1
|
Freire CA. What makes a competent aquatic invader? Considering saline niches of invertebrates and ray-finned fishes. J Exp Biol 2025; 228:JEB249515. [PMID: 40009010 DOI: 10.1242/jeb.249515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Aquatic invasive species are of growing concern globally, especially in fresh water. The problem is intensified by climate change, which often causes salinization of coastal fresh waters. Animals deal with salinity through the function of osmoregulation, and osmoregulatory ability can be informative when considering invasive potential. A species is said to be 'euryhaline' if it can tolerate a wide range of salinities, either through osmoregulation (tightly controlling its extracellular fluid osmolality) or osmoconformation (matching the osmotic concentration of its internal fluids with that of the environment). Euryhaline animals display a large fundamental saline niche (FSN); i.e. a wide physiological tolerance of salinity change. However, the range of salinities of the habitats where a species actually occurs define its realized saline niche (RSN). Importantly, aquatic species living in stable habitats (i.e. those with little variation in salinity) will have a small RSN, but may have large FSNs, depending on their evolutionary history. Species with large FSNs are more likely to be successful invaders of new habitats with different salinities. Here, I propose the term 'osmotic comfort' as a concept that is associated with the FSN. The core of the FSN corresponds to ∼100% osmotic comfort, or 'optimum salinity', putatively meaning minimum stress. Physiological markers of osmotic comfort can provide raw data for mechanistic niche modelling in aquatic habitats. A species with a larger FSN is more likely to remain 'osmotically comfortable' in a different saline habitat, and is less likely to suffer local extinction in fresh waters, for example, that undergo salinization.
Collapse
Affiliation(s)
- Carolina A Freire
- Departamento de Fisiologia, Sala 94, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Campus Centro Politécnico, Bairro Jardim das Américas, Curitiba, Paraná CEP 81530-980, Brazil
| |
Collapse
|
2
|
Wang R, Bu Y, Xing K, Yuan L, Wu Z, Sun Y, Zhang J. Integrated analysis of transcriptome and metabolome reveals chronic low salinity stress responses in the muscle of Exopalaemon carinicauda. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101340. [PMID: 39413659 DOI: 10.1016/j.cbd.2024.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Low salinity environment is one of the key factors threatening the survival of aquatic organisms. Due to the strong adaptability of low salinity, Exopalaemon carinicauda is an ideal model to study the low salinity adaptation mechanism of crustaceans. In this study, E. carinicauda from the same family were divided into two groups, which were reared at salinity of 4 ‰ and 30 ‰, respectively. Integrated analysis of transcriptome and metabolome was used to uncover the mechanisms of E. carinicauda adaptation to chronic low salinity environment. Under the chronic low salinity stress, a total of 651 differentially expressed genes (DEGs) and 386 differential metabolites (DMs) were obtained, with the majority showing downregulation. These DEGs mainly involved MAPK signal transduction pathway and structural constituent of cuticle. Besides, chitin binding and chitin metabolism process were inhibited significantly. Among the DMs, lipids and lipid-like molecules, flavor amino acids and nucleotides were detected, which may be related to the adjustment of energy metabolism and flavor of muscle. In addition, ubiquinone and other terpenoid-quinone biosynthesis pathway and alanine, aspartate, and glutamate metabolic pathway were induced. These results will enrich our understanding of the molecular mechanism underlying the chronic low salinity tolerance in E. carinicauda, providing an important theoretical basis and practical guidance for the research and breeding, thereby promoting the sustainable development of aquaculture.
Collapse
Affiliation(s)
- Rongxiao Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yuke Bu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Kefan Xing
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Longbin Yuan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Fabri LM, Moraes CM, Garçon DP, McNamara JC, Faria SC, Leone FA. Primary amino acid sequences of decapod (Na +, K +)-ATPase provide evolutionary insights into osmoregulatory mechanisms. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111696. [PMID: 39004301 DOI: 10.1016/j.cbpa.2024.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the β-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-β interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.
Collapse
Affiliation(s)
- Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - John C McNamara
- Departamento de Biologia Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - Samuel C Faria
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Ran H, Li Z, Yang F, Fan Z, Xu C, Han F, Farhadi A, Li E, Chen H. Molecular pathways of osmoregulation in response to salinity stress in the gills of the scalloped spiny lobster (Panulirus homarus) within survival salinity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101308. [PMID: 39137604 DOI: 10.1016/j.cbd.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Scalloped spiny lobster (Panulirus homarus) aquaculture is the preferred strategy to resolve the conflict between supply and demand for lobster. Environmental conditions, such as salinity, are key to the success of lobster aquaculture. However, physiological responses of P. homarus to salinity stress have not been well studied. This study investigated the gill histology, osmoregulation and gill transcriptome of the early juvenile P. homarus (weight 19.04 ± 3.95 g) cultured at salinity 28 (control), 18, and 38 for 6 weeks. The results showed that the gill filaments of P. homarus exposed to low salinity showed severe separation of the cuticle and epithelial cells due to water absorption and swelling, as well as the dissolution and thinning of the cuticle and the rupture of the septum that separates the afferent and efferent channels. The serum osmolarity of P. homarus varied proportionately with external medium salinity and remained consistently above ambient osmolarity. The serum Na+, Cl-, K+, and Mg2+ concentrations P. homarus exhibited a pattern similar to that of serum osmolality, while the concentration of Ca2+ remained unaffected at salinity 18 but significantly increased at salinity 38. Gill Na+/K+-ATPase activity of P. homarus increased (p < 0.05) under the both salinity stress. Salinity 18 significantly increased Glutamate dehydrogenase (GDH) and Glutamicpyruvic transaminase (GPT) activity in the hepatopancreas of P. homarus (p < 0.05). According to transcriptome analysis, versus control group (salinity 28), 929 and 1095 differentially expressed genes (DEGs) were obtained in the gills of P. homarus at salinity 18 and 38, respectively, with these DEGs were mainly involved in energy metabolism, transmembrane transport and oxidative stress and substance metabolism. In addition, the expression patterns of 8 key DEGs mainly related to amino acid metabolism, transmembrane transport and oxidative stress were verified by quantitative real-time PCR (RT-qPCR). The present study suggests that salinity 18 has a greater impact on P. homarus than salinity 38, and P. homarus demonstrates effective osmoregulation and handle with salinity fluctuations (18 to 38) through physiological and functional adaptations. This study provides an improved understanding of the physiological response strategies of P. homarus facing salinity stress, which is crucial for optimizing aquaculture practices for this species.
Collapse
Affiliation(s)
- Hongmei Ran
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Zecheng Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Fan Yang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Zihan Fan
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China.
| |
Collapse
|
5
|
Bozza DC, Freire CA, Prodocimo V. A systematic evaluation on the relationship between hypo-osmoregulation and hyper-osmoregulation in decapods of different habitats. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:5-30. [PMID: 37853933 DOI: 10.1002/jez.2757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Decapods occupy all aquatic, and terrestrial and semi-terrestrial environments. According to their osmoregulatory capacity, they can be osmoconformers or osmoregulators (hypo or hyperegulators). The goal of this study is to gather data available in the literature for aquatic decapods and verify if the rare hyporegulatory capacity of decapods is associated with hyper-regulatory capacity. The metric used to quantify osmoregulation was the osmotic capacity (OC), the gradient between external and internal (hemolymph) osmolalities. We employ phylogenetic comparative methods using 83 species of decapods to test the correlation between hyper OC and hypo OC, beyond the ancestral state for osmolality habitat, which was used to reconstruct the colonization route. Our analysis showed a phylogenetic signal for habitat osmolality, hyper OC and hypo OC, suggesting that hyper-hyporegulators decapods occupy similar habitats and show similar hyper and hyporegulatory capacities. Our findings reveal that all hyper-hyporegulators decapods (mainly shrimps and crabs) originated in estuarine waters. Hyper OC and hypo OC are correlated in decapods, suggesting correlated evolution. The analysis showed that species which inhabit environments with intense salinity variation such as estuaries, supratidal and mangrove habitats, all undergo selective pressure to acquire efficient hyper-hyporegulatory mechanisms, aided by low permeabilities. Therefore, hyporegulation can be observed in any colonization route that passes through environments with extreme variations in salinity, such as estuaries or brackish water.
Collapse
Affiliation(s)
- Deivyson Cattine Bozza
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carolina Arruda Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Prodocimo
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
6
|
Zhou C, Yang MJ, Hu Z, Shi P, Li YR, Guo YJ, Zhang T, Song H. Molecular evidence for the adaptive evolution in euryhaline bivalves. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106240. [PMID: 37944349 DOI: 10.1016/j.marenvres.2023.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Marine bivalves inhabiting intertidal and estuarine areas are frequently exposed to salinity stress due to persistent rainfall and drought. Through prolonged adaptive evolution, numerous bivalves have developed eurysalinity, which are capable of tolerating a wide range of salinity fluctuations through the sophisticated regulation of physiological metabolism. Current research has predominantly focused on investigating the physiological responses of bivalves to salinity stress, leaving a significant gap in our understanding of the adaptive evolutionary characteristics in euryhaline bivalves. Here, comparative genomics analyses were performed in two groups of bivalve species, including 7 euryhaline species and 5 stenohaline species. We identified 24 significantly expanded gene families and 659 positively selected genes in euryhaline bivalves. A significant co-expansion of solute carrier family 23 (SLC23) facilitates the transmembrane transport of ascorbic acids in euryhaline bivalves. Positive selection of antioxidant genes, such as GST and TXNRD, augments the capacity of active oxygen species (ROS) scavenging under salinity stress. Additionally, we found that the positively selected genes were significantly enriched in KEGG pathways associated with carbohydrates, lipids and amino acids metabolism (ALDH, ADH, and GLS), as well as GO terms related to transmembrane transport and inorganic anion transport (SLC22, CLCND, and VDCC). Positive selection of MCT might contribute to prevent excessive accumulation of intracellular lactic acids during anaerobic metabolism. Positive selection of PLA2 potentially promote the removal of damaged membranes lipids under salinity stress. Our findings suggest that adaptive evolution has occurred in osmoregulation, ROS scavenging, energy metabolism, and membrane lipids adjustments in euryhaline bivalves. This study enhances our understanding of the molecular mechanisms underlying the remarkable salinity adaption of euryhaline bivalves.
Collapse
Affiliation(s)
- Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| |
Collapse
|
7
|
McNamara JC, Maraschi AC, Tapella F, Romero MC. Evolutionary trade-offs in osmotic and ionic regulation and expression of gill ion transporter genes in high latitude, cold clime Neotropical crabs from the 'end of the world'. J Exp Biol 2023; 226:287036. [PMID: 36789831 DOI: 10.1242/jeb.244129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Osmoregulatory findings on crabs from high Neotropical latitudes are entirely lacking. Seeking to identify the consequences of evolution at low temperature, we examined hyperosmotic/hypo-osmotic and ionic regulation and gill ion transporter gene expression in two sub-Antarctic Eubrachyura from the Beagle Channel, Tierra del Fuego. Despite sharing the same osmotic niche, Acanthocyclus albatrossis tolerates a wider salinity range (2-65‰ S) than Halicarcinus planatus (5-60‰ S); their respective lower and upper critical salinities are 4‰ and 12‰ S, and 63‰ and 50‰ S. Acanthocyclus albatrossis is a weak hyperosmotic regulator, while H. planatus hyperosmoconforms; isosmotic points are 1380 and ∼1340 mOsm kg-1 H2O, respectively. Both crabs hyper/hypo-regulate [Cl-] well with iso-chloride points at 452 and 316 mmol l-1 Cl-, respectively. [Na+] is hyper-regulated at all salinities. mRNA expression of gill Na+/K+-ATPase is salinity sensitive in A. albatrossis, increasing ∼1.9-fold at 5‰ compared with 30‰ S, decreasing at 40-60‰ S. Expression in H. planatus is very low salinity sensitive, increasing ∼4.7-fold over 30‰ S, but decreasing at 50‰ S. V-ATPase expression decreases in A. albatrossis at low and high salinities as in H. planatus. Na+/K+/2Cl- symporter expression in A. albatrossis increases 2.6-fold at 5‰ S, but decreases at 60‰ S versus 30‰ S. Chloride uptake may be mediated by increased Na+/K+/2Cl- expression but Cl- secretion is independent of symporter expression. These unrelated eubrachyurans exhibit similar systemic osmoregulatory characteristics and are better adapted to dilute media; however, the expression of genes underlying ion uptake and secretion shows marked interspecific divergence. Cold clime crabs may limit osmoregulatory energy expenditure by hyper/hypo-regulating hemolymph [Cl-] alone, apportioning resources for other energy-demanding processes.
Collapse
Affiliation(s)
- John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.,Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11600-000, SP, Brazil
| | - Anieli Cristina Maraschi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Federico Tapella
- Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Bernardo A. Houssay 200, V9410CAB Ushuaia, Tierra del Fuego, Argentina
| | - Maria Carolina Romero
- Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Bernardo A. Houssay 200, V9410CAB Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
8
|
McNamara JC, Freire CA. Strategies of Invertebrate Osmoregulation: an Evolutionary Blueprint for Transmuting Into Fresh Water from the Sea. Integr Comp Biol 2022; 62:376-387. [PMID: 35671173 DOI: 10.1093/icb/icac081] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early marine invertebrates like the Branchiopoda began their sojourn into dilute media some 500 million years ago in the Middle Cambrian. Others like the Mollusca, Annelida and many crustacean taxa have followed, accompanying major marine transgressions and regressions, shifting landmasses, orogenies, and glaciations. In adapting to these events and new habitats, such invertebrates acquired novel physiological abilities that attenuate the ion loss and water gain that constitute severe challenges to life in dilute media. Among these taxon-specific adaptations, selected from the subcellular to organismal levels of organization, and constituting a feasible evolutionary blueprint for invading fresh water, are reduced body permeability and surface (S) to volume (V) ratios, lowered osmotic concentrations, increased osmotic gradients, increased surface areas of interface epithelia, relocation of membrane proteins in ion-transporting cells, and augmented transport enzyme abundance, activity and affinity. We examine these adaptations in taxa that have penetrated into fresh water, revealing diversified modifications, a consequence of distinct body plans, morpho-physiological resources, and occupation routes. Contingent on life history and reproductive strategy, numerous patterns of osmotic regulation have emerged, including intracellular isosmotic regulation in weak hyper-regulators and well-developed anisosmotic extracellular regulation in strong hyper-regulators, likely reflecting inertial adaptations to early life in an estuarine environment. In this review, we address osmoregulation in those freshwater invertebrate lineages that have successfully invaded this biotope. Our analyses show that across sixty-six freshwater invertebrate species from six phyla/classes that have transmuted into fresh water from the sea, hemolymph osmolalities decrease logarithmically with increasing S: V ratios. The arthropods have the highest osmolalities, from 300 to 650 mOsmoles/kg H2O in the Decapoda with 220 to 320 mOsmoles/kg H2O in the Insecta; osmolalities in the Annelida range from 150 to 200 mOsmoles/kg H2O, the Mollusca showing the lowest osmolalities at 40 to 120 mOsmoles/kg H2O. Overall, osmolalities reach a cut-off at ∼200 mOsmoles/kg H2O, independently of increasing S: V ratio. The ability of species with small S: V ratios to maintain large osmotic gradients is mirrored in their putatively higher Na+/K+-ATPase activities that drive ion uptake processes. Selection pressures on these morpho-physiological characteristics have led to differential osmoregulatory abilities, rendering possible the conquest of fresh water while retaining some tolerance of the ancestral medium.
Collapse
Affiliation(s)
- John Campbell McNamara
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.,Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11600-000, SP, Brazil
| | - Carolina Arruda Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| |
Collapse
|
9
|
Rosa JJDS, Martinez CBDR. Short communication: Effects of acute copper exposure on ionic regulation of the freshwater crab Aegla castro. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109106. [PMID: 34126254 DOI: 10.1016/j.cbpc.2021.109106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 06/06/2021] [Indexed: 01/05/2023]
Abstract
Aeglids are unique freshwater decapods whose habitats are being impacted by metallic compounds, such as copper (Cu). Thus, we investigated the effects of acute Cu exposure on ionic regulation of Aegla castro. For this, male specimens in intermolt were collected from a reference stream and acclimated for 5 days in laboratory. After which, crabs were exposed to 11 μg L-1 Cu (Cu11) or only to water (CTR) for 24 h. Hemolymph samples were withdrawn for the determination of Na+, K+, Ca2+, and Mg2+ concentrations and the posterior gills removed for the analysis of Na+/K+-ATPase, Ca2+-ATPase, H+-ATPase, and carbonic anhydrase (CA) activities. Increased Ca2+ and Mg2+ hemolymph concentrations were observed in animals from Cu11, when compared with CTR group. In addition, decreased activity of CA was observed in animals exposed to Cu. In the current study, alterations in Ca2+ and Mg2+concentrations probably indicate that animals activated exoskeleton reabsorption mechanisms, characteristic of the premolt. Therefore, increased Ca2+ and Mg2+ concentrations in hemolymph may indicate that a biochemical signal associated with the molting cycle was triggered by Cu exposure. Despite the known harmful effects of Cu on osmoregulatory enzymes, here we observed decreased activity only in CA. However, decreased activity of CA could trigger both acid-base imbalance and ionic disruption, since CA provides H+ and HCO3- for intracellular pH maintenance, and underpins Na+ and Cl- for ionic regulation. Therefore, understanding how aeglids respond to metal contamination in laboratory conditions is crucial to assess their potential as an alternative biological model for aquatic ecotoxicology.
Collapse
|
10
|
Maraschi AC, Faria SC, McNamara JC. Salt transport by the gill Na -K -2Cl symporter in palaemonid shrimps: exploring physiological, molecular and evolutionary landscapes. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110968. [DOI: 10.1016/j.cbpa.2021.110968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
|
11
|
Osmoregulatory power influences tissue ionic composition after salinity acclimation in aquatic decapods. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111001. [PMID: 34098129 DOI: 10.1016/j.cbpa.2021.111001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Decapod crustaceans show variable degrees of euryhalinity and osmoregulatory capacity, by responding to salinity changes through anisosmotic extracellular regulation and/or cell volume regulation. Cell volume regulatory mechanisms involve exchange of inorganic ions between extra- and intra-cellular (tissue) compartments. Here, this interplay of inorganic ions between both compartments has been evaluated in four decapod species with distinct habitats and osmoregulatory strategies. The marine/estuarine species Litopenaeus vannamei (Lv) and Callinectes danae (Cd) were submitted to reduced salinity (15‰), after acclimation to 25 and 30‰, respectively. The freshwater Macrobrachium acanthurus (Ma) and Aegla schmitti (As) were submitted to increased salinity (25‰). The four species were salinity-challenged for both 5 and 10 days. Hemolymph osmolality, sodium, chloride, potassium, and magnesium were assayed. The same inorganic ions were quantified in muscle samples. Muscle hydration (MH) and ninhydrin-positive substances (NPS) were also determined. Lv showed slight hemolymph dilution, increased MH and no osmotically-relevant decreases in muscle osmolytes; Cd displayed hemolymph dilution, decreased muscular NaCl and stable MH; Ma showed hypo-regulation and steady MH, with no change in muscle ions; As conformed hemolymph sodium but hypo-regulated chloride, had stable MH and increased muscle NPS and ion levels. Hemolymph and muscle ions (especially chloride) of As were highly correlated (Pearson, +0.83). Significant exchanges between hemolymph and muscle ionic pools were more evident in the two species with comparatively less AER regulatory power, C. danae and A. schmitti. Our findings endorse that the interplay between extracellular and tissue ionic pools is especially detectable in euryhaline species with relatively lower osmoregulatory strength.
Collapse
|
12
|
Mantovani M, McNamara JC. Contrasting strategies of osmotic and ionic regulation in freshwater crabs and shrimps: gene expression of gill ion transporters. J Exp Biol 2021; 224:jeb233890. [PMID: 33443071 DOI: 10.1242/jeb.233890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Owing to their extraordinary niche diversity, the Crustacea are ideal for comprehending the evolution of osmoregulation. The processes that effect systemic hydro-electrolytic homeostasis maintain hemolymph ionic composition via membrane transporters located in highly specialized gill ionocytes. We evaluated physiological and molecular hyper- and hypo-osmoregulatory mechanisms in two phylogenetically distant, freshwater crustaceans, the crab Dilocarcinus pagei and the shrimp Macrobrachium jelskii, when osmotically challenged for up to 10 days. When in distilled water, D. pagei survived without mortality, hemolymph osmolality and [Cl-] increased briefly, stabilizing at initial values, while [Na+] decreased continually. Expression of gill V-type H+-ATPase (V-ATPase), Na+/K+-ATPase and Na+/K+/2Cl- symporter genes was unchanged. In M. jelskii, hemolymph osmolality, [Cl-] and [Na+] decreased continually for 12 h, the shrimps surviving only around 15-24 h exposure. Gill transporter gene expression increased 2- to 5-fold. After 10 days exposure to brackish water (25‰S), D. pagei was isosmotic, iso-chloremic and iso-natriuremic. Gill V-ATPase expression decreased while Na+/K+-ATPase and Na+/K+/2Cl- symporter expression was unchanged. In M. jelskii (20‰S), hemolymph was hypo-regulated, particularly [Cl-]. Transporter expression initially increased 3- to 12-fold, declining to control values. Gill V-ATPase expression underlies the ability of D. pagei to survive in fresh water while V-ATPase, Na+/K+-ATPase and Na+/K+/2Cl- symporter expression enables M. jelskii to confront hyper/hypo-osmotic challenges. These findings reveal divergent responses in two unrelated crustaceans inhabiting a similar osmotic niche. While D. pagei does not secrete salt, tolerating elevated cellular isosmoticity, M. jelskii exhibits clear hypo-osmoregulatory ability. Each species has evolved distinct strategies at the transcriptional and systemic levels during its adaptation to fresh water.
Collapse
Affiliation(s)
- Milene Mantovani
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| |
Collapse
|
13
|
Juneta-Nor AS, Noordin NM, Azra MN, Ma HY, Husin NM, Ikhwanuddin M. Amino acid compounds released by the giant freshwater prawn Macrobrachium rosenbergii during ecdysis: a factor attracting cannibalistic behaviour? J Zhejiang Univ Sci B 2020; 21:823-834. [PMID: 33043647 DOI: 10.1631/jzus.b2000126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ecdysis is a common phenomenon that happens throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii. It is vital to better understand the correlation between cannibalism and biochemical compound that exists during the moulting process. The objective of the present study was to determine the amino acid profile released by M. rosenbergii during the ecdysis process that promotes cannibalism. To accomplish this, changes in amino acid levels (total amino acid (TAA) and free amino acid (FAA)) of tissue muscle, exoskeleton, and sample water of culture medium from the moulting (E-stage) and non-moulting (C-stage) prawns were analysed using high-performance liquid chromatography (HPLC). Comparison study revealed that among the TAA compounds, proline and sarcosine of tissues from moulting prawn were found at the highest levels. The level of FAA from water that contains moulting prawns (E-stage) was dominated by tryptophan and proline. Significant values obtained in the present study suggested that these amino acid compounds act as a chemical cue to promote cannibalism in M. rosenbergii during ecdysis. The knowledge of compositions and compounds that were released during the moulting process should be helpful for better understanding of the mechanism and chemical cues that play roles on triggering cannibalism, and also for future dietary manipulation to improve feeding efficiencies and feeding management, which indirectly impacts productivity and profitability.
Collapse
Affiliation(s)
- Abu Seman Juneta-Nor
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Noordiyana Mat Noordin
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Mohamad Nor Azra
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Hong-Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Guangdong 515063, China
| | - Norainy Mohd Husin
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Guangdong 515063, China
| |
Collapse
|
14
|
Freire CA, Cuenca AL, Leite RD, Prado AC, Rios LP, Stakowian N, Sampaio FD. Biomarkers of homeostasis, allostasis, and allostatic overload in decapod crustaceans of distinct habitats and osmoregulatory strategies: an empirical approach. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110750. [DOI: 10.1016/j.cbpa.2020.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
|
15
|
Medeiros IPM, Faria SC, Souza MM. Osmoionic homeostasis in bivalve mollusks from different osmotic niches: Physiological patterns and evolutionary perspectives. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110582. [PMID: 31669880 DOI: 10.1016/j.cbpa.2019.110582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
Physiological knowledge gained from questions focused on the challenges faced and strategies recruited by organisms in their habitats assumes fundamental importance about understanding the ability to survive when subjected to unfavorable situations. In the aquatic environment, salinity is particularly recognized as one of the main abiotic factors that affects the physiology of organisms. Although the physiological patterns and challenges imposed by each occupied environment are distinct, they tend to converge to osmotic oscillations. From a comparative perspective, we aimed to characterize the osmoregulatory patterns of the bivalve mollusks Corbicula largillierti (purple Asian cockle), Erodona mactroides (lagoon cockle), and Amarilladesma mactroides (white clam) - inhabitants of different osmotic niches - when submitted to hypo- and/or hyperosmotic salinity variations. We determined the hemolymph osmotic and ionic concentrations, tissue hydration, and the intracellular isosmotic regulation (IIR) from the use of osmolytes (organic and inorganic) after exposure to species-specific salinity intervals. Additionally, we incorporated phylogenetic perspectives to infer and even broaden the understanding about the patterns that comprise the osmoionic physiology of Bivalvia representatives. According to the variables analyzed in the hemolymph, the three species presented a pattern of osmoconformation. Furthermore, both ionic regulation and conformation patterns were observed in freshwater, estuarine, and marine species. The patterns verified experimentally show greater use of inorganic osmolytes compared to the participation of organic molecules, which varied according to the osmotic niche occupied in the IIR for the mantle, adductor muscle, and gills. This finding widens the classic vision about the preferential use of certain osmolytes by animals from distinct niches. Our phylogenetic perspective also indicates that environmental salinity drives physiological trait variations, including hemolymph osmolality and the ion composition of the extracellular fluid (sodium, chloride, magnesium, and calcium). We also highlight the important role played by the shared ancestry, which influences the interspecific variability of the hemolymph K+ in selected representatives of Bivalvia.
Collapse
Affiliation(s)
| | - Samuel Coelho Faria
- Instituto de Biociências, Universidade de São Paulo, USP, Brazil; Department of Evolution, Ecology and Organismal Biology. University of California, Riverside, CA 92521, USA
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, FURG, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Brazil.
| |
Collapse
|
16
|
Li J, Xu X, Li W, Zhang X. Linking energy metabolism and locomotor variation to osmoregulation in Chinese shrimp Fenneropenaeus chinensis. Comp Biochem Physiol B Biochem Mol Biol 2019; 234:58-67. [DOI: 10.1016/j.cbpb.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 11/27/2022]
|
17
|
Bozza DC, Freire CA, Prodocimo V. Osmo-ionic regulation and carbonic anhydrase, Na+/K+-ATPase and V-H+-ATPase activities in gills of the ancient freshwater crustacean Aegla schmitti (Anomura) exposed to high salinities. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:201-208. [DOI: 10.1016/j.cbpa.2019.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
|
18
|
Faleiros RO, Garçon DP, Lucena MN, McNamara JC, Leone FA. Short- and long-term salinity challenge, osmoregulatory ability, and (Na +, K +)-ATPase kinetics and α-subunit mRNA expression in the gills of the thinstripe hermit crab Clibanarius symmetricus (Anomura, Diogenidae). Comp Biochem Physiol A Mol Integr Physiol 2018; 225:16-25. [PMID: 29932975 DOI: 10.1016/j.cbpa.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
The evolutionary history of the Crustacea reveals ample adaptive radiation and the subsequent occupation of many osmotic niches resulting from physiological plasticity in their osmoregulatory mechanisms. We evaluate osmoregulatory ability in the intertidal, thinstripe hermit crab Clibanarius symmetricus after short-term exposure (6 h) or long-term acclimation (10 days) to a wide salinity range, also analyzing kinetic behavior and α-subunit mRNA expression of the gill (Na+, K+)-ATPase. The crab strongly hyper-regulates its hemolymph at 5 and 15‰S (Salinity, g L-1) but weakly hyper-regulates up to ≈27‰S. After 6 h exposure to 35‰S and 45‰S, C. symmetricus slightly hypo-regulates its hemolymph, becoming isosmotic after 10 days acclimation to these salinities. (Na+, K+)-ATPase specific activity decreases with increasing salinity for both exposure periods, reflecting physiological adjustment to isosmoticity. At low salinities, the gill enzyme exhibits a single, low affinity ATP binding site. However, at elevated salinities, a second, high affinity, ATP binding site appears, independently of exposure time. (Na+, K+)-ATPase α-subunit mRNA expression increases only after 10 days acclimation to 5‰S. Our findings suggest that hemolymph hyper-regulation is effected by alterations in enzyme activity during short-term exposure, but is sustained by increased mRNA expression during long-term acclimation. The decrease in gill (Na+, K+)-ATPase activity seen as a consequence of increasing salinity appears to underlie biochemical adjustments to hemolymph isosmoticity as hypo-regulatory ability diminishes.
Collapse
Affiliation(s)
- Rogério O Faleiros
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Unidade Acadêmica Especial de Ciências Biológicas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | - Daniela P Garçon
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Universidade Federal do Triângulo Mineiro, Iturama 38280-000, MG, Brazil
| | - Malson N Lucena
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11000-600, SP, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| |
Collapse
|
19
|
Faria SC, Klein RD, Costa PG, Crivellaro MS, Santos S, Bueno SLDS, Bianchini A. Phylogenetic and environmental components of inter-specific variability in the antioxidant defense system in freshwater anomurans Aegla (Crustacea, Decapoda). Sci Rep 2018; 8:2850. [PMID: 29434223 PMCID: PMC5809455 DOI: 10.1038/s41598-018-21188-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/29/2018] [Indexed: 11/11/2022] Open
Abstract
The antioxidant defense system (ADS) protects organisms against the potential oxidative stress induced by environmental features, underlying processes of habitat diversification. The anomurans Aegla constitute the most threatened freshwater decapods of South America, occupying pristine habitats with narrow distribution. Using phylogenetic comparative methods, we addressed: Is the variability of habitat physicochemical parameters and tissue ADS phylogenetically structured? How do environmental features correlate with ADS? How do they vary among species? Several physicochemical parameters of water, as well as metals in sediments, were measured in ten aeglid species' habitats. Additionally, metal accumulation and ADS parameters [metallothionein-like proteins (MTLP), antioxidant capacity against peroxyl radicals (ACAP), and glutathione system (GSH-GSSG)] were evaluated in hepatopancreas. Water conductivity and pH showed phylogenetic signal, while all other physicochemical traits demonstrated plastic variability. Metals were present at natural concentrations, which are corroborated by the relative stable GSH/GSSG ratio, and by their absence of correlation with bioaccumulation levels and MTLP, both phylogenetically structured. However, metal variability across species' niches is associated with ACAP, a potential biomarker tool. Thus, the physiological sensitivity of aeglids is environmentally driven but also phylogenetically constrained, unraveling the importance of systematic framework for cross-species investigations and future monitoring strategies of these conspicuous freshwater animals.
Collapse
Affiliation(s)
- Samuel Coelho Faria
- Universidade Federal do Rio Grande - FURG, Instituto de Ciências Biológicas, Rio Grande, 96203-900 RS, Brazil.
- Universidade de São Paulo, Instituto de Biociências, São Paulo, 05508-090 SP, Brazil.
| | - Roberta Daniele Klein
- Universidade Federal do Rio Grande - FURG, Instituto de Ciências Biológicas, Rio Grande, 96203-900 RS, Brazil
| | - Patrícia Gomes Costa
- Universidade Federal do Rio Grande - FURG, Instituto de Ciências Biológicas, Rio Grande, 96203-900 RS, Brazil
| | - Marcelo Schüler Crivellaro
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Santa Maria, 97105-900 RS, Brazil
| | - Sandro Santos
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Santa Maria, 97105-900 RS, Brazil
| | | | - Adalto Bianchini
- Universidade Federal do Rio Grande - FURG, Instituto de Ciências Biológicas, Rio Grande, 96203-900 RS, Brazil
| |
Collapse
|
20
|
Principe SC, Augusto A, Costa TM. Differential effects of water loss and temperature increase on the physiology of fiddler crabs from distinct habitats. J Therm Biol 2018; 73:14-23. [PMID: 29549987 DOI: 10.1016/j.jtherbio.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 01/13/2023]
Abstract
Temperature is one of the main environmental constraints to organism distribution, affecting physiology and survival. Organisms that inhabit the intertidal zone are exposed to temperature variation and, with climate change, they should face different conditions which include higher temperatures, leading to higher rates of water loss through evaporation and then fitness reduction or mortality. Here we tested the effects of desiccation and increased temperature in two fiddler crabs species that occupy distinct habitats in regard to vegetation cover and position on the intertidal zone and thus may respond differently to these stressors. Leptuca thayeri, which is restricted to the mid-tide zone and vegetated areas, had higher desiccation and mortality rates than Minuca rapax, a generalist species, when exposed to desiccation for 120 min. Also, compared to M. rapax, L. thayeri had a more permeable carapace. Temperature elevation of 10 °C and 20 °C for 72 h caused no mortality in either species. However, there were changes in hemolymph osmolality and muscle hydration in both species. Leptuca thayeri osmolality was low in the intermediate temperature, suggesting that at this temperature this species has a better salt secretion capability. Minuca rapax, however, had an increase in hemolymph osmolality at the highest temperatures with no LDH increase, which indicates that osmotic control in this species is more sensitive to temperature increase. Our results show that L. thayeri suffers more from desiccation, due to a more permeable carapace. However, because of this higher permeability L. thayeri is capable of lowering its temperature more than M. rapax. As temperature elevation produces great physiological changes in M. rapax, a reduced ability to keep a low temperature can be an issue for this species if temperature increases. However, higher water loss to keep body temperature low may decrease L. thayeri survivability in the same scenario.
Collapse
Affiliation(s)
- Silas C Principe
- Biosciences Institute, São Paulo State University (UNESP), Coastal Campus, São Vicente - SP, Brazil.
| | - Alessandra Augusto
- Biosciences Institute, São Paulo State University (UNESP), Botucatu Campus, Botucatu - SP, Brazil.
| | - Tânia Marcia Costa
- Biosciences Institute, São Paulo State University (UNESP), Coastal Campus, São Vicente - SP, Brazil; Biosciences Institute, São Paulo State University (UNESP), Botucatu Campus, Botucatu - SP, Brazil.
| |
Collapse
|
21
|
Faleiros RO, Furriel RP, McNamara JC. Transcriptional, translational and systemic alterations during the time course of osmoregulatory acclimation in two palaemonid shrimps from distinct osmotic niches. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:97-106. [DOI: 10.1016/j.cbpa.2017.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
|
22
|
Pallarés S, Arribas P, Bilton DT, Millán A, Velasco J, Ribera I. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles. Mol Ecol 2017; 26:5614-5628. [PMID: 28833872 DOI: 10.1111/mec.14334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Ecology and Hydrology, Facultad de Biología, University of Murcia, Murcia, Spain
| | - Paula Arribas
- Island Ecology and Evolution Research Group, IPNA-CSIC, Santa Cruz de Tenerife, Spain
| | - David T Bilton
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Plymouth, UK
| | - Andrés Millán
- Department of Ecology and Hydrology, Facultad de Biología, University of Murcia, Murcia, Spain
| | - Josefa Velasco
- Department of Ecology and Hydrology, Facultad de Biología, University of Murcia, Murcia, Spain
| | - Ignacio Ribera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
23
|
Molecular characterization, computational analysis and transcript profiling of glutamate dehydrogenase ( gdh ) gene of Macrobrachium rosenbergii exposed to saline water. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Urzúa Á, Urbina MA. Ecophysiological adaptations to variable salinity environments in the crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Sodium regulation, respiration and excretion. Comp Biochem Physiol A Mol Integr Physiol 2017; 210:35-43. [DOI: 10.1016/j.cbpa.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 11/28/2022]
|
25
|
Borges ACP, Piassão JFG, Paula MO, Sepp S, Bez CFS, Hepp LU, Valduga AT, Pereira AAM, Cansian RL. Characterization of oxidative stress biomarkers in a freshwater anomuran crab. BRAZ J BIOL 2017; 78:61-67. [PMID: 28614422 DOI: 10.1590/1519-6984.04816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/08/2016] [Indexed: 11/22/2022] Open
Abstract
In general, environmental responses at level of populations or communities are preceded by alterations at lower biological levels which can be efficiently detected by the analysis of biomarkers. We analyzed the oxidative biomarkers TBARS and Catalase in Aegla singularis, a freshwater crustacean highly sensitive to environmental changes. The objective was to address if are differences in these biomarkers related to the gender as well if they are influenced by seasonal or water physicochemical variables. The results showed differences in biomarkers profile related to the gender. In female crabs were not sensitive to seasonal variations throughout the study period. However, in males the biomarkers evaluated were higher in the winter as compared to remaining seasons and showed tendency of negative correlation with water temperature and pH. This study highlights that gender, seasonal variations and physicochemical variables can influence oxidative stress biomarkers in A. singularis. Female crabs probably are better suited as a model for biomarker application in environmental studies, because their insensibility to seasonal variations can facilitate the observations of responses related specifically to environmental disturbances.
Collapse
Affiliation(s)
- A C P Borges
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - J F G Piassão
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - M O Paula
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - S Sepp
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - C F S Bez
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - L U Hepp
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - A T Valduga
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | | | - R L Cansian
- Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| |
Collapse
|
26
|
Yuan J, Zhang X, Liu C, Duan H, Li F, Xiang J. Convergent Evolution of the Osmoregulation System in Decapod Shrimps. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:76-88. [PMID: 28204969 DOI: 10.1007/s10126-017-9729-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
In adaptating to different aquatic environments, seawater (SW) and freshwater (FW) shrimps have exploited different adaptation strategies, which should generate clusters of genes with different adaptive features. However, little is known about the genetic basis of these physiological adaptations. Thus, in this study, we performed comparative transcriptomics and adaptive evolution analyses on SW and FW shrimps and found that convergent evolution may have happened on osmoregulation system of shrimps. We identified 275 and 234 positively selected genes in SW and FW shrimps, respectively, which enriched in the functions of ion-binding and membrane-bounded organelles. Among them, five (CaCC, BEST2, GPDH, NKA, and Integrin) and four (RasGAP, RhoGDI, CNK3, and ODC) osmoregulation-related genes were detected in SW and FW shrimps, respectively. All five genes in SW shrimps have been reported to have positive effects on ion transportation, whereas RasGAP and RhoGDI in FW shrimps are associated with negative control of ion transportation, and CNK3 and ODC play central roles in cation homeostasis. Besides, the phylogenetic tree reconstructed from the positively selected sites separated the SW and FW shrimps into two groups. Distinct subsets of parallel substitutions also have been found in these osmoregulation-related genes in SW and FW shrimps. Therefore, our results suggest that distinct convergent evolution may have occurred in the osmoregulation systems of SW and FW shrimps. Furthermore, positive selection of osmoregulation-related genes may be beneficial for the regulation of water and salt balance in decapod shrimps.
Collapse
Affiliation(s)
- Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Chengzhang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hu Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
27
|
Leone FA, Garçon DP, Lucena MN, Faleiros RO, Azevedo SV, Pinto MR, McNamara JC. Gill-specific (Na+, K+)-ATPase activity and α-subunit mRNA expression during low-salinity acclimation of the ornate blue crab Callinectes ornatus (Decapoda, Brachyura). Comp Biochem Physiol B Biochem Mol Biol 2015; 186:59-67. [DOI: 10.1016/j.cbpb.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022]
|
28
|
Mazzarelli CCM, Santos MR, Amorim RV, Augusto A. Effect of salinity on the metabolism and osmoregulation of selected ontogenetic stages of an amazon population of Macrobrachium amazonicum shrimp (Decapoda, Palaemonidae). BRAZ J BIOL 2015; 75:372-9. [DOI: 10.1590/1519-6984.14413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/22/2013] [Indexed: 11/21/2022] Open
Abstract
Probably as a function of their wide geographical distribution, the different population of Macrobrachium amazonicum shrimp may present distinct physiological, biochemical, reproductive, behavioral, and ecological patterns. These differences are so accentuated that the existence of allopatric speciation has been suggested, although initial studies indicate that the genetic variability of populations happen at an intraspecific level. Among the biological responses described for M. amazonicum populations, those regarding osmoregulation and metabolism play a key role for being related to the occupation of diverse habitats. To this effect, we investigated osmoregulation through the role of free amino acids in cell volume control and metabolism, through oxygen consumption in larvae (zoeae I, II, V and IX) and/or post-larvae of a M. amazonicum population from Amazon, kept in aquaculture fish hatcheries in the state of São Paulo. The results add information regarding the existence of distinct physiological responses among M. amazonicum populations and suggest that possible adjustments to metabolism and to the use of free amino acids as osmolytes of the regulation of the larvae and post-larvae cell volume depend on the appearance of structures responsible for hemolymph osmoregulation like, for example, the gills. In this respect, we verified that zoeae I do not alter their metabolism due to the exposition to fresh or brackish water, but they reduce intracellular concentration of free amino acids when exposed to fresh water, what may suggest the inexistence or inefficient performance of the structures responsible for volume regulation and hemolymph composition. On the other hand, in zoeae II and V exposed to fresh and brackish water, metabolism alterations were not followed by changes in free amino acids concentration. Thus it is possible, as the structures responsible for osmoregulation and ionic regulation become functional, that the role of free amino acids gets diminished and oxygen consumption elevated, probably due to greater energy expenditure with the active transportation of salts through epithelial membranes. Osmotic challenges also seem to alter throughout development, given that in zoeae II oxygen consumption is elevated on brackish water of 18, but in zoeae V it happens in fresh water. After M. amazonicum metamorphosis, free amino acids begin to play an important role as intracellular osmolytes, because we verified an increase of up to 40% in post-larvae exposed to brackish water of 18. The main free amino acids involved in cell volume regulation of ontogenetic stages evaluated were the non essential ones: glutamic acid, glycine, alanine, arginine, and proline. Interestingly, larvae from estuarine population studied here survived until the zoeae V stage in fresh water, but in some populations far from the sea, zoeae die right after eclosion in fresh water or they do not reach zoeae III stage. In addition, given that in favorable conditions caridean shrimp larvae shorten their development, we may infer that the cultivation environment, in which larvae developed in the present work, was appropriate, because almost all zoeae VIII kept on brackish water underwent metamorphosis directly to post-larvae and did not go through zoeae IX stage.
Collapse
Affiliation(s)
- CCM. Mazzarelli
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Brazil
| | - MR. Santos
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Brazil
| | - RV. Amorim
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Brazil
| | - A. Augusto
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Brazil
| |
Collapse
|
29
|
McNamara JC, Freire CA, Torres AH, Faria SC. The conquest of fresh water by the palaemonid shrimps: an evolutionary history scripted in the osmoregulatory epithelia of the gills and antennal glands. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- John Campbell McNamara
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brasil
- Centro de Biologia Marinha; Universidade de São Paulo; São Sebastião 11600-000 SP Brasil
| | - Carolina Arruda Freire
- Departamento de Fisiologia; Setor de Ciências Biológicas; Universidade Federal do Paraná; Curitiba 81531-990 PR Brasil
| | - Antonio Hernandes Torres
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brasil
| | - Samuel Coelho Faria
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brasil
| |
Collapse
|
30
|
FREIRE CAROLINAA, SOUZA-BASTOS LUCIANAR, AMADO ENELISEM, PRODOCIMO VIVIANE, SOUZA MARTAM. Regulation of Muscle Hydration Upon Hypo- or Hyper-Osmotic Shocks: Differences Related to Invasion of the Freshwater Habitat by Decapod Crustaceans. ACTA ACUST UNITED AC 2013; 319:297-309. [DOI: 10.1002/jez.1793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/09/2013] [Accepted: 02/27/2013] [Indexed: 12/20/2022]
Affiliation(s)
- CAROLINA A. FREIRE
- Departamento de Fisiologia; Setor de Ciências Biológicas, Universidade Federal do Paraná; Curitiba, PR; Brazil
| | - LUCIANA R. SOUZA-BASTOS
- Departamento de Fisiologia; Setor de Ciências Biológicas, Universidade Federal do Paraná; Curitiba, PR; Brazil
| | - ENELISE M. AMADO
- Departamento de Fisiologia; Setor de Ciências Biológicas, Universidade Federal do Paraná; Curitiba, PR; Brazil
| | - VIVIANE PRODOCIMO
- Departamento de Fisiologia; Setor de Ciências Biológicas, Universidade Federal do Paraná; Curitiba, PR; Brazil
| | - MARTA M. SOUZA
- Instituto de Ciências Biológicas; Universidade Federal do Rio Grande-FURG; Rio Grande, RS; Brazil
| |
Collapse
|
31
|
Leone FA, Masui DC, de Souza Bezerra TM, Garçon DP, Valenti WC, Augusto AS, McNamara JC. Kinetic analysis of gill (Na⁺,K⁺)-ATPase activity in selected ontogenetic stages of the Amazon River shrimp, Macrobrachium amazonicum (Decapoda, Palaemonidae): interactions at ATP- and cation-binding sites. J Membr Biol 2012; 245:201-15. [PMID: 22544049 DOI: 10.1007/s00232-012-9431-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/09/2012] [Indexed: 11/26/2022]
Abstract
We investigated modulation by ATP, Mg²⁺, Na⁺, K⁺ and NH₄⁺ and inhibition by ouabain of (Na⁺,K⁺)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, Macrobrachium amazonicum. (Na⁺,K⁺)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP (K(M) = 0.09 ± 0.01 mmol L⁻¹) of the decapodid III (Na⁺,K⁺)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na⁺,K⁺-ATPase activity by K⁺ also revealed a threefold greater affinity for K⁺ (K₀.₅ = 0.91 ± 0.04 mmol L⁻¹) in decapodid III than in other stages; NH₄⁺ had no modulatory effect. The affinity for Na⁺ (K₀.₅ = 13.2 ± 0.6 mmol L⁻¹) of zoea I (Na⁺,K⁺)-ATPase was fourfold less than other stages. Modulation by Na⁺, Mg²⁺ and NH₄⁺ obeyed cooperative kinetics, while K⁺ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg²⁺ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg²⁺-stimulated ATPases other than (Na⁺,K⁺)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na⁺-ATPase may be involved in the ontogeny of osmoregulation in larval M. amazonicum. The NH₄⁺-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.
Collapse
Affiliation(s)
- Francisco Assis Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900 Ribeirão Prêto, SP 14040-901, Brazil.
| | | | | | | | | | | | | |
Collapse
|
32
|
McNamara JC, Faria SC. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. J Comp Physiol B 2012; 182:997-1014. [DOI: 10.1007/s00360-012-0665-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
33
|
Shinji J, Okutsu T, Jayasankar V, Jasmani S, Wilder MN. Metabolism of amino acids during hyposmotic adaptation in the whiteleg shrimp, Litopenaeus vannamei. Amino Acids 2012; 43:1945-54. [DOI: 10.1007/s00726-012-1266-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 03/05/2012] [Indexed: 11/24/2022]
|