1
|
Ogawa S, Yamawaki Y. Timing of the co-activation of antagonist muscles affects foreleg movements during mantis strikes. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104753. [PMID: 39929438 DOI: 10.1016/j.jinsphys.2025.104753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
The foreleg movements during mantis strikes can be determined by three joint angles: the prothorax-coxa (P-C), coxa-trochanter (C-T), and femur-tibia (F-T). To understand how foreleg movements are controlled by muscle activities in the Chinese mantis, we combined motion analysis with electromyogram (EMG) recordings from three antagonist pairs, one at a time: the coxal promotor and remotor in the P-C joint, the trochanteral extensor and flexor in the C-T joint, and the tibial extensor and flexor in the F-T joint. During the P-C joint angle increase, a burst of spikes was observed in the EMG recordings from the coxal promotor. The promotor burst was accompanied by a burst of spikes in the coxal remotor. Co-activation of antagonist muscles, the extensor and flexor, was also observed at the C-T joint, but not at the F-T joint. The burst duration of the promotor or extensor mainly determined the peak angle of the P-C, C-T, and F-T joints. Co-activation of antagonists observed during P-C and C-T joint angle increases likely plays a role in adjusting the peak joint angle; the peak joint angle became smaller as remotor (or flexor) bursts occurred earlier. Variation in the timing of antagonist bursts may finely regulate the peak joint angle.
Collapse
Affiliation(s)
- Sho Ogawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Liu H, Jang J, French AS, Torkkeli PH. Sequence analysis, homology modeling, tissue expression, and potential functions of seven putative acetylcholinesterases in the spider Cupiennius salei. Eur J Neurosci 2024; 60:5785-5811. [PMID: 39230060 DOI: 10.1111/ejn.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Acetylcholine esterases (AChEs) are essential enzymes in cholinergic synapses, terminating neurotransmission by hydrolysing acetylcholine. While membrane bound AChEs at synaptic clefts efficiently perform this task, soluble AChEs are less stable and effective, but function over broader areas. In vertebrates, a single gene produces alternatively spliced forms of AChE, whereas invertebrates often have multiple genes, producing both enzyme types. Despite their significance as pesticide targets, the physiological roles of invertebrate AChEs remain unclear. Here, we characterized seven putative AChEs in the wandering spider, Cupiennius salei, a model species for neurophysiological studies. Sequence analyses and homology modeling predicted CsAChE7 as the sole stable, membrane-bound enzyme functioning at synaptic clefts, while the others are likely soluble enzymes. In situ hybridization of sections from the spider's nervous system revealed CsAChE7 transcripts co-localizing with choline acetyltransferase in cells that also exhibited AChE activity. CsAChE7 transcripts were also found in rapidly adapting mechanosensory neurons, suggesting a role in precise and transient activation of postsynaptic cells, contrasting with slowly adapting, also cholinergic, neurons expressing only soluble AChEs, which allow prolonged activation of postsynaptic cells. These findings suggest that cholinergic transmission is influenced not only by postsynaptic receptors but also by the enzymatic properties regulating acetylcholine clearance. We also show that acetylcholine is a crucial neurotransmitter in the spider's visual system and sensory and motor pathways, but absent in excitatory motor neurons at neuromuscular junctions, consistent with other arthropods. Our findings on sequence structures may have implications for the development of neurological drugs and pesticides.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jinwon Jang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Azevedo A, Lesser E, Phelps JS, Mark B, Elabbady L, Kuroda S, Sustar A, Moussa A, Khandelwal A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Cook A, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Dickinson M, Pacureanu A, Seung HS, Macrina T, Lee WCA, Tuthill JC. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 2024; 631:360-368. [PMID: 38926570 PMCID: PMC11348827 DOI: 10.1038/s41586-024-07389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.
Collapse
Affiliation(s)
- Anthony Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Avinash Khandelwal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Su-Yee J Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions, Zurich, Switzerland
| | - Ran Lu
- Zetta AI, Sherrill, NJ, USA
| | | | - Kisuk Lee
- Zetta AI, Sherrill, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | | | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
5
|
Goldsmith CA, Quinn RD, Szczecinski NS. Investigating the role of low level reinforcement reflex loops in insect locomotion. BIOINSPIRATION & BIOMIMETICS 2021; 16:065008. [PMID: 34547724 DOI: 10.1088/1748-3190/ac28ea] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Insects are highly capable walkers, but many questions remain regarding how the insect nervous system controls locomotion. One particular question is how information is communicated between the 'lower level' ventral nerve cord (VNC) and the 'higher level' head ganglia to facilitate control. In this work, we seek to explore this question by investigating how systems traditionally described as 'positive feedback' may initiate and maintain stepping in the VNC with limited information exchanged between lower and higher level centers. We focus on the 'reflex reversal' of the stick insect femur-tibia joint between a resistance reflex (RR) and an active reaction in response to joint flexion, as well as the activation of populations of descending dorsal median unpaired (desDUM) neurons from limb strain as our primary reflex loops. We present the development of a neuromechanical model of the stick insect (Carausius morosus) femur-tibia (FTi) and coxa-trochanter joint control networks 'in-the-loop' with a physical robotic limb. The control network generates motor commands for the robotic limb, whose motion and forces generate sensory feedback for the network. We based our network architecture on the anatomy of the non-spiking interneuron joint control network that controls the FTi joint, extrapolated network connectivity based on known muscle responses, and previously developed mechanisms to produce 'sideways stepping'. Previous studies hypothesized that RR is enacted by selective inhibition of sensory afferents from the femoral chordotonal organ, but no study has tested this hypothesis with a model of an intact limb. We found that inhibiting the network's flexion position and velocity afferents generated a reflex reversal in the robot limb's FTi joint. We also explored the intact network's ability to sustain steady locomotion on our test limb. Our results suggested that the reflex reversal and limb strain reinforcement mechanisms are both necessary but individually insufficient to produce and maintain rhythmic stepping in the limb, which can be initiated or halted by brief, transient descending signals. Removing portions of this feedback loop or creating a large enough disruption can halt stepping independent of the higher-level centers. We conclude by discussing why the nervous system might control motor output in this manner, as well as how to apply these findings to generalized nervous system understanding and improved robotic control.
Collapse
Affiliation(s)
- C A Goldsmith
- West Virginia University, One Waterfront Place, Morgantown, WV 26506, United States of America
| | - R D Quinn
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America
| | - N S Szczecinski
- West Virginia University, One Waterfront Place, Morgantown, WV 26506, United States of America
| |
Collapse
|
6
|
Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees. Sci Rep 2021; 11:11721. [PMID: 34083559 PMCID: PMC8175726 DOI: 10.1038/s41598-021-90895-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Floral nectar is a pivotal element of the intimate relationship between plants and pollinators. Nectars are composed of a plethora of nutritionally valuable compounds but also hundreds of secondary metabolites (SMs) whose function remains elusive. Here we performed a set of behavioural experiments to study whether five ubiquitous nectar non-protein amino acids (NPAAs: β-alanine, GABA, citrulline, ornithine and taurine) interact with gustation, feeding preference, and learning and memory in Apis mellifera. We showed that foragers were unable to discriminate NPAAs from water when only accessing antennal chemo-tactile information and that freely moving bees did not exhibit innate feeding preferences for NPAAs. Also, NPAAs did not alter food consumption or longevity in caged bees over 10 days. Taken together our data suggest that natural concentrations of NPAAs did not alter nectar palatability to bees. Olfactory conditioning assays showed that honey bees were more likely to learn a scent when it signalled a sucrose reward containing either β-alanine or GABA, and that GABA enhanced specific memory retention. Conversely, when ingested two hours prior to conditioning, GABA, β-alanine, and taurine weakened bees' acquisition performances but not specific memory retention, which was enhanced in the case of β-alanine and taurine. Neither citrulline nor ornithine affected learning and memory. NPAAs in nectars may represent a cooperative strategy adopted by plants to attract beneficial pollinators.
Collapse
|
7
|
Neuromodulation Can Be Simple: Myoinhibitory Peptide, Contained in Dedicated Regulatory Pathways, Is the Only Neurally-Mediated Peptide Modulator of Stick Insect Leg Muscle. J Neurosci 2021; 41:2911-2929. [PMID: 33531417 DOI: 10.1523/jneurosci.0188-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the best studied cases (Aplysia feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in Aplysia, excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators. These data have created a belief that modulation is, in general, complex. The stick insect leg is a well-studied locomotory model system, and the complete stick insect neuropeptide inventory was recently described. We used multiple techniques to comprehensively examine stick insect leg peptidergic modulation. Single-cell mass spectrometry (MS) and immunohistochemistry showed that myoinhibitory peptide (MIP) is the only neuronal (as opposed to hemolymph-borne) peptide modulator of all leg muscles. Leg muscle excitatory motor neurons contained no neuropeptides. Only the common inhibitor (CI) and dorsal unpaired median (DUM) neuron groups, each neuron of which innervates a group of functionally-related leg muscles, contained MIP. We described MIP transport to, and receptor presence in, one leg muscle, the extensor tibiae (ExtTi). MIP application reduced ExtTi slow fiber force and shortening by about half, increasing the muscle's ability to contract and relax rapidly. These data show neuromodulation does not need to be complex. Excitation and modulation do not need to be obligatorily coupled (Aplysia feeding). Modulation does not need to involve large numbers of peptides, with the attendant possibility of combinatorial explosion (stomatogastric system). Modulation can be simple, mediated by dedicated regulatory neurons, each innervating a single group of functionally-related targets, and all using the same neuropeptide.SIGNIFICANCE STATEMENT Vertebrate and invertebrate nervous systems contain large numbers (around a hundred in human brain) of peptide neurotransmitters. In prior work, neuropeptide modulation has been complex, either obligatorily coupling postsynaptic excitation and modulation, or large numbers of peptides modulating individual neural networks. The complete stick insect neuropeptide inventory was recently described. We comprehensively describe here peptidergic modulation in the stick insect leg. Surprisingly, out of the large number of potential peptide transmitters, only myoinhibitory peptide (MIP) was present in neurons innervating leg muscles. Furthermore, the peptide was present only in dedicated regulatory neurons, not in leg excitatory motor neurons. Peptidergic modulation can thus be simple, neither obligatorily coupling target activation and modulation nor involving so many peptides that combinatorial explosion can occur.
Collapse
|
8
|
Pfeffer S, Wolf H. Arthropod spatial cognition. Anim Cogn 2020; 23:1041-1049. [PMID: 33170438 PMCID: PMC7700064 DOI: 10.1007/s10071-020-01446-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
The feats of arthropods, and of the well-studied insects and crustaceans in particular, have fascinated scientists and laymen alike for centuries. Arthropods show a diverse repertoire of cognitive feats, of often unexpected sophistication. Despite their smaller brains and resulting lower neuronal capacity, the cognitive abilities of arthropods are comparable to, or may even exceed, those of vertebrates, depending on the species compared. Miniature brains often provide parsimonious but smart solutions for complex behaviours or ecologically relevant problems. This makes arthropods inspiring subjects for basic research, bionics, and robotics. Investigations of arthropod spatial cognition have originally concentrated on the honeybee, an animal domesticated for several thousand years. Bees are easy to keep and handle, making this species amenable to experimental study. However, there are an estimated 5–10 million arthropod species worldwide, with a broad diversity of lifestyles, ecology, and cognitive abilities. This high diversity provides ample opportunity for comparative analyses. Comparative study, rather than focusing on single model species, is well suited to scrutinise the link between ecological niche, lifestyle, and cognitive competence. It also allows the discovery of general concepts that are transferable between distantly related groups of organisms. With species diversity and a comparative approach in mind, this special issue compiles four review articles and ten original research reports from a spectrum of arthropod species. These contributions range from the well-studied hymenopterans, and ants in particular, to chelicerates and crustaceans. They thus present a broad spectrum of glimpses into current research on arthropod spatial cognition, and together they cogently emphasise the merits of research into arthropod cognitive achievements.
Collapse
Affiliation(s)
- Sarah Pfeffer
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
9
|
McKellar CE, Siwanowicz I, Dickson BJ, Simpson JH. Controlling motor neurons of every muscle for fly proboscis reaching. eLife 2020; 9:e54978. [PMID: 32584254 PMCID: PMC7316511 DOI: 10.7554/elife.54978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022] Open
Abstract
We describe the anatomy of all the primary motor neurons in the fly proboscis and characterize their contributions to its diverse reaching movements. Pairing this behavior with the wealth of Drosophila's genetic tools offers the possibility to study motor control at single-neuron resolution, and soon throughout entire circuits. As an entry to these circuits, we provide detailed anatomy of proboscis motor neurons, muscles, and joints. We create a collection of fly strains to individually manipulate every proboscis muscle through control of its motor neurons, the first such collection for an appendage. We generate a model of the action of each proboscis joint, and find that only a small number of motor neurons are needed to produce proboscis reaching. Comprehensive control of each motor element in this numerically simple system paves the way for future study of both reflexive and flexible movements of this appendage.
Collapse
Affiliation(s)
- Claire E McKellar
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandSt LuciaAustralia
| | - Julie H Simpson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Dept. of Molecular Cellular and Developmental Biology, University of California Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
10
|
Azevedo AW, Dickinson ES, Gurung P, Venkatasubramanian L, Mann RS, Tuthill JC. A size principle for recruitment of Drosophila leg motor neurons. eLife 2020; 9:e56754. [PMID: 32490810 PMCID: PMC7347388 DOI: 10.7554/elife.56754] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
To move the body, the brain must precisely coordinate patterns of activity among diverse populations of motor neurons. Here, we use in vivo calcium imaging, electrophysiology, and behavior to understand how genetically-identified motor neurons control flexion of the fruit fly tibia. We find that leg motor neurons exhibit a coordinated gradient of anatomical, physiological, and functional properties. Large, fast motor neurons control high force, ballistic movements while small, slow motor neurons control low force, postural movements. Intermediate neurons fall between these two extremes. This hierarchical organization resembles the size principle, first proposed as a mechanism for establishing recruitment order among vertebrate motor neurons. Recordings in behaving flies confirmed that motor neurons are typically recruited in order from slow to fast. However, we also find that fast, intermediate, and slow motor neurons receive distinct proprioceptive feedback signals, suggesting that the size principle is not the only mechanism that dictates motor neuron recruitment. Overall, this work reveals the functional organization of the fly leg motor system and establishes Drosophila as a tractable system for investigating neural mechanisms of limb motor control.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Evyn S Dickinson
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - John C Tuthill
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
11
|
Naris M, Szczecinski NS, Quinn RD. A neuromechanical model exploring the role of the common inhibitor motor neuron in insect locomotion. BIOLOGICAL CYBERNETICS 2020; 114:23-41. [PMID: 31788747 DOI: 10.1007/s00422-019-00811-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
In this work, we analyze a simplified, dynamical, closed-loop, neuromechanical simulation of insect joint control. We are specifically interested in two elements: (1) how slow muscle fibers may serve as temporal integrators of sensory feedback and (2) the role of common inhibitory (CI) motor neurons in resetting this integration when the commanded position changes, particularly during steady-state walking. Despite the simplicity of the model, we show that slow muscle fibers increase the accuracy of limb positioning, even for motions much shorter than the relaxation time of the fiber; this increase in accuracy is due to the slow dynamics of the fibers; the CI motor neuron plays a critical role in accelerating muscle relaxation when the limb moves to a new position; as in the animal, this architecture enables the control of the stance phase speed, independent of swing phase amplitude or duration, by changing the gain of sensory feedback to the stance phase muscles. We discuss how this relates to other models, and how it could be applied to robotic control.
Collapse
Affiliation(s)
- Mantas Naris
- Bio-Inspired Perception and Robotics Laboratory, University of Colorado Boulder, UCB 427 1111 Engineering Drive, Boulder, CO, 80309, USA.
| | - Nicholas S Szczecinski
- Biologically Inspired Robotics Laboratory, Case Western Reserve University, Glennan 418 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Roger D Quinn
- Biologically Inspired Robotics Laboratory, Case Western Reserve University, Glennan 418 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
12
|
Mustard JA, Jones L, Wright GA. GABA signaling affects motor function in the honey bee. JOURNAL OF INSECT PHYSIOLOGY 2020; 120:103989. [PMID: 31805284 DOI: 10.1016/j.jinsphys.2019.103989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
GABA is the most common inhibitory neurotransmitter in both vertebrate and invertebrate nervous systems. In insects, inhibition plays important roles at the neuromuscular junction, in the regulation of central pattern generators, and in the modulation of information in higher brain processing centers. Additionally, increasing our understanding of the functions of GABA is important since GABAA receptors are the targets of several classes of pesticides. To investigate the role of GABA in motor function, honey bee foragers were injected with GABA or with agonists or antagonists specific for either GABAA or GABAB receptors. Compounds that activated either type of GABA receptor decreased activity levels. Bees injected with the GABAA receptor antagonist picrotoxin lost the ability to right themselves, whereas blockade of GABAB receptors led to increases in grooming. Injection with antagonists of either GABAA or GABAB receptors resulted in an increase in extended wing behavior, during which bees kept their wings out at right angles to their body rather than folded along their back. These data suggest that the GABA receptor types play distinct roles in behavior and that GABA may affect behavior at several different levels.
Collapse
Affiliation(s)
- Julie A Mustard
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Lisa Jones
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Geraldine A Wright
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Zoology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
13
|
Stolz T, Diesner M, Neupert S, Hess ME, Delgado-Betancourt E, Pflüger HJ, Schmidt J. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects. J Neurophysiol 2019; 122:2388-2413. [DOI: 10.1152/jn.00196.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs’ stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements. NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.
Collapse
Affiliation(s)
- Thomas Stolz
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | - Max Diesner
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin E. Hess
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | | | - Hans-Joachim Pflüger
- Institute für Biologie und Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Joachim Schmidt
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Harischandra N, Clare AJ, Zakotnik J, Blackburn LML, Matheson T, Dürr V. Evaluation of linear and non-linear activation dynamics models for insect muscle. PLoS Comput Biol 2019; 15:e1007437. [PMID: 31609992 PMCID: PMC6812852 DOI: 10.1371/journal.pcbi.1007437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/24/2019] [Accepted: 09/25/2019] [Indexed: 11/18/2022] Open
Abstract
In computational modelling of sensory-motor control, the dynamics of muscle contraction is an important determinant of movement timing and joint stiffness. This is particularly so in animals with many slow muscles, as is the case in insects-many of which are important models for sensory-motor control. A muscle model is generally used to transform motoneuronal input into muscle force. Although standard models exist for vertebrate muscle innervated by many motoneurons, there is no agreement on a parametric model for single motoneuron stimulation of invertebrate muscle. Although several different models have been proposed, they have never been evaluated using a common experimental data set. We evaluate five models for isometric force production of a well-studied model system: the locust hind leg tibial extensor muscle. The response of this muscle to motoneuron spikes is best modelled as a non-linear low-pass system. Linear first-order models can approximate isometric force time courses well at high spike rates, but they cannot account for appropriate force time courses at low spike rates. A linear third-order model performs better, but only non-linear models can account for frequency-dependent change of decay time and force potentiation at intermediate stimulus frequencies. Some of the differences among published models are due to differences among experimental data sets. We developed a comprehensive toolbox for modelling muscle activation dynamics, and optimised model parameters using one data set. The "Hatze-Zakotnik model" that emphasizes an accurate single-twitch time course and uses frequency-dependent modulation of the twitch for force potentiation performs best for the slow motoneuron. Frequency-dependent modulation of a single twitch works less well for the fast motoneuron. The non-linear "Wilson" model that optimises parameters to all data set parts simultaneously performs better here. Our open-access toolbox provides powerful tools for researchers to fit appropriate models to a range of insect muscles.
Collapse
Affiliation(s)
- Nalin Harischandra
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology—Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
| | - Anthony J. Clare
- University of Leicester, Department of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Jure Zakotnik
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Tom Matheson
- University of Leicester, Department of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Volker Dürr
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology—Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Dos Santos DS, Rosa ME, Zanatta AP, Oliveira RS, de Almeida CGM, Leal AP, Sanz M, Fernandes KA, de Souza VQ, de Assis DR, Pinto E, Belo CAD. Neurotoxic effects of sublethal concentrations of cyanobacterial extract containing anatoxin-a(s) on Nauphoeta cinerea cockroaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:138-145. [PMID: 30599431 DOI: 10.1016/j.ecoenv.2018.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The detection of cyanotoxins, such as the anatoxin-a(s), is essential to ensure the biological safety of water environments. Here, we propose the use of Nauphoeta cinerea cockroaches as an alternative biological model for the biomonitoring of the activity of anatoxin-a(s) in aquatic systems. In order to validate our proposed model, we compared the effects of a cyanobacterial extract containing anatoxin-a(s) (CECA) with those of the organophosphate trichlorfon (Tn) on biochemical and physiological parameters of the nervous system of Nauphoeta cinerea cockroaches. In brain homogenates from cockroaches, CECA (5 and 50 μg/g) inhibited acetylcholinesterase (AChE) activity by 53 ± 2% and 51 ± 7%, respectively, while Tn (5 and 50 μg/g) inhibited AChE activity by 35 ± 4% and 80 ± 9%, respectively (p < 0.05; n = 6). Moreover, CECA at concentrations of 5, 25, and 50 µg/g decreased the locomotor activity of the cockroaches, diminishing the distance travelled and increasing the frequency and duration of immobile episodes similarly to Tn (0.3 μg/g) (p < 0.05, n = 40, respectively). CECA (5, 25 and 50 μg/g) induced an increase in the leg grooming behavior, but not in the movement of antennae, similarly to the effect of Tn (0.3 μg/g). In addition, both CECA (50 µg/200 μl) and Tn (0.3 µg/200 μl) induced a negative chronotropism in the insect heart (37 ± 1 and 47 ± 8 beats/min in 30 min, respectively) (n = 9, p > 0.05). Finally, CECA (50 µg/g), Tn (0.3 µg/g) and neostigmine (50 µg/g) caused significant neuromuscular failure, as indicated by the monitoring of the in vivo neuromuscular function of the cockroaches, during 100 min (n = 6, p < 0.05, respectively). In conclusion, sublethal doses of CECA provoked entomotoxicity. The Tn-like effects of CECA on Nauphoeta cinerea cockroaches encompass both the central and peripheral nervous systems in our insect model. The inhibitory activity of CECA on AChE boosts a cascade of signaling events involving octopaminergic/dopaminergic neurotransmission. Therefore, this study indicates that this insect model could potentially be used as a powerful, practical, and inexpensive tool to understand the impacts of eutrophication and for orientating decontamination processes.
Collapse
Affiliation(s)
- Douglas Silva Dos Santos
- LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, (PPGBTox), Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil; Instituto do Cérebro (INSCER), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, RS, Brazil
| | - Maria Eduarda Rosa
- LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Ana Paula Zanatta
- LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Raquel Soares Oliveira
- LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Carlos Gabriel Moreira de Almeida
- LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil; Instituto do Cérebro (INSCER), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, RS, Brazil
| | - Allan Pinto Leal
- LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Miriam Sanz
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), Brazil
| | | | - Velci Queiroz de Souza
- LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Denis Reis de Assis
- Inserm U1253 "Imaging and Brain", Team Neurogenomics and Neuronal physiopathology, University of Tours, Faculty of Medicine, 10 Bd Tonnellé, 37032 Tours Cedex 1, France
| | - Ernani Pinto
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), Brazil
| | - Cháriston André Dal Belo
- LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, (PPGBTox), Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil; Instituto do Cérebro (INSCER), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Balogun WG, Cobham AE, Amin A, Seeni A. Using invertebrate model organisms for neuroscience research and training: an opportunity for Africa. Metab Brain Dis 2018; 33:1431-1441. [PMID: 29797116 DOI: 10.1007/s11011-018-0250-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
Abstract
Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.
Collapse
Affiliation(s)
- Wasiu Gbolahan Balogun
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
| | - Ansa Emmanuel Cobham
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
- Instituto Gulbenkian de Ciência, Rua. da Quinta Grande 6, 2780-156 Oeiras, Lisbon, Portugal
| | - Azman Seeni
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Bukit Gambir, 11700, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
17
|
Langeloh H, Wasser H, Richter N, Bicker G, Stern M. Neuromuscular transmitter candidates of a centipede ( Lithobius forficatus, Chilopoda). Front Zool 2018; 15:28. [PMID: 30123311 PMCID: PMC6090918 DOI: 10.1186/s12983-018-0274-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background The neuromuscular junction is the chemical synapse where motor neurons communicate with skeletal muscle fibers. Whereas vertebrates and many invertebrates use acetylcholine as transmitter at the neuromuscular junction, in those arthropods examined up to now, glutamate and GABA are used instead. With respect to taxon sampling in a phylogenetic context, there is, however, only a limited amount of data available, focusing mainly on crustaceans and hexapods, and neglecting other, arthropod groups. Here we investigate the neurotransmitter equipment of neuromuscular synapses of a myriapod, Lithobius forficatus, using immunofluorescence and histochemical staining methods. Results Glutamate and GABA could be found colocalised with synapsin in synaptic boutons of body wall and leg muscles of Lithobius forficatus. Acetylcholinesterase activity as a marker for cholinergic synapses was found abundantly in the central nervous system and also in some peripheral nerves, but not at neuromuscular junctions. Furthermore, a large number of leg sensory neurons displayed GABA-immunofluorescence and was also labeled with an antiserum against the GABA-synthesizing enzyme, glutamate decarboxylase. Conclusions Our data indicate that glutamate and GABA are neurotransmitters at Lithobius forficatus neuromuscular junctions, whereas acetylcholine is very unlikely to play a role here. This is in line with the concept of glutamate as excitatory and GABA as the main inhibitory neuromuscular transmitters in euarthropods. Furthermore, we have, to our knowledge for the first time, localized GABA in euarthropod leg sensory neurons, indicating the possibility that neurotransmitter panel in arthropod sensory systems may be far more extensive than hitherto assumed.
Collapse
Affiliation(s)
- Hendrik Langeloh
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | - Hannah Wasser
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | - Nicole Richter
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | - Gerd Bicker
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | - Michael Stern
- University of Veterinary Medicine Hannover, Division of Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| |
Collapse
|
18
|
Alvi AM, Bräunig P. Motor innervation pattern of labral muscles of Locusta migratoria. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:613-626. [PMID: 29752490 DOI: 10.1007/s00359-018-1265-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 11/25/2022]
Abstract
The current study investigates the motor innervation pattern of labral muscles in the adult locust and tries to interpret the results in the light of the hypothesis that the labrum phylogenetically developed by the fusion of paired appendages associated with the intercalary segment. Using Neurobiotin™ as a retrograde neuronal tracer, specific motor nerves or individual labral muscles were stained. Results show that the labral muscles receive innervation from tritocerebrum and suboesophageal ganglion. The axons of many motor neurons use three different pathways to cross the midline in the periphery to innervate ipsi- and contralateral muscles. Intracellular recordings from fibers of individual muscles and simultaneous recordings from motor neurons imply that the labral muscles lack inhibitory innervation. The location of motor neurons in both tritocerebrum and suboesophageal ganglion supports the notion that the labrum is innervated by the so-called intercalary segment. That many of the efferent axons cross the midline in the periphery might be explained by the hypothesis that the labrum derives from a fusion of appendages.
Collapse
Affiliation(s)
- Abid Mahmood Alvi
- Institute of Biology II, Unit of Developmental Biology and Morphology of Animals, RWTH Aachen University, Worringerweg 3, 52056, Aachen, Germany.,Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Peter Bräunig
- Institute of Biology II, Unit of Developmental Biology and Morphology of Animals, RWTH Aachen University, Worringerweg 3, 52056, Aachen, Germany.
| |
Collapse
|
19
|
Stolz K, Strauß J, Alt JA, Lakes-Harlan R. Independent suboesophageal neuronal innervation of the defense gland and longitudinal muscles in the stick insect (Peruphasma schultei) prothorax. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:162-172. [PMID: 29438795 DOI: 10.1016/j.asd.2018.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
This study investigates the neuroanatomy of the defense gland and a related muscle in the stick insect Peruphasma schultei with axonal tracing and histological sections. The gland is innervated by three neurons through the Nervus anterior of the suboesophageal ganglion (SOG), the ipsilateral neuron (ILN), the contralateral neuron (CLN) and the prothoracic intersegmental neuron (PIN). The ILN has a large soma which is typical for motoneurons that cause fast contraction of large muscles and its dendrites are located in motor-sensory and sensory neuropile areas of the SOG. The CLN might be involved in the coordination of bilateral or unilateral discharge as its neurites are closely associated to the ILN of the contralateral gland. Close to the ejaculatory duct of the gland lies a dorsal longitudinal neck muscle, musculus pronoto-occipitalis (Idlm2), which is likely indirectly involved in gland discharge by controlling neck movements and, therefore, the direction of discharge. This muscle is innervated by three ventral median neurons (VMN). Thus, three neuron types (ILN, CLN, and PIN) innervate the gland muscle directly, and the VMNs could aid secretion indirectly. The cytoanatomy of motorneurons innervating the defense gland and neck muscle are discussed regarding the structure and functions of the neuropile in the SOG. As a basis for the neuroanatomical study on the defense gland we assembled a map of the SOG in Phasmatodea.
Collapse
Affiliation(s)
- Konrad Stolz
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Institut für Tierphysiologie, Heinrich-Buff-Ring 26, 35392, Gießen, Germany.
| | - Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Institut für Tierphysiologie, Heinrich-Buff-Ring 26, 35392, Gießen, Germany
| | - Joscha Arne Alt
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Institut für Tierphysiologie, Heinrich-Buff-Ring 26, 35392, Gießen, Germany
| | - Reinhard Lakes-Harlan
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Institut für Tierphysiologie, Heinrich-Buff-Ring 26, 35392, Gießen, Germany
| |
Collapse
|
20
|
Abstract
The purpose of this work is to better understand how animals control locomotion. This knowledge can then be applied to neuromechanical design to produce more capable and adaptable robot locomotion. To test hypotheses about animal motor control, we model animals and their nervous systems with dynamical simulations, which we call synthetic nervous systems (SNS). However, one major challenge is picking parameter values that produce the intended dynamics. This paper presents a design process that solves this problem without the need for global optimization. We test this method by selecting parameter values for SimRoach2, a dynamical model of a cockroach. Each leg joint is actuated by an antagonistic pair of Hill muscles. A distributed SNS was designed based on pathways known to exist in insects, as well as hypothetical pathways that produced insect-like motion. Each joint’s controller was designed to function as a proportional-integral (PI) feedback loop and tuned with numerical optimization. Once tuned, SimRoach2 walks through a simulated environment, with several cockroach-like features. A model with such reliable low-level performance is necessary to investigate more sophisticated locomotion patterns in the future.
Collapse
|
21
|
Strauß J, von Bredow CR, von Bredow YM, Stolz K, Trenczek TE, Lakes-Harlan R. Multiple Identified Neurons and Peripheral Nerves Innervating the Prothoracic Defense Glands in Stick Insects Reveal Evolutionary Conserved and Novel Elements of a Chemical Defense System. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Wolf H. Scorpions pectines - Idiosyncratic chemo- and mechanosensory organs. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:753-764. [PMID: 29061448 DOI: 10.1016/j.asd.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 05/15/2023]
Abstract
Scorpions possess specialised chemosensory appendages, the pectines. These comb-shaped limbs are located ventrally behind the walking legs. Like the antennae of mandibulate arthropods, they also serve a mechanosensory function. However, more than 90% of the sometimes well above 100,000 sensory neurons projecting from a pectine to the central nervous system are chemosensory. There are two primary projection neuropils. The posterior one, immediately adjacent to the pectine nerve entrance, has an intriguing substructure reminiscent of the olfactory glomeruli observed in the primary chemosensory neuropils of many arthropods and indeed of most bilaterian animals. There are further similarities, particularly to the antennal lobes of mandibulate arthropods, including dense innervation by a relatively small number of putative serotonergic interneurons and the presence of GABA immunoreactivity, indicative of inhibitory interactions. Scorpion idiosyncrasies include the flattened shape and broad size range of the glomerulus-like neuropil compartments. Further, these compartments are often not clearly delimited and form layers in the neuropil that are arranged like onion peels. In summary, the pectine appendages of scorpions and their central nervous projections appear as promising study subjects, particularly regarding comparative examination of chemosensory representation and processing strategies. The possibility of combined, rather than discrete, representations of chemo- and mechanosensory inputs should merit further study.
Collapse
Affiliation(s)
- Harald Wolf
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, 10 Marais Street, Stellenbosch 7600, South Africa.
| |
Collapse
|
23
|
Abstract
The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing.
Collapse
Affiliation(s)
- John C Tuthill
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA.
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Rosenbaum P, Schmitz J, Schmidt J, Büschges A. Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed. J Neurophysiol 2015; 114:1090-101. [PMID: 26063769 DOI: 10.1152/jn.00006.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022] Open
Abstract
Animals modify their behavior constantly to perform adequately in their environment. In terrestrial locomotion many forms of adaptation exist. Two tasks are changes of walking direction and walking speed. We investigated these two changes in motor output in the stick insect Cuniculina impigra to see how they are brought about at the level of leg motor neurons. We used a semi-intact preparation in which we can record intracellularly from leg motor neurons during walking. In this single-leg preparation the middle leg of the animal steps in a vertical plane on a treadwheel. Stimulation of either abdomen or head reliably elicits fictive forward or backward motor activity, respectively, in the fixed and otherwise deafferented thorax-coxa joint. With a change of walking direction only thorax-coxa-joint motor neurons protractor and retractor changed their activity. The protractor switched from swing activity during forward to stance activity during backward walking, and the retractor from stance to swing. This phase switch was due to corresponding change of phasic synaptic inputs from inhibitory to excitatory and vice versa at specific phases of the step cycle. In addition to phasic synaptic input a tonic depolarization of the motor neurons was present. Analysis of changes in stepping velocity during stance showed only a significant correlation to flexor motor neuron activity, but not to that of retractor and depressor motor neurons during forward walking. These results show that different tasks in the stick insect walking system are generated by altering synaptic inputs to specific leg joint motor neurons only.
Collapse
Affiliation(s)
- Philipp Rosenbaum
- Biocenter Cologne, Zoological Institute, Department for Animal Physiology, University of Cologne, Cologne, Germany; and
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty for Biology, University of Bielefeld, Bielefeld, Germany
| | - Joachim Schmidt
- Biocenter Cologne, Zoological Institute, Department for Animal Physiology, University of Cologne, Cologne, Germany; and
| | - Ansgar Büschges
- Biocenter Cologne, Zoological Institute, Department for Animal Physiology, University of Cologne, Cologne, Germany; and
| |
Collapse
|