1
|
McCallie KL, Klukowski M. Corticosterone in three species of free-ranging watersnakes: Testing for reproductive suppression and an association with body condition. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111214. [PMID: 35427765 DOI: 10.1016/j.cbpa.2022.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The potentially suppressive effects of the hypothalamic-pituitary-adrenal (HPA) axis on the hypothalamic-pituitary-gonadal (HPG) axis revolve around the central role that glucocorticoids play in mobilizing energy. As an individual's energy balance becomes negative, the HPA axis helps mobilize energy and shifts energy expenditure away from reproduction toward maintenance and survival. While there is evidence in support of these relationships, substantial species variability exists. Studies in a greater diversity of species promise to enhance our understanding of the interactions between these axes. In this field study we tested for relationships among body condition, corticosterone, and sex steroid concentrations in three species of closely related watersnakes: the common watersnake (Nerodia sipedon), the diamondback watersnake (Nerodia rhombifer) and the queen snake (Regina septemvittata). Snakes were sampled before and after a 30 min acute confinement stressor and body condition was estimated using the scaled mass index. All three species exhibited robust elevations of corticosterone in response to acute stress, but only plasma progesterone was elevated by the acute stressor in queen snakes. There was no evidence for a suppression of sex steroid concentrations in any of the species. Body condition was negatively associated with baseline corticosterone in queen snakes and with post-stressor corticosterone in both queen and common watersnakes. Overall we found fairly strong support for the proposed link between corticosterone and energetics in two of the three watersnake species, but no support for the hypothesis that acute stressors are associated with reproductive suppression, at least as measured by steroid concentrations.
Collapse
Affiliation(s)
- K Louise McCallie
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA; Natural Resources Institute, Texas A&M University, College Station, TX 77843, USA
| | - Matthew Klukowski
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| |
Collapse
|
2
|
Physiological Stress Integrates Resistance to Rattlesnake Venom and the Onset of Risky Foraging in California Ground Squirrels. Toxins (Basel) 2020; 12:toxins12100617. [PMID: 32992585 PMCID: PMC7601495 DOI: 10.3390/toxins12100617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Using venom for predation often leads to the evolution of resistance in prey. Understanding individual variation in venom resistance is key to unlocking basic mechanisms by which antagonistic coevolution can sustain variation in traits under selection. For prey, the opposing challenges of predator avoidance and resource acquisition often lead to correlated levels of risk and reward, which in turn can favor suites of integrated morphological, physiological and behavioral traits. We investigate the relationship between risk-sensitive behaviors, physiological resistance to rattlesnake venom, and stress in a population of California ground squirrels. For the same individuals, we quantified foraging decisions in the presence of snake predators, fecal corticosterone metabolites (a measure of “stress”), and blood serum inhibition of venom enzymatic activity (a measure of venom resistance). Individual responses to snakes were repeatable for three measures of risk-sensitive behavior, indicating that some individuals were consistently risk-averse whereas others were risk tolerant. Venom resistance was lower in squirrels with higher glucocorticoid levels and poorer body condition. Whereas resistance failed to predict proximity to and interactions with snake predators, individuals with higher glucocorticoid levels and in lower body condition waited the longest to feed when near a snake. We compared alternative structural equation models to evaluate alternative hypotheses for the relationships among stress, venom resistance, and behavior. We found support for stress as a shared physiological correlate that independently lowers venom resistance and leads to squirrels that wait longer to feed in the presence of a snake, whereas we did not find evidence that resistance directly facilitates latency to forage. Our findings suggest that stress may help less-resistant squirrels avoid a deadly snakebite, but also reduces feeding opportunities. The combined lethal and non-lethal effects of stressors in predator–prey interactions simultaneously impact multiple key traits in this system, making environmental stress a potential contributor to geographic variation in trait expression of toxic predators and resistant prey.
Collapse
|
3
|
Hudson SB, Lidgard AD, French SS. Glucocorticoids, energy metabolites, and immunity vary across allostatic states for plateau side‐blotched lizards (
Uta stansburiana uniformis
) residing in a heterogeneous thermal environment. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:732-743. [DOI: 10.1002/jez.2415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Spencer B. Hudson
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | | | - Susannah S. French
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| |
Collapse
|
4
|
Seddon RJ, Hews DK. Melanization, α-melanocyte stimulating hormone and steroid hormones in male western fence lizards from nine populations. Gen Comp Endocrinol 2020; 285:113287. [PMID: 31563645 DOI: 10.1016/j.ygcen.2019.113287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/29/2019] [Accepted: 09/22/2019] [Indexed: 02/05/2023]
Abstract
Hormones can mediate suites of correlated traits. Melanocortins regulate melanin synthesis and elements of the melanocortin system can directly, and indirectly, affect a number of other traits, such as stress reactivity. Trait correlations within the melanocortin system have been studied mainly in birds and mammals but less so in reptiles. We examined adult male western fence lizards (Sceloporus occidentalis) and if melanization was correlated with plasma levels of three hormones, including peptide hormone α-melanocyte stimulating hormone (α-MSH), testosterone and corticosterone, and ectoparasite loads. This lizard is darker at higher elevations in California, and we compared five high-elevation and four low-elevation populations during comparable periods of the breeding season at each site. We first validated use of an α-MSH assay kit with lizard plasma. Since Anolis carolinensis is one of the few species with published values for α-MSH plasma levels, we assayed both Anolis and Sceloporus plasma and compared hormone values to those we generated for Anolis to the publish values. We also evaluated effects of different methods of storing spiked plasma pools on resulting α-MSH concentrations. Plasma levels of α-MSH did not differ significantly, but some populations differed significantly in mean corticosterone and mean testosterone. Combining all individuals from the nine populations, we found that individual variation in α-MSH was not associated with individual variation in melanization, but levels of α-MSH were positively associated with plasma testosterone and negatively associated with corticosterone. The lack of association between individual levels of melanization and expression of most other traits differs from a growing number of within-population studies of melanization, and we discuss what differences in physiological mechanisms could produce different hypothetical patterns. Circulating levels of -MSH are only one element of the melanocortin system; in situ synthesis of α-MSH by the skin and the diversity of melanocortin receptors could also contribute to variation in traits mediated by the melanocortin system and should be examined.
Collapse
Affiliation(s)
- Ryan J Seddon
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| | - Diana K Hews
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| |
Collapse
|
5
|
Thawley CJ, Goldy-Brown M, McCormick GL, Graham SP, Langkilde T. Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. GLOBAL CHANGE BIOLOGY 2019; 25:620-628. [PMID: 30488524 DOI: 10.1111/gcb.14510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Understanding the processes driving formation and maintenance of latitudinal clines has become increasingly important in light of accelerating global change. Many studies have focused on the role of abiotic factors, especially temperature, in generating clines, but biotic factors, including the introduction of non-native species, may also drive clinal variation. We assessed the impact of invasion by predatory fire ants on latitudinal clines in multiple fitness-relevant traits-morphology, physiological stress responsiveness, and antipredator behavior-in a native fence lizard. In areas invaded by fire ants, a latitudinal cline in morphology is opposite both the cline found in museum specimens from historical populations across the species' full latitudinal range and that found in current populations uninvaded by fire ants. Similarly, clines in stress-relevant hormone response to a stressor and in antipredator behavior differ significantly between the portions of the fence lizard range invaded and uninvaded by fire ants. Changes in these traits within fire ant-invaded areas are adaptive and together support increased and more effective antipredator behavior that allows escape from attacks by this invasive predator. However, these changes may mismatch lizards to the environments under which they historically evolved. This research shows that novel biotic pressures can alter latitudinal clines in multiple traits within a single species on ecological timescales. As global change intensifies, a greater understanding of novel abiotic and biotic pressures and how affected organisms adapt to them across space and time will be central to predicting and managing our changing environment.
Collapse
Affiliation(s)
- Christopher J Thawley
- Department of Biological Sciences, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| | - Mark Goldy-Brown
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gail L McCormick
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| | - Sean P Graham
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, Texas
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
6
|
Seddon RJ, Hews DK. Correlates of melanization in multiple high- and low-elevation populations of the lizard,Sceloporus occidentalis: Behavior, hormones, and parasites. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 327:481-492. [DOI: 10.1002/jez.2133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Ryan J. Seddon
- Department of Biology; Indiana State University; Terre Haute Indiana
| | - Diana K. Hews
- Department of Biology; Indiana State University; Terre Haute Indiana
| |
Collapse
|
7
|
Mohammadi S, French SS, Neuman-Lee LA, Durham SL, Kojima Y, Mori A, Brodie ED, Savitzky AH. Corticosteroid responses of snakes to toxins from toads (bufadienolides) and plants (cardenolides) reflect differences in dietary specializations. Gen Comp Endocrinol 2017; 247:16-25. [PMID: 28347742 DOI: 10.1016/j.ygcen.2017.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 01/24/2023]
Abstract
Toads are chemically defended by cardiotonic steroids known as bufadienolides. Resistance to the acute effects of bufadienolides in snakes that prey on toads is conferred by target-site insensitivity of the toxin's target enzyme, the Na+/K+-ATPase. Previous studies have focused largely on the molecular mechanisms of resistance but have not investigated the physiological mechanisms or consequences of exposure to the toxins. Adrenal enlargement in snakes often is associated with specialization on a diet of toads. These endocrine glands are partly composed of interrenal tissue, which produces the corticosteroids corticosterone and aldosterone. Corticosterone is the main hormone released in response to stress in reptiles, and aldosterone plays an important role in maintaining ion balance through upregulation of Na+/K+-ATPase. We tested the endocrine response of select species of snakes to acute cardiotonic steroid exposure by measuring circulating aldosterone and corticosterone concentrations. We found that Rhabdophis tigrinus, which specializes on a diet of toads, responds with lower corticosterone and higher aldosterone compared to other species that exhibit target-site resistance to the toxins but do not specialize on toads. We also found differences between sexes in R. tigrinus, with males generally responding with higher corticosterone and aldosterone than females. This study provides evidence of physiological adaptations, beyond target-site resistance, associated with tolerance of bufadienolides in a specialized toad-eating snake.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States.
| | - Susannah S French
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States
| | - Lorin A Neuman-Lee
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States
| | - Susan L Durham
- Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States
| | - Yosuke Kojima
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Akira Mori
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Edmund D Brodie
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States
| | - Alan H Savitzky
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, United States; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, United States
| |
Collapse
|
8
|
Aspbury AS, Grayson KL, Fantaye S, Nichols I, Myers-Burton M, Ortiz-Mangual X, Gabor CR. The association between male-biased sex ratio and indicators of stress in red-spotted newts. Physiol Behav 2017; 173:156-162. [PMID: 28167148 DOI: 10.1016/j.physbeh.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/28/2016] [Accepted: 02/02/2017] [Indexed: 11/24/2022]
Abstract
In populations with a male-biased operational sex ratio, coercive mating by males can have fitness consequences for females. One component of reduced fitness for females in populations with a male-biased OSR may be greater activation of the stress response, resulting in higher corticosterone release rates (CORT; a glucocorticoid stress hormone in amphibians). We test the hypothesis that a male-biased sex ratio affects female activity and release rates of CORT and testosterone (T) in male and female red-spotted newts (Notophthalmus viridescens). First, we evaluated if chemical cues from a male-biased sex ratio affect activity and CORT release rates in females. We predicted that females exposed to chemical cues of three males would be less active and have higher CORT release rates than those exposed to chemical cues of one male. Second, we measured CORT release rates of red-spotted newts in field enclosures with either a male-biased or a female-biased sex ratio. We predicted that females in the male-biased treatment would have higher CORT and T release rates than those in a female-biased treatment, owing to higher levels of male harassment. We also predicted that males would have higher CORT and T release rates in male-biased treatments due to higher levels of male-male competition. Females were not less active in response to chemical cues from more males over fewer males, but there was a positive relationship between female activity and CORT when they were exposed to the cues of three males. We also found that females, but not males, in the male-biased sex ratio treatment had higher CORT and T release rates than those in the female-biased treatment. Our results support the hypothesis that a male-biased sex ratio leads to a higher stress response, which may underlie the observed decrease in immune function and body condition in previous work exposing female red-spotted newts to a male-biased sex ratio. This study furthers our understanding of the mechanistic basis for costs associated with a male-biased sex ratio in a pond-breeding amphibian.
Collapse
Affiliation(s)
- Andrea S Aspbury
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666-4684, USA; Mountain Lake Biological Station, 240 Salt Pond Road, Pembroke, VA 24136, USA.
| | - Kristine L Grayson
- Mountain Lake Biological Station, 240 Salt Pond Road, Pembroke, VA 24136, USA; Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA, 23173, USA
| | - Selamawit Fantaye
- Mountain Lake Biological Station, 240 Salt Pond Road, Pembroke, VA 24136, USA
| | - Ian Nichols
- Mountain Lake Biological Station, 240 Salt Pond Road, Pembroke, VA 24136, USA
| | | | | | - Caitlin R Gabor
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666-4684, USA; Mountain Lake Biological Station, 240 Salt Pond Road, Pembroke, VA 24136, USA
| |
Collapse
|
9
|
Populations of the Lizard,Sceloporus occidentalis, that Differ in Melanization have Different Rates of Wound Healing. ACTA ACUST UNITED AC 2016; 325:491-500. [DOI: 10.1002/jez.2033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 11/07/2022]
|
10
|
Seddon RJ, Hews DK. Phenotypic correlates of melanization in two Sceloporus occidentalis (Phrynosomatidae) populations: Behavior, androgens, stress reactivity, and ectoparasites. Physiol Behav 2016; 163:70-80. [PMID: 27137079 DOI: 10.1016/j.physbeh.2016.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/04/2016] [Accepted: 04/22/2016] [Indexed: 11/19/2022]
Abstract
Mechanisms underlying production of animal coloration can affect key traits besides coloration. Melanin, and molecules regulating melanin, can directly and indirectly affect other phenotypic traits including aggression, stress-reactivity, and immune function. We studied correlation of melanization with these other traits, comparing within- and between-population differences of adult male western fence lizards, Sceloporus occidentalis. We compared one high- and one low-elevation population in California where individuals are increasingly darker at higher elevations, working during comparable periods of the breeding season at each site (first egg clutch). We measured agonistic behaviors of free-ranging males in response to staged territorial intrusions (STIs). In other sets of males we measured baseline testosterone and corticosterone levels, and hormonal-reactivity to a stress handling paradigm. We counted ectoparasite loads for all males. There were no significant associations between individual variation in melanization and individual variation in any of the variables measured. However, analysis of behavior from the STIs revealed that males in the darker high-elevation population responded with more aggressive behavior compared to males in the lighter low-elevation population. Males in the low-elevation population had significantly higher mean baseline testosterone, but the two populations did not differ in adrenal function (baseline corticosterone or corticosterone after 1-h confinement stress). Males in the darker high-elevation population had higher mean mite loads compared to males in the lighter population. This array of phenotypic differences between the two populations, and the absence of trait associations when assessing individual variation, do not parallel the patterns in other vertebrates. We describe potential differences in selective regimes that could produce these different patterns across vertebrates. These data suggest that hormonal pleiotropy does not constrain phenotypic variation.
Collapse
Affiliation(s)
- Ryan J Seddon
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| | - Diana K Hews
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
11
|
Foltz SL, Davis JE, Battle KE, Greene VW, Laing BT, Rock RP, Ross AE, Tallant JA, Vega RC, Moore IT. Across time and space: Effects of urbanization on corticosterone and body condition vary over multiple years in song sparrows (Melospiza melodia). ACTA ACUST UNITED AC 2015; 323:109-20. [DOI: 10.1002/jez.1906] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/15/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Sarah L. Foltz
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - Jason E. Davis
- Department of Biology; Reed Hall; Radford University; Radford Virginia
| | - Kathryn E. Battle
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | | | - Brenton T. Laing
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - Ryan P. Rock
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - Allen E. Ross
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - James A. Tallant
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - Rene C. Vega
- Department of Biology; Reed Hall; Radford University; Radford Virginia
| | - Ignacio T. Moore
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| |
Collapse
|
12
|
Anderson L, Cree A, Towns D, Nelson N. Modulation of corticosterone secretion in tuatara (Sphenodon punctatus): Evidence of a dampened stress response in gravid females. Gen Comp Endocrinol 2014; 201:45-52. [PMID: 24713446 DOI: 10.1016/j.ygcen.2014.03.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 11/15/2022]
Abstract
Baseline and stress response glucocorticoid (GC) secretion can be modulated by individuals to support activities and physiological functions connected with reproduction (migration, mating, oviposition and/or parturition, care of young). Corticosterone (CORT) is the primary GC in reptiles and, in accordance with other vertebrates, an adrenocortical stress response is observed. Modulation of CORT secretion occurs in several reptile species, such that elevated baseline CORT concentration and/or a dampened CORT response are common during reproductive life-history events. We investigated CORT secretion after 24 h capture-restraint in the oviparous tuatara (Sphenodon punctatus), the last living rhynchocephalian, and tested whether gravid females have a dampened CORT response compared with non-gravid females. We also included males as a comparison. We confirmed that gravid females have significantly higher baseline plasma CORT concentrations than non-gravid females, suggesting increased CORT secretion during nesting. Furthermore, we found that gravid females exhibit a dampened CORT response compared to non-gravid females and males. Our results demonstrate that female reproductive condition influences CORT secretion in tuatara, and suggest that gravid females modulate CORT secretion during nesting to maintain homeostasis, effectively increasing chances of reproductive success and promoting overall fitness.
Collapse
Affiliation(s)
- Lindsay Anderson
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.
| | - Alison Cree
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - David Towns
- Ecosystem Development Team, Science and Technical Group, Department of Conservation, Private Bag 68-908 Newton, Auckland 1145, New Zealand.
| | - Nicola Nelson
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.
| |
Collapse
|