in mice. Based on peristimulus time histogram (PSTH) patterns, we classified extracellular offset responses into four types: Offset, Onset-Offset, Onset-Sustained-Offset and Inhibition-Offset types. Moreover, using in vivo whole-cell recording techniques, we found that offset responses were generated in most cells through the excitatory and inhibitory synaptic inputs. However, in a small number of cells, the offset responses were generated as a rebound to hyperpolarization during tonal stimulation. Many offset neurons fired robustly at a preferred duration of tonal stimulus, which corresponded with the timing of rich excitatory synaptic inputs. We concluded that most IC offset neurons encode the termination of the tone stimulus by responding to inherited ascending synaptic information, which is tuned to sound duration. The remainder generates offset spikes de novo through a post-inhibitory rebound mechanism.
Collapse
Affiliation(s)
- Masatoshi Kasai
- Department of Neurobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
34
|
Macías S, Mora EC, Hechavarría JC, Kössl M. Duration tuning in the inferior colliculus of the mustached bat. J Neurophysiol 2011; 106:3119-28. [PMID: 21917994 DOI: 10.1152/jn.00294.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied duration tuning in neurons of the inferior colliculus (IC) of the mustached bat. Duration-tuned neurons in the IC of the mustached bat fall into three main types: short (16 of 136), band (34 of 136), and long (29 of 136) pass. The remaining 51 neurons showed no selectivity for the duration of sounds. The distribution of best durations was double peaked with maxima around 3 and 17 ms, which correlate with the duration of the short frequency-modulated (FM) and the long constant-frequency (CF) signals emitted by Pteronotus parnellii. Since there are no individual neurons with a double-peaked duration response profile, both types of temporal processing seem to be well segregated in the IC. Most short- and band-pass units with best frequency in the CF2 range responded to best durations > 9 ms (66%, 18 of 27 units). However, there is no evidence for a bias toward longer durations as there is for neurons tuned to the frequency range of the FM component of the third harmonic, where 83% (10 of 12 neurons) showed best durations longer than 9 ms. In most duration-tuned neurons, response areas as a function of stimulus duration and intensity showed either V or U shape, with duration tuning retained across the range of sound levels tested. Duration tuning was affected by changes in sound pressure level in only six neurons. In all duration-tuned neurons, latencies measured at the best duration were longer than best durations, suggesting that behavioral decisions based on analysis of the duration of the pulses would not be expected to be complete until well after the stimulus has occurred.
Collapse
Affiliation(s)
- Silvio Macías
- Department of Animal and Human Biology, Faculty of Biology, Havana University, Ciudad de La Habana, Cuba.
| | | | | | | |
Collapse
|
35
|
Ecology and neuroethology of bat echolocation: a tribute to Gerhard Neuweiler. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:399-402. [DOI: 10.1007/s00359-011-0633-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 10/18/2022]
|