1
|
Stenton CA, Bolger EL, Michenot M, Dodd JA, Wale MA, Briers RA, Hartl MGJ, Diele K. Effects of pile driving sound playbacks and cadmium co-exposure on the early life stage development of the Norway lobster, Nephrops norvegicus. MARINE POLLUTION BULLETIN 2022; 179:113667. [PMID: 35533617 DOI: 10.1016/j.marpolbul.2022.113667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
There is an urgent need to understand how organisms respond to multiple, potentially interacting drivers in today's world. The effects of the pollutants anthropogenic sound (pile driving sound playbacks) and waterborne cadmium were investigated across multiple levels of biology in larval and juvenile Norway lobster, Nephrops norvegicus under controlled laboratory conditions. The combination of pile driving playbacks (170 dBpk-pk re 1 μPa) and cadmium combined synergistically at concentrations >9.62 μg[Cd] L-1 resulting in increased larval mortality, with sound playbacks otherwise being antagonistic to cadmium toxicity. Exposure to 63.52 μg[Cd] L-1 caused significant delays in larval development, dropping to 6.48 μg[Cd] L-1 in the presence of piling playbacks. Pre-exposure to the combination of piling playbacks and 6.48 μg[Cd] L-1 led to significant differences in the swimming behaviour of the first juvenile stage. Biomarker analysis suggested oxidative stress as the mechanism resultant deleterious effects, with cellular metallothionein (MT) being the predominant protective mechanism.
Collapse
Affiliation(s)
- C A Stenton
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; Centre for Conservation and Restoration Science, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; St Abbs Marine Station, The Harbour, St Abbs, Eyemouth TD14 5PW, UK; Ocean Science Consulting Ltd., Spott Road, Dunbar EH42 1RR, UK.
| | - E L Bolger
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; Centre for Conservation and Restoration Science, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; St Abbs Marine Station, The Harbour, St Abbs, Eyemouth TD14 5PW, UK
| | - M Michenot
- École Nationale des Travaux Publics de L'état, 3 Rue Maurice Audin, 69 120 Vaulx en Velin, France
| | - J A Dodd
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; Centre for Conservation and Restoration Science, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK
| | - M A Wale
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; Centre for Conservation and Restoration Science, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; St Abbs Marine Station, The Harbour, St Abbs, Eyemouth TD14 5PW, UK
| | - R A Briers
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; Centre for Conservation and Restoration Science, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK
| | - M G J Hartl
- Centre for Marine Biodiversity & Biotechnology, Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure & Society, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - K Diele
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; Centre for Conservation and Restoration Science, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK; St Abbs Marine Station, The Harbour, St Abbs, Eyemouth TD14 5PW, UK.
| |
Collapse
|
2
|
Niu J, Hu XL, Ip JCH, Ma KY, Tang Y, Wang Y, Qin J, Qiu JW, Chan TF, Chu KH. Multi-omic approach provides insights into osmoregulation and osmoconformation of the crab Scylla paramamosain. Sci Rep 2020; 10:21771. [PMID: 33303836 PMCID: PMC7728780 DOI: 10.1038/s41598-020-78351-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Osmoregulation and osmoconformation are two mechanisms through which aquatic animals adapt to salinity fluctuations. The euryhaline crab Scylla paramamosain, being both an osmoconformer and osmoregulator, is an excellent model organism to investigate salinity adaptation mechanisms in brachyurans. In the present study, we used transcriptomic and proteomic approaches to investigate the response of S. paramamosain to salinity stress. Crabs were transferred from a salinity of 25 ppt to salinities of 5 ppt or 33 ppt for 6 h and 10 days. Data from both approaches revealed that exposure to 5 ppt resulted in upregulation of ion transport and energy metabolism associated genes. Notably, acclimation to low salinity was associated with early changes in gene expression for signal transduction and stress response. In contrast, exposure to 33 ppt resulted in upregulation of genes related to amino acid metabolism, and amino acid transport genes were upregulated only at the early stage of acclimation to this salinity. Our study reveals contrasting mechanisms underlying osmoregulation and osmoconformation within the salinity range of 5–33 ppt in the mud crab, and provides novel candidate genes for osmotic signal transduction, thereby providing insights on understanding the salinity adaptation mechanisms of brachyuran crabs.
Collapse
Affiliation(s)
- Jiaojiao Niu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xue Lei Hu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jack C H Ip
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Ka Yan Ma
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yuanyuan Tang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yaqin Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Ting Fung Chan
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
3
|
Wang S, Fitzgibbon QP, Carter CG, Smith GG. Effect of protein synthesis inhibitor cycloheximide on starvation, fasting and feeding oxygen consumption in juvenile spiny lobster Sagmariasus verreauxi. J Comp Physiol B 2019; 189:351-365. [PMID: 31101978 DOI: 10.1007/s00360-019-01221-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/01/2022]
Abstract
Metabolism in aquatic ectotherms evaluated by oxygen consumption rates reflects energetic costs including those associated with protein synthesis. Metabolism is influenced by nutritional status governed by feeding, nutrient intake and quality, and time without food. However, little is understood about contribution of protein synthesis to crustacean energy metabolism. This study is the first using a protein synthesis inhibitor cycloheximide to research contribution of cycloheximide-sensitive protein synthesis to decapod crustacean metabolism. Juvenile Sagmariasus verreauxi were subject to five treatments: 2-day fasted lobsters sham injected with saline; 2-day fasted lobsters injected with cycloheximide; 10-day starved lobsters injected with cycloheximide; post-prandial lobsters fed with squid Nototodarus sloanii with no further treatment; and post-prandial lobsters injected with cycloheximide. Standard and routine metabolic rates in starved lobsters were reduced by 32% and 41%, respectively, compared to fasted lobsters, demonstrating metabolic downregulation with starvation. Oxygen consumption rates of fasted and starved lobsters following cycloheximide injection were reduced by 29% and 13%, respectively, demonstrating protein synthesis represents only a minor component of energy metabolism in unfed lobsters. Oxygen consumption rate of fed lobsters was reduced by 96% following cycloheximide injection, demonstrating protein synthesis in decapods contributes a major proportion of specific dynamic action (SDA). SDA in decapods is predominantly a post-absorptive process likely related to somatic growth. This work extends previously limited knowledge on contribution of protein synthesis to crustacean metabolism, which is crucial to explore the relationship between nutritional status and diet quality and how this will affect growth potential in aquaculture species.
Collapse
Affiliation(s)
- Shuangyao Wang
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Chris G Carter
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| |
Collapse
|
4
|
Wang Y, Hu M, Wu F, Storch D, Pörtner HO. Elevated pCO 2 Affects Feeding Behavior and Acute Physiological Response of the Brown Crab Cancer pagurus. Front Physiol 2018; 9:1164. [PMID: 30246790 PMCID: PMC6110915 DOI: 10.3389/fphys.2018.01164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/03/2018] [Indexed: 11/25/2022] Open
Abstract
Anthropogenic climate change exposes marine organisms to CO2 induced ocean acidification (OA). Marine animals may make physiological and behavioral adaptations to cope with OA. Elevated pCO2 may affect metabolism, feeding, and energy partition of marine crabs, and thereby affect their predator-prey dynamics with mussels. Therefore, we examined the effects of simulated future elevated pCO2 on feeding behavior and energy metabolism of the brown crab Cancer pagurus. Following 54 days of pre-acclimation to control CO2 levels (360 μatm) at 11°C, crabs were exposed to consecutively increased oceanic CO2 levels (2 weeks for 1200 and 2300 μatm, respectively) and subsequently returned to control CO2 level (390 μatm) for 2 weeks in order to study their potential to acclimate elevated pCO2 and recovery performance. Standard metabolic rate (SMR), specific dynamic action (SDA) and feeding behavior of the crabs were investigated during each experimental period. Compared to the initial control CO2 conditions, the SMRs of CO2 exposed crabs were not significantly increased, but increased significantly when the crabs were returned to normal CO2 levels. Conversely, SDA was significantly reduced under high CO2 and did not return to control levels during recovery. Under high CO2, crabs fed on smaller sized mussels than under control CO2; food consumption rates were reduced; foraging parameters such as searching time, time to break the prey, eating time, and handling time were all significantly longer than under control CO2, and prey profitability was significantly lower than that under control conditions. Again, a two-week recovery period was not sufficient for feeding behavior to return to control values. PCA results revealed a positive relationship between feeding/SDA and pH, but negative relationships between the length of foraging periods and pH. In conclusion, elevated pCO2 caused crab metabolic rate to increase at the expense of SDA. Elevated pCO2 affected feeding performance negatively and prolonged foraging periods. These results are discussed in the context of how elevated pCO2 may impair the competitiveness of brown crabs in benthic communities.
Collapse
Affiliation(s)
- Youji Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Menghong Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Fangli Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Daniela Storch
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hans-Otto Pörtner
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
5
|
Lavaud R, La Peyre MK, Casas SM, Bacher C, La Peyre JF. Integrating the effects of salinity on the physiology of the eastern oyster, Crassostrea virginica, in the northern Gulf of Mexico through a Dynamic Energy Budget model. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Penney CM, Patton RL, Whiteley NM, Driedzic WR, McGaw IJ. Physiological responses to digestion in low salinity in the crabs Carcinus maenas and Cancer irroratus. Comp Biochem Physiol A Mol Integr Physiol 2016; 191:127-139. [DOI: 10.1016/j.cbpa.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 11/16/2022]
|
7
|
McLean KM, Todgham AE. Effect of food availability on the growth and thermal physiology of juvenile Dungeness crabs (Metacarcinus magister). CONSERVATION PHYSIOLOGY 2015; 3:cov013. [PMID: 27293698 PMCID: PMC4778468 DOI: 10.1093/conphys/cov013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/27/2015] [Accepted: 03/01/2015] [Indexed: 06/06/2023]
Abstract
Juvenile Dungeness crabs spend ~1 year in the San Francisco Estuary, where they undergo considerable growth before returning to the coastal ocean. Previous studies suggest that competition, food scarcity and avoidance of conspecifics may cause some juvenile Dungeness crabs in the San Francisco Estuary to become food limited. Food limitation may force these crabs to forage in higher temperature intertidal environments in the estuary, exposing them to stressful conditions in order to sustain growth and, potentially, necessitating physiological trade-offs in energy allocation between growth and stress tolerance. To investigate the effects of food limitation on aerobic metabolism and physiological performance of crabs, we assessed growth, moulting frequency, metabolic rate, citrate synthase and malate dehydrogenase enzyme activity and cardiac performance, as an index of temperature sensitivity and upper temperature tolerance. Summer- and winter-caught crabs were acclimated to either a high- or a low-food ration for 5 weeks. Overall, our results demonstrated that while food limitation had a negative effect on growth of juvenile Dungeness crabs in both the summer and the winter feeding trials, crabs in the low-food group maintained both metabolic rate at ambient San Francisco Estuary temperatures (15°C; summer trial only) and upper temperature tolerance as determined by failure of cardiac function when compared with crabs in the high-food group (summer and winter trials). Therefore, the ability to maintain stress tolerance when food is limited appears to come as a physiological trade-off to growth. Food-limited crabs were unable to increase their metabolic rate to the same level as that achieved by well-fed crabs; therefore, if exposure to elevated temperatures persists and requires more energy than can be met by crabs in their food-limited state, physiological performance may be compromised.
Collapse
Affiliation(s)
- Katherine M. McLean
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Anne E. Todgham
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Effect of meal type on specific dynamic action in the green shore crab, Carcinus maenas. J Comp Physiol B 2014; 184:425-36. [DOI: 10.1007/s00360-014-0812-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/21/2014] [Accepted: 01/31/2014] [Indexed: 11/26/2022]
|
9
|
Curtis DL, van Breukelen F, McGaw IJ. Extracellular digestion during hyposaline exposure in the Dungeness crab, Cancer magister, and the blue crab, Callinectes sapidus. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:564-70. [DOI: 10.1016/j.cbpa.2013.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
|
10
|
McGaw IJ, Curtis DL. Effect of meal size and body size on specific dynamic action and gastric processing in decapod crustaceans. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:414-25. [DOI: 10.1016/j.cbpa.2013.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 11/17/2022]
|
11
|
McGaw IJ, Curtis DL. A review of gastric processing in decapod crustaceans. J Comp Physiol B 2012; 183:443-65. [DOI: 10.1007/s00360-012-0730-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
|
12
|
Effects of acclimation and acute temperature change on specific dynamic action and gastric processing in the green shore crab, Carcinus maenas. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Shinji J, Okutsu T, Jayasankar V, Jasmani S, Wilder MN. Metabolism of amino acids during hyposmotic adaptation in the whiteleg shrimp, Litopenaeus vannamei. Amino Acids 2012; 43:1945-54. [DOI: 10.1007/s00726-012-1266-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 03/05/2012] [Indexed: 11/24/2022]
|
14
|
McGaw IJ, Twitchit TA. Specific dynamic action in the sunflower star, Pycnopodia helianthoides. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:287-95. [PMID: 22127024 DOI: 10.1016/j.cbpa.2011.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/15/2011] [Accepted: 11/15/2011] [Indexed: 11/17/2022]
Abstract
The effects of meal size and meal type on specific dynamic action (SDA) were investigated in a large, active asteroid, the sunflower star, Pycnopodia helianthoides. When the sunflower stars were fed clam flesh totalling 5%, 10%, or 20% of their body weight there was a step-wise increase in the scope, time to peak oxygen consumption, duration of the response and total SDA. The change in the rate of oxygen consumption was slower than other organisms, and oxygen uptake remained elevated for over 12d following consumption of the largest meal. There were also differences in the characteristics of the SDA if sunflower stars consumed a whole clam versus the shucked flesh of a clam. The time to reach peak oxygen consumption was greater for sunflower stars consuming a whole clam. This occurred because the clam had to be opened before they could digest the flesh; a smaller initial peak comprising 3.5% of the total SDA represented the energy require to open the clam valves. When the sunflower stars were fed different prey items (e.g. butter clam, purple urchin and herring) of similar wet organic mass, there was no difference in the time to peak, peak oxygen uptake or total SDA despite the fact that the prey items differed in protein, lipid and caloric content. There was an increased duration for which oxygen uptake remained elevated for sea stars that consumed the urchin meal. Five of the seven sunflower stars that consumed urchins exhibited a smaller second peak in oxygen uptake, totalling approximately 8.5% of the SDA energy budget. This likely represented the energy required to eject the urchin test from the stomach. Although the sunflower star is much larger and more active than other sea stars, it displayed similar SDA responses to other members of the Asteroidea, indicative of the low metabolic rate of this class.
Collapse
Affiliation(s)
- Iain J McGaw
- Ocean Sciences Centre, 1 Marine Lab Road, St John's, NL, Canada A1B 5S7.
| | | |
Collapse
|