1
|
Beck M, Althaus V, Pegel U, Homberg U. Neurons sensitive to non-celestial polarized light in the brain of the desert locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:907-928. [PMID: 36809566 PMCID: PMC10643347 DOI: 10.1007/s00359-023-01618-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Owing to alignment of rhodopsin in microvillar photoreceptors, insects are sensitive to the oscillation plane of polarized light. This property is used by many species to navigate with respect to the polarization pattern of light from the blue sky. In addition, the polarization angle of light reflected from shiny surfaces such as bodies of water, animal skin, leaves, or other objects can enhance contrast and visibility. Whereas photoreceptors and central mechanisms involved in celestial polarization vision have been investigated in great detail, little is known about peripheral and central mechanisms of sensing the polarization angle of light reflected from objects and surfaces. Desert locusts, like other insects, use a polarization-dependent sky compass for navigation but are also sensitive to polarization angles from horizontal directions. In order to further analyze the processing of polarized light reflected from objects or water surfaces, we tested the sensitivity of brain interneurons to the angle of polarized blue light presented from ventral direction in locusts that had their dorsal eye regions painted black. Neurons encountered interconnect the optic lobes, invade the central body, or send descending axons to the ventral nerve cord but are not part of the polarization vision pathway involved in sky-compass coding.
Collapse
Affiliation(s)
- Marius Beck
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany
- Institute of Biology, University of Siegen, 57068, Siegen, Germany
| | - Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany.
- Center for Mind Brain and Behavior (CMBB), Philipps-University of Marburg and Justus Liebig University of Giessen, 35032, Marburg, Germany.
| |
Collapse
|
2
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
3
|
The sky compass network in the brain of the desert locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01601-x. [PMID: 36550368 DOI: 10.1007/s00359-022-01601-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Many arthropods and vertebrates use celestial signals such as the position of the sun during the day or stars at night as compass cues for spatial orientation. The neural network underlying sky compass coding in the brain has been studied in great detail in the desert locust Schistocerca gregaria. These insects perform long-range migrations in Northern Africa and the Middle East following seasonal changes in rainfall. Highly specialized photoreceptors in a dorsal rim area of their compound eyes are sensitive to the polarization of the sky, generated by scattered sunlight. These signals are combined with direct information on the sun position in the optic lobe and anterior optic tubercle and converge from both eyes in a midline crossing brain structure, the central complex. Here, head direction coding is achieved by a compass-like arrangement of columns signaling solar azimuth through a 360° range of space by combining direct brightness cues from the sun with polarization cues matching the polarization pattern of the sky. Other directional cues derived from wind direction and internal self-rotation input are likely integrated. Signals are transmitted as coherent steering commands to descending neurons for directional control of locomotion and flight.
Collapse
|
4
|
Cullen DA, Sword GA, Rosenthal GG, Simpson SJ, Dekempeneer E, Hertog MLATM, Nicolaï BM, Caes R, Mannaerts L, Vanden Broeck J. Sexual repurposing of juvenile aposematism in locusts. Proc Natl Acad Sci U S A 2022; 119:e2200759119. [PMID: 35969777 PMCID: PMC9407653 DOI: 10.1073/pnas.2200759119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptive plasticity requires an integrated suite of functional responses to environmental variation, which can include social communication across life stages. Desert locusts (Schistocerca gregaria) exhibit an extreme example of phenotypic plasticity called phase polyphenism, in which a suite of behavioral and morphological traits differ according to local population density. Male and female juveniles developing at low population densities exhibit green- or sand-colored background-matching camouflage, while at high densities they show contrasting yellow and black aposematic patterning that deters predators. The predominant background colors of these phenotypes (green/sand/yellow) all depend on expression of the carotenoid-binding "Yellow Protein" (YP). Gregarious (high-density) adults of both sexes are initially pinkish, before a YP-mediated yellowing reoccurs upon sexual maturation. Yellow color is especially prominent in gregarious males, but the reason for this difference has been unknown since phase polyphenism was first described in 1921. Here, we use RNA interference to show that gregarious male yellowing acts as an intrasexual warning signal, which forms a multimodal signal with the antiaphrodisiac pheromone phenylacetonitrile (PAN) to prevent mistaken sexual harassment from other males during scramble mating in a swarm. Socially mediated reexpression of YP thus adaptively repurposes a juvenile signal that deters predators into an adult signal that deters undesirable mates. These findings reveal a previously underappreciated sexual dimension to locust phase polyphenism, and promote locusts as a model for investigating the relative contributions of natural versus sexual selection in the evolution of phenotypic plasticity.
Collapse
Affiliation(s)
- Darron A Cullen
- Department of Biology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Gil G Rosenthal
- Department of Biology, Università degli Studi di Padova, 35131 Padova, Italy
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- School of Life Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elfie Dekempeneer
- Department of Biosystems, KU Leuven (University of Leuven), 3001 Leuven, Belgium
| | | | - Bart M Nicolaï
- Department of Biosystems, KU Leuven (University of Leuven), 3001 Leuven, Belgium
| | - Robbe Caes
- Department of Biology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Lisa Mannaerts
- Department of Biology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Biology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| |
Collapse
|
5
|
Liang H, Bai H, Li Z, Cao Y. Polarized light sun position determination artificial neural network. APPLIED OPTICS 2022; 61:1456-1463. [PMID: 35201031 DOI: 10.1364/ao.453177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Our previous work has constructed a polarized light orientation determination (PLOD) artificial neural network. Although a PLOD network can determine the solar azimuth angle, it cannot determine the solar elevation angle. Therefore, this paper proposes an artificial neural network for polarized light solar position determination (PLSPD), which has two branches: the solar azimuth angle determination branch and the solar elevation angle determination branch. Since the solar elevation angle has no cyclic characteristics, and the angle range of the solar elevation angle is different from that of the solar azimuth angle, the solar elevation angle exponential function encoding is redesigned. In addition, compared with the PLOD, the PLSPD deletes a local full connection layer to simplify the network structure. The experimental results show that the PLSPD can determine not only the solar azimuth angle but also the solar elevation angle, and the solar azimuth angle determination accuracy of the PLSPD is higher than that of the PLOD.
Collapse
|
6
|
Wernitznig S, Rind FC, Zankel A, Bock E, Gütl D, Hobusch U, Nikolic M, Pargger L, Pritz E, Radulović S, Sele M, Summerauer S, Pölt P, Leitinger G. The complex synaptic pathways onto a looming-detector neuron revealed using serial block-face scanning electron microscopy. J Comp Neurol 2021; 530:518-536. [PMID: 34338325 DOI: 10.1002/cne.25227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022]
Abstract
The ability of locusts to detect looming stimuli and avoid collisions or predators depends on a neuronal circuit in the locust's optic lobe. Although comprehensively studied for over three decades, there are still major questions about the computational steps of this circuit. We used fourth instar larvae of Locusta migratoria to describe the connection between the lobula giant movement detector 1 (LGMD1) neuron in the lobula complex and the upstream neuropil, the medulla. Serial block-face scanning electron microscopy (SBEM) was used to characterize the morphology of the connecting neurons termed trans-medullary afferent (TmA) neurons and their synaptic connectivity. This enabled us to trace neurons over several hundred micrometers between the medulla and the lobula complex while identifying their synapses. We traced two different TmA neurons, each from a different individual, from their synapses with the LGMD in the lobula complex up into the medulla and describe their synaptic relationships. There is not a simple downstream transmission of the signal from a lamina neuron onto these TmA neurons; there is also a feedback loop in place with TmA neurons making outputs as well as receiving inputs. More than one type of neuron shapes the signal of the TmA neurons in the medulla. We found both columnar and trans-columnar neurons connected with the traced TmA neurons in the medulla. These findings indicate that there are computational steps in the medulla that have not been included in models of the neuronal pathway for looming detection.
Collapse
Affiliation(s)
- Stefan Wernitznig
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - F Claire Rind
- Newcastle University, Biosciences Institute, Newcastle upon Tyne, UK
| | - Armin Zankel
- Institute of Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology, Graz, Austria.,Centre for Electron Microscopy, Graz, Austria
| | - Elisabeth Bock
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Daniel Gütl
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ulrich Hobusch
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Manuela Nikolic
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Lukas Pargger
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Elisabeth Pritz
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Snježana Radulović
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Mariella Sele
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Susanne Summerauer
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Peter Pölt
- Institute of Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology, Graz, Austria.,Centre for Electron Microscopy, Graz, Austria
| | - Gerd Leitinger
- Research Unit Electron Microscopic Techniques, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| |
Collapse
|
7
|
Matched-filter coding of sky polarization results in an internal sun compass in the brain of the desert locust. Proc Natl Acad Sci U S A 2020; 117:25810-25817. [PMID: 32989147 DOI: 10.1073/pnas.2005192117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many animals use celestial cues for spatial orientation. These include the sun and, in insects, the polarization pattern of the sky, which depends on the position of the sun. The central complex in the insect brain plays a key role in spatial orientation. In desert locusts, the angle of polarized light in the zenith above the animal and the direction of a simulated sun are represented in a compass-like fashion in the central complex, but how both compasses fit together for a unified representation of external space remained unclear. To address this question, we analyzed the sensitivity of intracellularly recorded central-complex neurons to the angle of polarized light presented from up to 33 positions in the animal's dorsal visual field and injected Neurobiotin tracer for cell identification. Neurons were polarization sensitive in large parts of the virtual sky that in some cells extended to the horizon in all directions. Neurons, moreover, were tuned to spatial patterns of polarization angles that matched the sky polarization pattern of particular sun positions. The horizontal components of these calculated solar positions were topographically encoded in the protocerebral bridge of the central complex covering 360° of space. This whole-sky polarization compass does not support the earlier reported polarization compass based on stimulation from a small spot above the animal but coincides well with the previously demonstrated direct sun compass based on unpolarized light stimulation. Therefore, direct sunlight and whole-sky polarization complement each other for robust head direction coding in the locust central complex.
Collapse
|
8
|
Held M, Le K, Pegel U, Dersch F, Beetz MJ, Pfeiffer K, Homberg U. Anatomical and ultrastructural analysis of the posterior optic tubercle in the locust Schistocerca gregaria. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 58:100971. [PMID: 32755758 DOI: 10.1016/j.asd.2020.100971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Locusts, like other insects, partly rely on a sun compass mechanism for spatial orientation during seasonal migrations. To serve as a useful guiding cue throughout the day, however, the sun's apparent movement has to be accounted for. In locusts, a neural pathway from the accessory medulla, the circadian pacemaker, via the posterior optic tubercle, to the protocerebral bridge, part of the internal sky compass, has been proposed to mediate the required time compensation. Toward a better understanding of neural connectivities within the posterior optic tubercle, we investigated this neuropil using light and electron microscopy. Based on vesicle content, four types of synaptic profile were distinguished within the posterior optic tubercle. Immunogold labeling showed that pigment-dispersing hormone immunoreactive neurons from the accessory medulla, containing large dense-core vesicles, have presynaptic terminals in the posterior optic tubercle. Ultrastructural examination of two Neurobiotin-injected tangential neurons of the protocerebral bridge revealed that these neurons are postsynaptic in the posterior optic tubercle. Our data, therefore, support a role of the posterior optic tubercles in mediating circadian input to the insect sky compass.
Collapse
Affiliation(s)
- Martina Held
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany.
| | - Kim Le
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Florian Dersch
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - M Jerome Beetz
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Keram Pfeiffer
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
9
|
Habenstein J, Amini E, Grübel K, el Jundi B, Rössler W. The brain of
Cataglyphis
ants: Neuronal organization and visual projections. J Comp Neurol 2020; 528:3479-3506. [DOI: 10.1002/cne.24934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jens Habenstein
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Emad Amini
- Biocenter, Neurobiology and Genetics University of Würzburg Würzburg Germany
| | - Kornelia Grübel
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Basil el Jundi
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Wolfgang Rössler
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| |
Collapse
|
10
|
Wang X, Gao J, Roberts NW. Bio-inspired orientation using the polarization pattern in the sky based on artificial neural networks. OPTICS EXPRESS 2019; 27:13681-13693. [PMID: 31163828 DOI: 10.1364/oe.27.013681] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Many insects use the pattern of polarized light in the sky as a navigational cue. In this study, we use this sensory ability as a source of inspiration to create a computational orientation model based on an artificial neural network (POL-ANN). After a training phase using numerically generated sky polarization patterns, stable and convergent networks are obtained. We undertook a series of verification tests using four typical but different sky conditions and showed that the post-trained networks were able to make an accurate prediction of the direction of the sun. Comparisons between the proposed models and models based on the convolutional neural network (CNN) structure revealed the merits of the bio-inspired architecture. We further investigated the accuracy of the models based on two different (locust-like, broader; Drosophila-like, narrower) visual fields of the sky. We find that the accuracy of the computations depends on the overhead visual scene, specifically that wider fields of view perform better when information about the overhead polarization pattern is missing.
Collapse
|
11
|
El Jundi B, Baird E, Byrne MJ, Dacke M. The brain behind straight-line orientation in dung beetles. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb192450. [PMID: 30728239 DOI: 10.1242/jeb.192450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
Collapse
Affiliation(s)
- Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, Emmy-Noether Group, 97074 Würzburg, Germany
| | - Emily Baird
- Stockholm University, Faculty of Science, Department of Zoology, Division of Functional Morphology, 10691 Stockholm, Sweden
| | - Marcus J Byrne
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa
| | - Marie Dacke
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa.,Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| |
Collapse
|
12
|
Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila. J Neurosci 2017; 36:5397-404. [PMID: 27170135 DOI: 10.1523/jneurosci.0310-16.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. SIGNIFICANCE STATEMENT The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat exotic sense, called polarization vision. Because skylight is polarized in an orientation that is rigidly determined by the position of the sun, this cue provides compass information. Behavioral experiments have shown that many species use the polarization pattern in the sky to direct locomotion. Here we describe the input stage of the fly's polarization-vision system.
Collapse
|
13
|
Immonen EV, Dacke M, Heinze S, El Jundi B. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. J Comp Neurol 2017; 525:1879-1908. [PMID: 28074466 DOI: 10.1002/cne.24169] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular.
Collapse
Affiliation(s)
- Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland.,Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Marie Dacke
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Stanley Heinze
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Basil El Jundi
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Kinoshita M, Homberg U. Insect Brains: Minute Structures Controlling Complex Behaviors. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-4-431-56469-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Abstract
The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.
Collapse
Affiliation(s)
- Thomas Labhart
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zürich CH 8057, Switzerland
| |
Collapse
|
16
|
Homberg U, Müller M. Ultrastructure of GABA- and Tachykinin-Immunoreactive Neurons in the Lower Division of the Central Body of the Desert Locust. Front Behav Neurosci 2016; 10:230. [PMID: 27999533 PMCID: PMC5138221 DOI: 10.3389/fnbeh.2016.00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 11/23/2022] Open
Abstract
The central complex, a group of neuropils spanning the midline of the insect brain, plays a key role in spatial orientation and navigation. In the desert locust and other species, many neurons of the central complex are sensitive to the oscillation plane of polarized light above the animal and are likely involved in the coding of compass directions derived from the polarization pattern of the sky. Polarized light signals enter the locust central complex primarily through two types of γ-aminobutyric acid (GABA)-immunoreactive tangential neurons, termed TL2 and TL3 that innervate specific layers of the lower division of the central body (CBL). Candidate postsynaptic partners are columnar neurons (CL1) connecting the CBL to the protocerebral bridge (PB). Subsets of CL1 neurons are immunoreactive to antisera against locustatachykinin (LomTK). To better understand the synaptic connectivities of tangential and columnar neurons in the CBL, we studied its ultrastructural organization in the desert locust, both with conventional electron microscopy and in preparations immunolabeled for GABA or LomTK. Neuronal profiles in the CBL were rich in mitochondria and vesicles. Three types of vesicles were distinguished: small clear vesicles with diameters of 20–40 nm, dark dense-core vesicles (diameter 70–120 nm), and granular dense-core vesicles (diameter 70–80 nm). Neurons were connected via divergent dyads and, less frequently, through convergent dyads. GABA-immunoreactive neurons contained small clear vesicles and small numbers of dark dense core vesicles. They had both pre- and postsynaptic contacts but output synapses were observed more frequently than input synapses. LomTK immunostaining was concentrated on large granular vesicles; neurons had pre- and postsynaptic connections often with neurons assumed to be GABAergic. The data suggest that GABA-immunoreactive tangential neurons provide signals to postsynaptic neurons in the CBL, including LomTK-immunolabeled CL1 neurons, but in addition also receive input from LomTK-labeled neurons. Both types of neuron are additionally involved in local circuits with other constituents of the CBL.
Collapse
Affiliation(s)
- Uwe Homberg
- Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, Germany
| | - Monika Müller
- Institute for Zoology, University of Regensburg Regensburg, Germany
| |
Collapse
|
17
|
Jerome Beetz M, Pfeiffer K, Homberg U. Neurons in the brain of the desert locust Schistocerca gregaria sensitive to polarized light at low stimulus elevations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:759-781. [PMID: 27487785 DOI: 10.1007/s00359-016-1116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 11/28/2022]
Abstract
Desert locusts (Schistocerca gregaria) sense the plane of dorsally presented polarized light through specialized dorsal eye regions that are likely adapted to exploit the polarization pattern of the blue sky for spatial orientation. Receptive fields of these dorsal rim photoreceptors and polarization-sensitive interneurons are directed toward the upper sky but may extend to elevations below 30°. Behavioral data, however, suggests that S. gregaria is even able to detect polarized light from ventral directions but physiological evidence for this is still lacking. In this study we characterized neurons in the locust brain showing polarization sensitivity at low elevations down to the horizon. In most neurons polarization sensitivity was absent or weak when stimulating from the zenith. All neurons, including projection and commissural neurons of the optic lobe and local interneurons of the central brain, are novel cell types, distinct from polarization-sensitive neurons studied so far. Painting dorsal rim areas in both eyes black to block visual input had no effect on the polarization sensitivity of these neurons, suggesting that they receive polarized light input from the main eye. A possible role of these neurons in flight stabilization or the perception of polarized light reflected from bodies of water or vegetation is discussed.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany.,Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Keram Pfeiffer
- Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Uwe Homberg
- Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, 35032, Marburg, Germany.
| |
Collapse
|
18
|
Homberg U. Sky Compass Orientation in Desert Locusts-Evidence from Field and Laboratory Studies. Front Behav Neurosci 2015; 9:346. [PMID: 26733834 PMCID: PMC4679860 DOI: 10.3389/fnbeh.2015.00346] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/24/2015] [Indexed: 11/30/2022] Open
Abstract
Locusts are long-range migratory insects. At high population density, immature animals form marching hopper bands while adults take off and form huge swarms of millions of animals. At low population densities animals are solitarious, but likewise migrate, mostly during the night. Numerous studies aimed at predicting locust infestations showed that migrations both as hopper bands and as adults are largely downwind following seasonal shifts of the tropical convergence zone taking the animals to areas of rainfall. Only a few studies provided evidence for active orientation mechanisms, including the involvement of a sun compass. This scarcity of evidence stands in contrast to recent neurobiological data showing sophisticated neuronal adaptations suited for sky compass navigation. These include a special dorsal eye region with photoreceptors suited to analyze the polarization pattern of the sky and a system of topographically arranged sky compass neurons in the central complex of the brain. Laboratory experiments, moreover, demonstrated polarotaxis in tethered flying animals. The discrepancy of these findings call for more rigorous field studies on active orientation mechanisms in locusts. It remains to be shown how locusts use their internal sky compass during mass migrations and what role it plays to guide solitarious locusts in their natural habitat.
Collapse
Affiliation(s)
- Uwe Homberg
- Faculty of Biology, Animal Physiology, Philipps University Marburg, Germany
| |
Collapse
|
19
|
Zeller M, Held M, Bender J, Berz A, Heinloth T, Hellfritz T, Pfeiffer K. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input. PLoS One 2015; 10:e0143244. [PMID: 26630286 PMCID: PMC4667876 DOI: 10.1371/journal.pone.0143244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 01/27/2023] Open
Abstract
Honeybees are known for their ability to use the sun's azimuth and the sky's polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock.
Collapse
Affiliation(s)
- Maximilian Zeller
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Martina Held
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Julia Bender
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Annuska Berz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Tanja Heinloth
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Timm Hellfritz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Keram Pfeiffer
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
20
|
Wernet MF, Perry MW, Desplan C. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. Trends Genet 2015; 31:316-28. [PMID: 26025917 PMCID: PMC4458154 DOI: 10.1016/j.tig.2015.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here, we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to the habitat and way of life of an animal.
Collapse
Affiliation(s)
- Mathias F Wernet
- New York University Abu Dhabi, Abu Dhabi, 129188 Saadiyat Island, United Arab Emirates
| | - Michael W Perry
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- New York University Abu Dhabi, Abu Dhabi, 129188 Saadiyat Island, United Arab Emirates; Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|