1
|
Chowdhury P, Hemsworth PH, Fisher AD, Rice M, Galea RY, Taylor PS, Stevenson M. Risk factors for smothering in three commercial free-range layer poultry farms, Australia 2019-2022. Prev Vet Med 2025; 242:106568. [PMID: 40382857 DOI: 10.1016/j.prevetmed.2025.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
In intensively managed poultry production systems the term 'smothering' refers to deaths from suffocation that occur as a consequence of piling behaviour where birds crowd together into densely packed groups. Smothering is a non-negligible source of loss in free-range layer hens, having both negative welfare and economic effects. Smothering events are rarely observed and are usually detected by the discovery of groups of dead hens. The aim of this study was to identify risk factors for smothering deaths in three commercial free-range layer poultry farms in Australia. This was a prospective cohort study of poultry flocks managed by three commercial free-range layer farms in eastern Australia. Flocks were enrolled into the study from 1 January 2019-29 March 2021 and were followed until the end of lay or until the end of the study on 31 March 2022, whichever occurred first. Throughout the follow-up period of the study, daily production and weather data, details of flock management and details of the place and time of smothering events were recorded. Time to event (survival) analyses were used to quantify the association between hypothesised risk factors and the number of days in lay at the time of smothering. Shed and bird level characteristics associated with time to event were quantified using a stratified Cox proportional hazards model which included a frailty term to account for birds clustered within sheds within farm. Across the three farms, for every 100 birds placed into a shed, there were 12 deaths over the duration of the production period. Of the 12 deaths per 100 birds, 2 were due to smothering. Our Cox proportional hazards regression analyses showed that the daily hazard of smothering was increased for birds housed in aviary sheds compared with flat-deck sheds (HR 4.0, 95 % CI 1.7-9.7). The daily hazard of smothering mortality was increased on warm, humid and rainy days, and in birds with low fear of humans and high fear of novel objects. Rainy days on which outdoor daily average humidity was greater than or equal to 70 % were associated with a 3.7 (95 % CI 3.5-3.9) fold increase in the daily hazard of indoor smothering deaths, compared with days when outdoor daily average humidity was less than 70 % and no rain. This study provides useful insight into the determinants of smothering in Australian free-range layer hens, in particular risk factors that do not change over time (e.g., shed type) and those that change daily (e.g., weather conditions). This information allows flock management strategies to be adapted accordingly.
Collapse
Affiliation(s)
- P Chowdhury
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Animal Welfare Science Centre, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - P H Hemsworth
- Animal Welfare Science Centre, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - A D Fisher
- Animal Welfare Science Centre, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - M Rice
- Animal Welfare Science Centre, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - R Y Galea
- Animal Welfare Science Centre, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - P S Taylor
- Animal Welfare Science Centre, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales 2350, Australia; School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - M Stevenson
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Maldarelli G, Dissegna A, Ravignani A, Chiandetti C. Chicks produce consonant, sometimes jazzy, sounds. Biol Lett 2024; 20:20240374. [PMID: 39317326 PMCID: PMC11421896 DOI: 10.1098/rsbl.2024.0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Several animal species prefer consonant over dissonant sounds, a building block of musical scales and harmony. Could consonance and dissonance be linked, beyond music, to the emotional valence of vocalizations? We extracted the fundamental frequency from calls of young chickens with either positive or negative emotional valence, i.e. contact, brood and food calls. For each call, we calculated the frequency ratio between the maximum and the minimum values of the fundamental frequency, and we investigated which frequency ratios occurred with higher probability. We found that, for all call types, the most frequent ratios matched perfect consonance, like an arpeggio in pop music. These music-like intervals, based on the auditory frequency resolution of chicks, cannot be miscategorized into contiguous dissonant intervals. When we analysed frequency ratio distributions at a finer-grained level, we found some dissonant ratios in the contact calls produced during distress only, thus sounding a bit jazzy. Complementing the empirical data, our computational simulations suggest that physiological constraints can only partly explain both consonances and dissonances in chicks' phonation. Our data add to the mounting evidence that the building blocks of human musical traits can be found in several species, even phylogenetically distant from us.
Collapse
Affiliation(s)
- Gianmarco Maldarelli
- Department of Life Sciences, University of Trieste , Trieste, Italy
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-Universitat Bochum , Bochum, Germany
| | - Andrea Dissegna
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics , Nijmegen, The Netherlands
- Center for Music in the Brain, Aarhus University , Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome , Rome, Italy
| | | |
Collapse
|
3
|
Ordiway G, McDonnell M, Sanchez JT. Revisiting the Chicken Auditory Brainstem Response: Frequency Specificity, Threshold Sensitivity, and Cross Species Comparison. Neurosci Insights 2024; 19:26331055241228308. [PMID: 38304551 PMCID: PMC10832403 DOI: 10.1177/26331055241228308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
The auditory brainstem response (ABR) is important for both clinical and basic auditory research. It is a non-invasive measure of hearing function with millisecond-level precision. The ABR can not only measure the synchrony, speed, and efficacy of auditory physiology but also detect different modalities of hearing pathology and hearing loss. ABRs are easily acquired in vertebrate animal models like reptiles, birds, and mammals, and complement existing molecular, developmental, and systems-level research. One such model system is the chicken; an excellent animal for studying auditory development, structure, and function. However, the ABR for chickens was last reported nearly 4 decades ago. The current study examines how decades of ABR characterization in other animal species support findings from the chicken ABR. We replicated and expanded on previous research using 43 chicken hatchlings 1- and 2-day post-hatch. We report that click-evoked chicken ABRs presented with a peak waveform morphology, amplitude, and latency like previous avian studies. Tone-evoked ABRs were found for frequencies from 250 to 4000 Hertz (Hz) and exhibited a range of best sensitivity between 750 and 2000 Hz. Objective click-evoked and tone-evoked ABR thresholds were comparable to subjective thresholds. With these revisited measurements, the chicken ABR still proves to be an excellent example of precocious avian development that complements decades of molecular, neuronal, and systems-level research in the same model organism.
Collapse
Affiliation(s)
- George Ordiway
- Roxelyn and Richard Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Central Auditory Physiology Laboratory, Northwestern University, Evanston, IL, USA
| | - Miranda McDonnell
- Roxelyn and Richard Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Central Auditory Physiology Laboratory, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Central Auditory Physiology Laboratory, Northwestern University, Evanston, IL, USA
- Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Heffner HE, Koay G, Heffner RS. Hearing in helmeted guineafowl (Numida meleagris): audiogram from 2 Hz to 10 kHz and localization acuity for brief noise bursts. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:65-73. [PMID: 37280367 DOI: 10.1007/s00359-023-01645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Behavioral hearing thresholds and noise localization acuity were determined using a conditioned avoidance/suppression procedure for three Helmeted guineafowl (Numida meleagris). The guineafowl responded to frequencies as low as 2 Hz at 82.5 dB SPL, and as high as 8 kHz at 84.5 dB SPL. At a level of 60 dB SPL, their hearing range spanned 8.12 octaves (24.6 Hz-6.86 kHz). Like most birds, they do not hear sounds above 8 kHz. However, the guineafowl demonstrated good low-frequency hearing (frequencies below 32 Hz), showing thresholds that are more sensitive than both the peafowl and pigeon, both of which hear infrasound. It thus appears that infrasound perception may be more common than previously thought and may have implications for species that inhabit areas with wind energy facilities. The guineafowls' minimum audible angle for a 100-ms broadband noise burst was 13.8 °, at the median for birds and near the mean for mammals. Unlike in mammals, the small sample of bird species and limited representation of lifestyles do not yet allow for meaningful interpretations of the selective pressures or mechanisms that underlie their abilities to locate sound sources.
Collapse
Affiliation(s)
- Henry E Heffner
- Department of Psychology, University of Toledo, Toledo, OH, USA
| | - Gimseong Koay
- Department of Psychology, University of Toledo, Toledo, OH, USA
| | - Rickye S Heffner
- Department of Psychology, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
5
|
Gillies N, Martín López LM, den Ouden OFC, Assink JD, Basille M, Clay TA, Clusella-Trullas S, Joo R, Weimerskirch H, Zampolli M, Zeyl JN, Patrick SC. Albatross movement suggests sensitivity to infrasound cues at sea. Proc Natl Acad Sci U S A 2023; 120:e2218679120. [PMID: 37812719 PMCID: PMC10589618 DOI: 10.1073/pnas.2218679120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/27/2023] [Indexed: 10/11/2023] Open
Abstract
The ways in which seabirds navigate over very large spatial scales remain poorly understood. While olfactory and visual information can provide guidance over short distances, their range is often limited to 100s km, far below the navigational capacity of wide-ranging animals such as albatrosses. Infrasound is a form of low-frequency sound that propagates for 1,000s km in the atmosphere. In marine habitats, its association with storms and ocean surface waves could in effect make it a useful cue for anticipating environmental conditions that favor or hinder flight or be associated with profitable foraging patches. However, behavioral responses of wild birds to infrasound remain untested. Here, we explored whether wandering albatrosses, Diomedea exulans, respond to microbarom infrasound at sea. We used Global Positioning System tracks of 89 free-ranging albatrosses in combination with acoustic modeling to investigate whether albatrosses preferentially orientate toward areas of 'loud' microbarom infrasound on their foraging trips. We found that in addition to responding to winds encountered in situ, albatrosses moved toward source regions associated with higher sound pressure levels. These findings suggest that albatrosses may be responding to long-range infrasonic cues. As albatrosses depend on winds and waves for soaring flight, infrasonic cues may help albatrosses to identify environmental conditions that allow them to energetically optimize flight over long distances. Our results shed light on one of the great unresolved mysteries in nature, navigation in seemingly featureless ocean environments.
Collapse
Affiliation(s)
- Natasha Gillies
- School of Environmental Sciences, University of Liverpool, LiverpoolL3 5DA, United Kingdom
| | - Lucía Martina Martín López
- School of Environmental Sciences, University of Liverpool, LiverpoolL3 5DA, United Kingdom
- Ipar Perspective Asociación Karabiondo Kalea, Bilbao48600, Spain
| | - Olivier F. C. den Ouden
- Research and Development Seismology and Acoustics, Royal Netherlands Meteorological Institute, Utrecht3731GA, Netherlands
- Department of Geoscience and Engineering, Delft University of Technology, Delft2628CD, Netherlands
| | - Jelle D. Assink
- Research and Development Seismology and Acoustics, Royal Netherlands Meteorological Institute, Utrecht3731GA, Netherlands
| | - Mathieu Basille
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL33314
| | - Thomas A. Clay
- School of Environmental Sciences, University of Liverpool, LiverpoolL3 5DA, United Kingdom
- Institute of Marine Sciences, University of California, Santa Cruz, CA95064
| | | | - Rocío Joo
- Global Fishing Watch, Washington, DC20036
| | - Henri Weimerskirch
- Ecology of Marine Birds and Mammals, Centre d’Étude Biologique de Chizé, Villiers-en-Bois79360, France
| | - Mario Zampolli
- International Monitoring System Division, Comprehensive Nuclear-Test-Ban Treaty Organization, Vienna1400, Austria
| | - Jeffrey N. Zeyl
- Department of Botany and Zoology, Stellenbosch University, Cape Town7602, South Africa
| | - Samantha C. Patrick
- School of Environmental Sciences, University of Liverpool, LiverpoolL3 5DA, United Kingdom
| |
Collapse
|
6
|
Olczak K, Penar W, Nowicki J, Magiera A, Klocek C. The Role of Sound in Livestock Farming-Selected Aspects. Animals (Basel) 2023; 13:2307. [PMID: 37508083 PMCID: PMC10376870 DOI: 10.3390/ani13142307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
To ensure the optimal living conditions of farm animals, it is essential to understand how their senses work and the way in which they perceive their environment. Most animals have a different hearing range compared to humans; thus, some aversive sounds may go unnoticed by caretakers. The auditory pathways may act through the nervous system on the cardiovascular, gastrointestinal, endocrine, and immune systems. Therefore, noise may lead to behavioral activation (arousal), pain, and sleep disorders. Sounds on farms may be produced by machines, humans, or animals themselves. It is worth noting that vocalization may be very informative to the breeder as it is an expression of an emotional state. This information can be highly beneficial in maintaining a high level of livestock welfare. Moreover, understanding learning theory, conditioning, and the potential benefits of certain sounds can guide the deliberate use of techniques in farm management to reduce the aversiveness of certain events.
Collapse
Affiliation(s)
- Katarzyna Olczak
- Department of Horse Breeding, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland
| | - Weronika Penar
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland
| | - Jacek Nowicki
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland
| | - Angelika Magiera
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland
| | - Czesław Klocek
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland
| |
Collapse
|
7
|
Zeyl JN, Snelling EP, Joo R, Clusella-Trullas S. Scaling of ear morphology across 127 bird species and its implications for hearing performance. Hear Res 2023; 428:108679. [PMID: 36587457 DOI: 10.1016/j.heares.2022.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The dimensions of auditory structures among animals of varying body size can have implications for hearing performance. Larger animals often have a hearing range focused on lower frequencies than smaller animals, which may be explained by several anatomical mechanisms in the ear and their scaling relationships. While the effect of size on ear morphology and hearing performance has been explored in some mammals, anurans and lizards, much less is known about the scaling relationships for the single-ossicle, internally-coupled ears of birds. Using micro- and nano-CT scans of the tympanic middle and inner ears of 127 ecologically and phylogenetically diverse bird species, spanning more than 400-fold in head mass (2.3 to 950 g), we undertook phylogenetically-informed scaling analyses to test whether 12 morphological traits, of functional importance to hearing, maintain their relative proportions with increasing head mass. We then extended our analysis by regressing these morphological traits with measures of hearing sensitivity and range to better understand morphological underpinnings of hearing performance. We find that most auditory structures scale together in equal proportions, whereas columella length increases disproportionately. We also find that the size of several auditory structures is associated with increased hearing sensitivity and frequency hearing limits, while head mass did not explain these measures. Although both birds and mammals demonstrate proportional scaling between auditory structures, the consequences for hearing in each group may diverge due to unique morphological predictors of auditory performance.
Collapse
Affiliation(s)
- Jeffrey N Zeyl
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.
| | - Edward P Snelling
- Department of Anatomy and Physiology, and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Rocío Joo
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, USA; Global Fishing Watch, Washington, DC 20036, USA
| | | |
Collapse
|
8
|
Wang X, Fan Q, Yu X, Wang Y. Cellular distribution of the Fragile X mental retardation protein in the inner ear: a developmental and comparative study in the mouse, rat, gerbil, and chicken. J Comp Neurol 2023; 531:149-169. [PMID: 36222577 PMCID: PMC9691623 DOI: 10.1002/cne.25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
The Fragile X mental retardation protein (FMRP) is an mRNA binding protein that is essential for neural circuit assembly and synaptic plasticity. Loss of functional FMRP leads to Fragile X syndrome (FXS), a neurodevelopmental disorder characterized by sensory dysfunction including abnormal auditory processing. While the central mechanisms of FMRP regulation have been studied in the brain, whether FMRP is expressed in the auditory periphery and how it develops and functions remains unknown. In this study, we characterized the spatiotemporal distribution pattern of FMRP immunoreactivity in the inner ear of mice, rats, gerbils, and chickens. Across species, FMRP was expressed in hair cells and supporting cells, with a particularly high level in immature hair cells during the prehearing period. Interestingly, the distribution of cytoplasmic FMRP displayed an age-dependent translocation in hair cells, and this feature was conserved across species. In the auditory ganglion (AG), FMRP immunoreactivity was detected in neuronal cell bodies as well as their peripheral and central processes. Distinct from hair cells, FMRP intensity in AG neurons was high both during development and after maturation. Additionally, FMRP was evident in mature glial cells surrounding AG neurons. Together, these observations demonstrate distinct developmental trajectories across cell types in the auditory periphery. Given the importance of peripheral inputs to the maturation of auditory circuits, these findings implicate involvement of FMRP in inner ear development as well as a potential contribution of periphery FMRP to the generation of auditory dysfunction in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Qiwei Fan
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
9
|
Maldarelli G, Firzlaff U, Luksch H. Azimuthal sound localization in the chicken. PLoS One 2022; 17:e0277190. [PMID: 36413534 PMCID: PMC9681088 DOI: 10.1371/journal.pone.0277190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Sound localization is crucial for the survival and reproduction of animals, including non-auditory specialist animals such as the majority of avian species. The chicken (Gallus gallus) is a well-suited representative of a non-auditory specialist bird and several aspects of its auditory system have been well studied in the last decades. We conducted a behavioral experiment where 3 roosters performed a sound localization task with broad-band noise, using a 2-alternative forced choice paradigm. We determined the minimum audible angle (MAA) as measure for localization acuity. In general, our results compare to previous MAA measurements with hens in Go/NoGo tasks. The chicken has high localization acuity compared to other auditory generalist bird species tested so far. We found that chickens were better at localizing broadband noise with long duration (1 s; MAA = 16°) compared to brief duration (0.1 s; MAA = 26°). Moreover, the interaural difference in time of arrival and level (ITD and ILD, respectively) at these MAAs are comparable to what measured in other non-auditory specialist bird species, indicating that they might be sufficiently broad to be informative for azimuthal sound localization.
Collapse
Affiliation(s)
- Gianmarco Maldarelli
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
- * E-mail:
| | - Uwe Firzlaff
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
10
|
Krumm B, Klump GM, Köppl C, Beutelmann R, Langemann U. Chickens have excellent sound localization ability. J Exp Biol 2022; 225:jeb243601. [PMID: 35156129 DOI: 10.1242/jeb.243601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 02/27/2024]
Abstract
The mechanisms of sound localization are actively debated, especially which cues are predominately used and why. Our study provides behavioural data in chickens (Gallus gallus) and relates these to estimates of the perceived physical cues. Sound localization acuity was quantified as the minimum audible angle (MAA) in azimuth. Pure-tone MAA was 12.3, 9.3, 8.9 and 14.5 deg for frequencies of 500, 1000, 2000 and 4000 Hz, respectively. Broadband-noise MAA was 12.2 deg, which indicates excellent behavioural acuity. We determined 'external cues' from head-related transfer functions of chickens. These were used to derive 'internal cues', taking into account published data on the effect of the coupled middle ears. Our estimates of the internal cues indicate that chickens likely relied on interaural time difference cues alone at low frequencies of 500 and 1000 Hz, whereas at 2000 and 4000 Hz, interaural level differences may be the dominant cue.
Collapse
Affiliation(s)
- Bianca Krumm
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence "Hearing4all 2.0", Division for Cochlea and Auditory Brainstem Physiology, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Georg M Klump
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all 2.0", Division for Cochlea and Auditory Brainstem Physiology, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Rainer Beutelmann
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Ulrike Langemann
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
11
|
Patrick SC, Assink JD, Basille M, Clusella-Trullas S, Clay TA, den Ouden OFC, Joo R, Zeyl JN, Benhamou S, Christensen-Dalsgaard J, Evers LG, Fayet AL, Köppl C, Malkemper EP, Martín López LM, Padget O, Phillips RA, Prior MK, Smets PSM, van Loon EE. Infrasound as a Cue for Seabird Navigation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.740027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seabirds are amongst the most mobile of all animal species and spend large amounts of their lives at sea. They cross vast areas of ocean that appear superficially featureless, and our understanding of the mechanisms that they use for navigation remains incomplete, especially in terms of available cues. In particular, several large-scale navigational tasks, such as homing across thousands of kilometers to breeding sites, are not fully explained by visual, olfactory or magnetic stimuli. Low-frequency inaudible sound, i.e., infrasound, is ubiquitous in the marine environment. The spatio-temporal consistency of some components of the infrasonic wavefield, and the sensitivity of certain bird species to infrasonic stimuli, suggests that infrasound may provide additional cues for seabirds to navigate, but this remains untested. Here, we propose a framework to explore the importance of infrasound for navigation. We present key concepts regarding the physics of infrasound and review the physiological mechanisms through which infrasound may be detected and used. Next, we propose three hypotheses detailing how seabirds could use information provided by different infrasound sources for navigation as an acoustic beacon, landmark, or gradient. Finally, we reflect on strengths and limitations of our proposed hypotheses, and discuss several directions for future work. In particular, we suggest that hypotheses may be best tested by combining conceptual models of navigation with empirical data on seabird movements and in-situ infrasound measurements.
Collapse
|
12
|
Garg S, Sagar A, Singaraju GS, Dani R, Bari NK, Naganathan AN, Rakshit S. Weakening of interaction networks with aging in tip-link protein induces hearing loss. Biochem J 2021; 478:121-134. [PMID: 33270084 PMCID: PMC7813477 DOI: 10.1042/bcj20200799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Age-related hearing loss (ARHL) is a common condition in humans marking the gradual decrease in hearing with age. Perturbations in the tip-link protein cadherin-23 that absorbs the mechanical tension from sound and maintains the integrity of hearing is associated with ARHL. Here, in search of molecular origins for ARHL, we dissect the conformational behavior of cadherin-23 along with the mutant S47P that progresses the hearing loss drastically. Using an array of experimental and computational approaches, we highlight a lower thermodynamic stability, significant weakening in the hydrogen-bond network and inter-residue correlations among β-strands, due to the S47P mutation. The loss in correlated motions translates to not only a remarkable two orders of magnitude slower folding in the mutant but also to a proportionately complex unfolding mechanism. We thus propose that loss in correlated motions within cadherin-23 with aging may trigger ARHL, a molecular feature that likely holds true for other disease-mutations in β-strand-rich proteins.
Collapse
Affiliation(s)
- Surbhi Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Amin Sagar
- Centre de Biochimie Structurale INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Gayathri S. Singaraju
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Rahul Dani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Naimat K. Bari
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
13
|
Gray H, Davies R, Bright A, Rayner A, Asher L. Why Do Hens Pile? Hypothesizing the Causes and Consequences. Front Vet Sci 2020; 7:616836. [PMID: 33363246 PMCID: PMC7758342 DOI: 10.3389/fvets.2020.616836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Piling is a behavior in laying hens whereby individuals aggregate in larger densities than would be normally expected. When piling behavior leads to mortalities it is known as smothering and its frequent but unpredictable occurrence is a major concern for many egg producers. There are generally considered to be three types of piling: panic, nest box and recurring piling. Whilst nest box and panic piling have apparent triggers, recurring piling does not, making it an enigmatic and ethologically intriguing behavior. The repetitive nature of recurring piling may result in a higher incidence of smothering and could have unconsidered, sub-lethal consequences. Here, we consider the possible causes of recurring piling from an ethological perspective and outline the potential welfare and production consequences. Drawing on a wide range of literature, we consider different timescales of causes from immediate triggers to ontogeny and domestication processes, and finally consider the evolution of collective behavior. By considering different timescales of influence, we built four hypotheses relevant to the causes of piling, which state that the behavior: (i) is caused by hens moving toward or away from an attractant/repellent; (ii) is socially influenced; (iii) is influenced by early life experiences and; (iv) can be described as a maladaptive collective behavior. We further propose that the following could be welfare consequences of piling behavior: Heat stress, physical injury (such as keel bone damage), and behavioral and physiological stress effects. Production consequences include direct and indirect mortality (smothering and knock-on effects of piling, respectively), potential negative impacts on egg quality and on worker welfare. In future studies the causes of piling and smothering should be considered according to the different timescales on which causes might occur. Here, both epidemiological and modeling approaches could support further study of piling behavior, where empirical studies can be challenging.
Collapse
Affiliation(s)
- Helen Gray
- Asher Behaviour Lab, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Davies
- Asher Behaviour Lab, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ashleigh Bright
- FAI Farms Ltd., The Barn, Wytham, Oxfordshire, United Kingdom
| | - Ann Rayner
- FAI Farms Ltd., The Barn, Wytham, Oxfordshire, United Kingdom
| | - Lucy Asher
- Asher Behaviour Lab, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Hearing in Indian peafowl (Pavo cristatus): sensitivity to infrasound. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:899-906. [PMID: 33025058 DOI: 10.1007/s00359-020-01446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
Despite the excitement that followed the report of infrasound sensitivity in pigeons 40 years ago, there has been limited followup, with only eleven species of birds having auditory thresholds at frequencies below 250 Hz. With such sparse data on low-frequency hearing, there is little understanding of why some birds hear very low frequencies while others do not. To begin to expand the phylogenetic and ecological sample of low-frequency hearing in birds, we determined the behavioral audiogram of the Indian peafowl, Pavo cristatus. Peafowl are thought to use low frequencies generated by the males' tail feathers and wing flutters during courtship displays, and their crest feathers are reported to resonate at infrasound frequencies. The peafowl were able to respond to frequencies as low as 4 Hz, and their hearing range at 60 dB SPL extended from 29 Hz to 7.065 kHz (7.9 octaves). Removing the crest feathers reduced sensitivity at their resonant frequencies by as much as 7.5 dB, indicating a modest contribution to detectability in that range. However, perforation of the tympanic membranes severely reduced sensitivity to low frequencies, indicating that sensitivity to low frequencies is mediated primarily by the ears and cannot be attributed to some other sensory modality.
Collapse
|
15
|
Hart V, Policht R, Jandák V, Brothánek M, Burda H. Low frequencies in the display vocalization of the Western Capercaillie ( Tetrao urogallus). PeerJ 2020; 8:e9189. [PMID: 32714652 PMCID: PMC7353911 DOI: 10.7717/peerj.9189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/23/2020] [Indexed: 11/20/2022] Open
Abstract
Only a few bird species are known to produce low-frequency vocalizations. We analyzed the display vocalizations of Western Capercaillie males kept in breeding centers and identified harmonically structured signals with a fundamental frequency of 28.7 ± 1.2 Hz (25.6–31.6 Hz). These low-frequency components temporally overlap with the Whetting phase (96% of its duration) and they significantly contribute to the distinct vocal expression between individuals. The resulting model of discrimination analysis classified 67.6% vocalizations (63%, cross-validated result) correctly to the specific individual in comparison to the probability by chance of 12.5%. We discuss a possible function of low-frequency components that remains unclear. The occurrence of such low frequencies is surprising as this grouse is substantially smaller than cassowaries (Southern cassowary Casuarius casuarius and Dwarf cassowary Casuarius bennetti) , the species that produces similarly low frequencies. Because these low frequency components temporarily overlap with the Whetting phase, they are hardly audible from a distance larger than several meters.
Collapse
Affiliation(s)
- Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Richard Policht
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Vojtěch Jandák
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Marek Brothánek
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha, Czech Republic
| |
Collapse
|
16
|
Japanese quail (Coturnix japonica) audiogram from 16 Hz to 8 kHz. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:665-670. [DOI: 10.1007/s00359-020-01428-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022]
|
17
|
Déaux EC, O'Neil NP, Jensen AM, Charrier I, Iwaniuk AN. Courtship display speed varies daily and with body size in the Ruffed Grouse (
Bonasa umbellus
). Ethology 2020. [DOI: 10.1111/eth.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eloïse C. Déaux
- Department de Cognition Comparée Université de Neuchâtel Neuchâtel Switzerland
| | - Nicholas P. O'Neil
- Department of Neuroscience University of Lethbridge Lethbridge AB Canada
| | - Ashley M. Jensen
- Department of Biology University of Lethbridge Lethbridge AB Canada
| | - Isabelle Charrier
- Université Paris‐Saclay Université Paris‐Sud CNRS UMR 9197 Institut des Neurosciences Paris‐Saclay Orsay France
| | - Andrew N. Iwaniuk
- Department of Neuroscience University of Lethbridge Lethbridge AB Canada
| |
Collapse
|
18
|
Zeyl JN, den Ouden O, Köppl C, Assink J, Christensen-Dalsgaard J, Patrick SC, Clusella-Trullas S. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships. Biol Rev Camb Philos Soc 2020; 95:1036-1054. [PMID: 32237036 DOI: 10.1111/brv.12596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
The perception of airborne infrasound (sounds below 20 Hz, inaudible to humans except at very high levels) has been documented in a handful of mammals and birds. While animals that produce vocalizations with infrasonic components (e.g. elephants) present conspicuous examples of potential use of infrasound in the context of communication, the extent to which airborne infrasound perception exists among terrestrial animals is unclear. Given that most infrasound in the environment arises from geophysical sources, many of which could be ecologically relevant, communication might not be the only use of infrasound by animals. Therefore, infrasound perception could be more common than currently realized. At least three bird species, each of which do not communicate using infrasound, are capable of detecting infrasound, but the associated auditory mechanisms are not well understood. Here we combine an evaluation of hearing measurements with anatomical observations to propose and evaluate hypotheses supporting avian infrasound detection. Environmental infrasound is mixed with non-acoustic pressure fluctuations that also occur at infrasonic frequencies. The ear can detect such non-acoustic pressure perturbations and therefore, distinguishing responses to infrasound from responses to non-acoustic perturbations presents a great challenge. Our review shows that infrasound could stimulate the ear through the middle ear (tympanic) route and by extratympanic routes bypassing the middle ear. While vibration velocities of the middle ear decline towards infrasonic frequencies, whole-body vibrations - which are normally much lower amplitude than that those of the middle ear in the 'audible' range (i.e. >20 Hz) - do not exhibit a similar decline and therefore may reach vibration magnitudes comparable to the middle ear at infrasonic frequencies. Low stiffness in the middle and inner ear is expected to aid infrasound transmission. In the middle ear, this could be achieved by large air cavities in the skull connected to the middle ear and low stiffness of middle ear structures; in the inner ear, the stiffness of round windows and cochlear partitions are key factors. Within the inner ear, the sizes of the helicotrema and cochlear aqueduct are expected to play important roles in shunting low-frequency vibrations away from low-frequency hair-cell sensors in the cochlea. The basilar papilla, the auditory organ in birds, responds to infrasound in some species, and in pigeons, infrasonic-sensitive neurons were traced back to the apical, abneural end of the basilar papilla. Vestibular organs and the paratympanic organ, a hair cell organ outside of the inner ear, are additional untested candidates for infrasound detection in birds. In summary, this review brings together evidence to create a hypothetical framework for infrasonic hearing mechanisms in birds and other animals.
Collapse
Affiliation(s)
- Jeffrey N Zeyl
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Olivier den Ouden
- R&D Seismology and Acoustics, Royal Netherlands Meteorological Institute (KNMI), Ministry of Infrastructure, Public Works and Water Management, De Bilt, 3730 AE, The Netherlands.,Faculty of Civil Engineering and Geosciences, Department of Geoscience and Engineering, Delft University of Technology, Delft, 2628 CN, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Jelle Assink
- R&D Seismology and Acoustics, Royal Netherlands Meteorological Institute (KNMI), Ministry of Infrastructure, Public Works and Water Management, De Bilt, 3730 AE, The Netherlands
| | | | - Samantha C Patrick
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | | |
Collapse
|
19
|
Kim EJ, Feng C, Santamaria F, Kim JH. Impact of Auditory Experience on the Structural Plasticity of the AIS in the Mouse Brainstem Throughout the Lifespan. Front Cell Neurosci 2019; 13:456. [PMID: 31680869 PMCID: PMC6813928 DOI: 10.3389/fncel.2019.00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022] Open
Abstract
Sound input critically influences the development and maintenance of neuronal circuits in the mammalian brain throughout life. We investigate the structural and functional plasticity of auditory neurons in response to various auditory experiences during development, adulthood, and aging. Using electrophysiology, computer simulation, and immunohistochemistry, we study the structural plasticity of the axon initial segment (AIS) in the medial nucleus of the trapezoid body (MNTB) from the auditory brainstem of the mice (either sex), in different ages and auditory environments. The structure and spatial location of the AIS of MNTB neurons depend on their functional topographic location along the tonotopic axis, aligning high- to low-frequency sound-responding neurons (HF or LF neurons). HF neurons dramatically undergo structural remodeling of the AIS throughout life. The AIS progressively shortens during development, is stabilized in adulthood, and becomes longer in aging. Sound inputs are critically associated with setting and maintaining AIS plasticity and tonotopy at various ages. Sound stimulation increases the excitability of auditory neurons. Computer simulation shows that modification of the AIS length, location, and diameter can affect firing properties of MNTB neurons in the developing brainstem. The adaptive capability of axonal structure in response to various auditory experiences at different ages suggests that sound input is important for the development and maintenance of the structural and functional properties of the auditory brain throughout life.
Collapse
Affiliation(s)
- Eun Jung Kim
- The Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| | - Chenling Feng
- The Department of Biology, University of Texas, San Antonio, TX, United States
| | - Fidel Santamaria
- The Department of Biology, University of Texas, San Antonio, TX, United States
| | - Jun Hee Kim
- The Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
20
|
Muyshondt PGG, Dirckx JJJ. How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear. Biomech Model Mechanobiol 2019; 19:233-249. [PMID: 31372910 DOI: 10.1007/s10237-019-01207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022]
Abstract
It is believed that non-mammals have poor hearing at high frequencies because the sound-conduction performance of their single-ossicle middle ears declines above a certain frequency. To better understand this behavior, a dynamic three-dimensional finite-element model of the chicken middle ear was constructed. The effect of changing the flexibility of the cartilaginous extracolumella on middle-ear sound conduction was simulated from 0.125 to 8 kHz, and the influence of the outward-bulging cone shape of the eardrum was studied by altering the depth and orientation of the eardrum cone in the model. It was found that extracolumella flexibility increases the middle-ear pressure gain at low frequencies due to an enhancement of eardrum motion, but it decreases the pressure gain at high frequencies as the bony columella becomes more resistant to extracolumella movement. Similar to the inward-pointing cone shape of the mammalian eardrum, it was shown that the outward-pointing cone shape of the chicken eardrum enhances the middle-ear pressure gain compared to a flat eardrum shape. When the outward-pointing eardrum was replaced by an inward-pointing eardrum, the pressure gain decreased slightly over the entire frequency range. This decrease was assigned to an increase in bending behavior of the extracolumella and a reduction in piston-like columella motion in the model with an inward-pointing eardrum. Possibly, the single-ossicle middle ear of birds favors an outward-pointing eardrum over an inward-pointing one as it preserves a straight angle between the columella and extrastapedius and a right angle between the columella and suprastapedius, which provides the optimal transmission.
Collapse
Affiliation(s)
- Pieter G G Muyshondt
- Biophysics and Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Joris J J Dirckx
- Biophysics and Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
21
|
Campbell DLM, de Haas EN, Lee C. A review of environmental enrichment for laying hens during rearing in relation to their behavioral and physiological development. Poult Sci 2019; 98:9-28. [PMID: 30107615 PMCID: PMC6347129 DOI: 10.3382/ps/pey319] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/28/2018] [Indexed: 11/21/2022] Open
Abstract
Globally, laying hen production systems are a focus of concern for animal welfare. Recently, the impacts of rearing environments have attracted attention, particularly with the trend toward more complex production systems including aviaries, furnished cages, barn, and free-range. Enriching the rearing environments with physical, sensory, and stimulatory additions can optimize the bird's development but commercial-scale research is limited. In this review, "enrichment" is defined as anything additional added to the bird's environment including structurally complex rearing systems. The impacts of enrichments on visual development, neurobehavioral development, auditory stimulation, skeletal development, immune function, behavioral development of fear and pecking, and specifically pullets destined for free-range systems are summarized and areas for future research identified. Visual enrichment and auditory stimulation may enhance neural development but specific mechanisms of impact and suitable commercial enrichments still need elucidating. Enrichments that target left/right brain hemispheres/behavioral traits may prepare birds for specific types of adult housing environments (caged, indoor, outdoor). Similarly, structural enrichments are needed to optimize skeletal development depending on the adult layer system, but specific physiological processes resulting from different types of exercise are poorly understood. Stimulating appropriate pecking behavior from hatch is critical but producers will need to adapt to different flock preferences to provide enrichments that are utilized by each rearing group. Enrichments have potential to enhance immune function through the application of mild stressors that promote adaptability, and this same principle applies to free-range pullets destined for variable outdoor environments. Complex rearing systems may have multiple benefits, including reducing fear, that improve the transition to the layer facility. Overall, there is a need to commercially validate positive impacts of cost-effective enrichments on bird behavior and physiology.
Collapse
Affiliation(s)
- D L M Campbell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Armidale, NSW 2350, Australia
- Adjunct to School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia
| | - E N de Haas
- Behavioural Ecology Group and Adaptation Physiology Group, Department of Animal Science, Wageningen University and Research, 6700 AH, Wageningen, the Netherlands
| | - C Lee
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Armidale, NSW 2350, Australia
- Adjunct to School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia
| |
Collapse
|
22
|
Hong H, Sanchez JT. Need for Speed and Precision: Structural and Functional Specialization in the Cochlear Nucleus of the Avian Auditory System. J Exp Neurosci 2018; 12:1179069518815628. [PMID: 30559595 PMCID: PMC6291874 DOI: 10.1177/1179069518815628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022] Open
Abstract
Birds such as the barn owl and zebra finch are known for their remarkable hearing abilities that are critical for survival, communication, and vocal learning functions. A key to achieving these hearing abilities is the speed and precision required for the temporal coding of sound-a process heavily dependent on the structural, synaptic, and intrinsic specializations in the avian auditory brainstem. Here, we review recent work from us and others focusing on the specialization of neurons in the chicken cochlear nucleus magnocellularis (NM)-a first-order auditory brainstem structure analogous to bushy cells in the mammalian anteroventral cochlear nucleus. Similar to their mammalian counterpart, NM neurons are mostly adendritic and receive auditory nerve input through large axosomatic endbulb of Held synapses. Axonal projections from NM neurons to their downstream auditory targets are sophisticatedly programmed regarding their length, caliber, myelination, and conduction velocity. Specialized voltage-dependent potassium and sodium channel properties also play important and unique roles in shaping the functional phenotype of NM neurons. Working synergistically with potassium channels, an atypical current known as resurgent sodium current promotes rapid and precise action potential firing for NM neurons. Interestingly, these structural and functional specializations vary dramatically along the tonotopic axis and suggest a plethora of encoding strategies for sounds of different acoustic frequencies, mechanisms likely shared across species.
Collapse
Affiliation(s)
- Hui Hong
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.,Department of Neurobiology, Northwestern University, Evanston, IL, USA.,The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
23
|
Hong H, Wang X, Lu T, Zorio DAR, Wang Y, Sanchez JT. Diverse Intrinsic Properties Shape Functional Phenotype of Low-Frequency Neurons in the Auditory Brainstem. Front Cell Neurosci 2018; 12:175. [PMID: 29997479 PMCID: PMC6028565 DOI: 10.3389/fncel.2018.00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
In the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM), an auditory brainstem structure. We found that NM neurons responsible for encoding the lowest sound frequencies (termed NMc neurons) have enhanced excitability and fired bursts of action potentials to sinusoidal inputs ≤10 Hz; a distinct firing pattern compared to higher-frequency neurons. This response property was due to lower amounts of voltage dependent potassium (KV) conductances, unique combination of KV subunits and specialized sodium (NaV) channel properties. Particularly, NMc neurons had significantly lower KV1 and KV3 currents, but higher KV2 current. NMc neurons also showed larger and faster transient NaV current (INaT) with different voltage dependence of inactivation from higher-frequency neurons. In contrast, significantly smaller resurgent sodium current (INaR) was present in NMc with kinetics and voltage dependence that differed from higher-frequency neurons. Immunohistochemistry showed expression of NaV1.6 channel subtypes across the tonotopic axis. However, various immunoreactive patterns were observed between regions, likely underlying some tonotopic differences in INaT and INaR. Finally, using pharmacology and computational modeling, we concluded that KV3, KV2 channels and INaR work synergistically to regulate burst firing in NMc.
Collapse
Affiliation(s)
- Hui Hong
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Xiaoyu Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Ting Lu
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Diego A. R. Zorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
- The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, United States
| |
Collapse
|
24
|
Aralla R, Ashida G, Köppl C. Binaural responses in the auditory midbrain of chicken (Gallus gallus). Eur J Neurosci 2018; 51:1290-1304. [PMID: 29582488 DOI: 10.1111/ejn.13891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 11/29/2022]
Abstract
The auditory midbrain is the location in which neurons represent binaural acoustic information necessary for sound localization. The external nucleus of the midbrain inferior colliculus (IC) of the barn owl is a classic example of an auditory space map, but it is unknown to what extent the principles underlying its formation generalize to other, less specialized animals. We characterized the spiking responses of 139 auditory neurons in the IC of the chicken (Gallus gallus) in vivo, focusing on their sensitivities to the binaural localization cues of interaural time (ITD) and level (ILD) differences. Most units were frequency-selective, with best frequencies distributed unevenly into low-frequency and high-frequency (> 2 kHz) clusters. Many units showed sensitivity to either ITD (65%) or ILD (66%) and nearly half to both (47%). ITD selectivity was disproportionately more common among low-frequency units, while ILD-only selective units were predominantly tuned to high frequencies. ILD sensitivities were diverse, and we thus developed a decision tree defining five types. One rare type with a bell-like ILD tuning was also selective for ITD but typically not frequency-selective, and thus matched the characteristics of neurons in the auditory space map of the barn owl. Our results suggest that generalist birds such as the chicken show a prominent representation of ITD and ILD cues in the IC, providing complementary information for sound localization, according to the duplex theory. A broadband response type narrowly selective for both ITD and ILD may form the basis for a representation of auditory space.
Collapse
Affiliation(s)
- Roberta Aralla
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| | - Go Ashida
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
25
|
O'Neil NP, Charrier I, Iwaniuk AN. Behavioural responses of male ruffed grouse (Bonasa umbellus, L.) to playbacks of drumming displays. Ethology 2018. [DOI: 10.1111/eth.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicholas P. O'Neil
- Department of Neuroscience; University of Lethbridge; Lethbridge AB Canada
| | - Isabelle Charrier
- Institut des Neurosciences Paris-Saclay; Université Paris-Saclay; Université Paris-Sud; CNRS; UMR 9197; Orsay France
| | - Andrew N. Iwaniuk
- Department of Neuroscience; University of Lethbridge; Lethbridge AB Canada
| |
Collapse
|
26
|
|
27
|
Audiogram of the mallard duck (Anas platyrhynchos) from 16 Hz to 9 kHz. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:929-934. [DOI: 10.1007/s00359-017-1204-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/23/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
28
|
Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis. eNeuro 2017; 4:eN-NWR-0016-17. [PMID: 28413822 PMCID: PMC5388668 DOI: 10.1523/eneuro.0016-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/17/2017] [Accepted: 03/05/2017] [Indexed: 12/03/2022] Open
Abstract
Topography in the avian cochlear nucleus magnocellularis (NM) is represented as gradually increasing characteristic frequency (CF) along the caudolateral-to-rostromedial axis. In this study, we characterized the organization and cell biophysics of the caudolateral NM (NMc) in chickens (Gallus gallus). Examination of cellular and dendritic architecture first revealed that NMc contains small neurons and extensive dendritic processes, in contrast to adendritic, large neurons located more rostromedially. Individual dye-filling study further demonstrated that NMc is divided into two subregions, with NMc2 neurons having larger and more complex dendritic fields than NMc1. Axonal tract tracing studies confirmed that NMc1 and NMc2 neurons receive afferent inputs from the auditory nerve and the superior olivary nucleus, similar to the adendritic NM. However, the auditory axons synapse with NMc neurons via small bouton-like terminals, unlike the large end bulb synapses on adendritic NM neurons. Immunocytochemistry demonstrated that most NMc2 neurons express cholecystokinin but not calretinin, distinct from NMc1 and adendritic NM neurons that are cholecystokinin negative and mostly calretinin positive. Finally, whole-cell current clamp recordings revealed that NMc neurons require significantly lower threshold current for action potential generation than adendritic NM neurons. Moreover, in contrast to adendritic NM neurons that generate a single-onset action potential, NMc neurons generate multiple action potentials to suprathreshold sustained depolarization. Taken together, our data indicate that NMc contains multiple neuron types that are structurally, connectively, molecularly, and physiologically different from traditionally defined NM neurons, emphasizing specialized neural properties for processing low-frequency sounds.
Collapse
|
29
|
Schwing R, Nelson XJ, Parsons S. Audiogram of the kea parrot, Nestor notabilis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:3739. [PMID: 27908073 DOI: 10.1121/1.4967757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vocal communication requires the sender to produce a sound, which transmits through the environment and is perceived by the receiver. Perception is dependent on the quality of the received signal and the receiver's frequency and amplitude sensitivity; hearing sensitivity of animals can be tested using behavioural detection tasks, showing the physical limitations of sound perception. Kea parrots (Nestor notabilis) were tested for their ability to hear sounds that varied in terms of both frequency and amplitude by means of a simple auditory detection task. Audiograms for three kea were similar, with the region of highest sensitivity (1-5 kHz) corresponding to the frequency of the highest amplitude in kea calls. Compared with other parrots and other bird taxa, the overall shape of the kea audiogram follows a similar pattern. However, two potentially interesting differences to the audiograms of other birds were found: an increase in sensitivity at approximately 12 kHz and a decreased sensitivity to frequencies below 1 kHz.
Collapse
Affiliation(s)
- Raoul Schwing
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Ximena J Nelson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Stuart Parsons
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
30
|
Budgerigars (Melopsittacus undulatus) do not hear infrasound: the audiogram from 8 Hz to 10 kHz. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:853-857. [DOI: 10.1007/s00359-016-1125-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/25/2022]
|
31
|
Manley GA. Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears. J Assoc Res Otolaryngol 2016; 18:1-24. [PMID: 27539715 DOI: 10.1007/s10162-016-0579-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022] Open
Abstract
Comparative auditory studies make it possible both to understand the origins of modern ears and the factors underlying the similarities and differences in their performance. After all lineages of land vertebrates had independently evolved tympanic middle ears in the early Mesozoic era, the subsequent tens of millions of years led to the hearing organ of lizards, birds, and mammals becoming larger and their upper frequency limits higher. In extant species, lizard papillae remained relatively small (<2 mm), but avian papillae attained a maximum length of 11 mm, with the highest frequencies in both groups near 12 kHz. Hearing-organ sizes in modern mammals vary more than tenfold, up to >70 mm (made possible by coiling), as do their upper frequency limits (from 12 to >200 kHz). The auditory organs of the three amniote groups differ characteristically in their cellular structure, but their hearing sensitivity and frequency selectivity within their respective hearing ranges hardly differ. In the immediate primate ancestors of humans, the cochlea became larger and lowered its upper frequency limit. Modern humans show an unusual trend in frequency selectivity as a function of frequency. It is conceivable that the frequency selectivity patterns in humans were influenced in their evolution by the development of speech.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Research Centre Neurosensory Science, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany.
| |
Collapse
|
32
|
Infrasonic and Seismic Communication in the Vertebrates with Special Emphasis on the Afrotheria: An Update and Future Directions. VERTEBRATE SOUND PRODUCTION AND ACOUSTIC COMMUNICATION 2016. [DOI: 10.1007/978-3-319-27721-9_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Palanca-Castan N, Köppl C. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris. Front Neural Circuits 2015; 9:43. [PMID: 26347616 PMCID: PMC4542463 DOI: 10.3389/fncir.2015.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/05/2015] [Indexed: 11/23/2022] Open
Abstract
Interaural time differences (ITDs) are an important cue for the localization of sounds in azimuthal space. Both birds and mammals have specialized, tonotopically organized nuclei in the brain stem for the processing of ITD: medial superior olive in mammals and nucleus laminaris (NL) in birds. The specific way in which ITDs are derived was long assumed to conform to a delay-line model in which arrays of systematically arranged cells create a representation of auditory space with different cells responding maximally to specific ITDs. This model was supported by data from barn owl NL taken from regions above 3 kHz and from chicken above 1 kHz. However, data from mammals often do not show defining features of the Jeffress model such as a systematic topographic representation of best ITDs or the presence of axonal delay lines, and an alternative has been proposed in which neurons are not topographically arranged with respect to ITD and coding occurs through the assessment of the overall response of two large neuron populations, one in each hemisphere. Modeling studies have suggested that the presence of different coding systems could be related to the animal’s head size and frequency range rather than their phylogenetic group. Testing this hypothesis requires data from across the tonotopic range of both birds and mammals. The aim of this study was to obtain in vivo recordings from neurons in the low-frequency range (<1000 Hz) of chicken NL. Our data argues for the presence of a modified Jeffress system that uses the slopes of ITD-selective response functions instead of their peaks to topographically represent ITD at mid- to high frequencies. At low frequencies, below several 100 Hz, the data did not support any current model of ITD coding. This is different to what was previously shown in the barn owl and suggests that constraints in optimal ITD processing may be associated with the particular demands on sound localization determined by the animal’s ecological niche in the same way as other perceptual systems such as field of best vision.
Collapse
Affiliation(s)
- Nicolas Palanca-Castan
- Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
34
|
|
35
|
Verhaal J, Luksch H. Multimodal integration in behaving chickens. J Exp Biol 2015; 219:90-5. [DOI: 10.1242/jeb.129387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/31/2015] [Indexed: 11/20/2022]
Abstract
In everyday life we constantly perceive and discriminate between a large variety of sensory inputs, the far majority of which consists of more than one modality. We performed two experiments to investigate whether chickens use the information present in multimodal signals. To test whether audiovisual stimuli are better detected than visual or acoustic stimuli alone, we first measured the detection threshold with a staircase paradigm. We found that chickens were able to detect weaker stimuli using audiovisual stimuli. Next, we tested whether the multimodal nature of a stimulus also increases the discrimination between two stimuli by measuring the smallest difference that the animals could still distinguish from each other. We found that chickens can discriminate smaller differences using audiovisual stimuli in comparison to visual stimuli but not in comparison to acoustic stimuli. Thus, even in a generalist species such as the chicken, the benefits from multimodal integration are exploited for sensory processing.
Collapse
Affiliation(s)
- Josine Verhaal
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
36
|
Schnyder HA, Vanderelst D, Bartenstein S, Firzlaff U, Luksch H. The avian head induces cues for sound localization in elevation. PLoS One 2014; 9:e112178. [PMID: 25390036 PMCID: PMC4229125 DOI: 10.1371/journal.pone.0112178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
Accurate sound source localization in three-dimensional space is essential for an animal’s orientation and survival. While the horizontal position can be determined by interaural time and intensity differences, localization in elevation was thought to require external structures that modify sound before it reaches the tympanum. Here we show that in birds even without external structures like pinnae or feather ruffs, the simple shape of their head induces sound modifications that depend on the elevation of the source. Based on a model of localization errors, we show that these cues are sufficient to locate sounds in the vertical plane. These results suggest that the head of all birds induces acoustic cues for sound localization in the vertical plane, even in the absence of external ears.
Collapse
Affiliation(s)
- Hans A. Schnyder
- Chair of Zoology, Technische Universität München, Munich, Germany
- * E-mail:
| | - Dieter Vanderelst
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Active Perception Lab, University Antwerp, Antwerp, Belgium
| | | | - Uwe Firzlaff
- Chair of Zoology, Technische Universität München, Munich, Germany
| | - Harald Luksch
- Chair of Zoology, Technische Universität München, Munich, Germany
| |
Collapse
|