1
|
Skafar DN, Shumeiko DV. Hemocytes of the Australian Red Claw Crayfish (Cherax quadricarinatus): Morphology and Hemogram. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Mauro M, Arizza V, Arculeo M, Attanzio A, Pinto P, Chirco P, Badalamenti G, Tesoriere L, Vazzana M. Haemolymphatic Parameters in Two Aquaculture Crustacean Species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868). Animals (Basel) 2022; 12:ani12050543. [PMID: 35268111 PMCID: PMC8908831 DOI: 10.3390/ani12050543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The spread of freshwater crustacean farms, in particular of the Australian species Cherax, has been widespread in recent years and has aroused particular interest at an economic level. Knowledge of the basic levels of some biochemical parameters becomes particularly important to understanding the health status of the animals and, therefore, for the maintenance of aquaculture facilities. In this study, the values of some biochemical parameters of two species of Cherax, Cherax destructor and Cherax quadricarinatus, reared in an Italian aquaculture plant, were evaluated for the first time. These parameters should contribute to assessing the health status of these animals on a farm and to understanding if they will be affected by stressful conditions or not. Abstract In the last few years, there has been a notable development in the breeding of freshwater shrimp (astaciculture), which involved various species and in particular, the two Australian Parastacidae species, Cherax destructor and Cherax quadricarinatus. Information about the haemolymphatic parameters of these two species is fragmentary, and filling these gaps becomes important given their importance in aquaculture. Cellular and biochemical parameters were analyzed in both species to create a reference baseline for these parameters to identify the state of welfare or suffering of these animals. The results showed that the total haemocyte count, haemocyte subpopulations, enzymatic activities and pH are similar between the two species, while total protein and osmolality are higher in C. destructor than C. quadricarinatus. Knowledge of these parameters could assist in evaluating the good health status of these species kept in aquaculture facilities.
Collapse
|
3
|
Hernández-Aguirre LE, Fuentes-Sidas YI, Rivera-Rangel LR, Gutiérrez-Méndez N, Yepiz-Plascencia G, Chávez-Flores D, Zavala-Díaz de la Serna FJ, Peralta-Pérez MDR, García-Triana A. cDNA Characterization and Expression of Selenium-Dependent CqGPx3 Isoforms in the Crayfish Cherax quadricarinatus under High Temperature and Hypoxia. Genes (Basel) 2022; 13:179. [PMID: 35205224 PMCID: PMC8872551 DOI: 10.3390/genes13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione peroxidase 3 (GPx3) is the only extracellular selenoprotein (Sel) that enzymatically reduces H2O2 to H2O and O2. Two GPx3 (CqGPx3) cDNAs were characterized from crayfish Cherax quadricarinatus. The nerve cord CqGPx3a isoform encodes for a preprotein containing an N-terminal signal peptide of 32 amino acid residues, with the mature Sel region of 192 residues and a dispensable phosphorylation domain of 36 residues. In contrast, the pereiopods CqGPx3b codes for a precursor protein with 19 residues in the N-terminal signal peptide, then the mature 184 amino acid residues protein and finally a Pro-rich peptide of 42 residues. CqGPx3 are expressed in cerebral ganglia, pereiopods and nerve cord. CqGPx3a is expressed mainly in cerebral ganglia, antennulae and nerve cord, while CqGPx3b was detected mainly in pereiopods. CqGPx3a expression increases with high temperature and hypoxia; meanwhile, CqGPx3b is not affected. We report the presence and differential expression of GPx3 isoforms in crustacean tissues in normal conditions and under stress for high temperature and hypoxia. The two isoforms are tissue specific and condition specific, which could indicate an important role of CqGPx3a in the central nervous system and CqGPx3b in exposed tissues, both involved in different responses to environmental stressors.
Collapse
Affiliation(s)
- Laura E. Hernández-Aguirre
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Yazmin I. Fuentes-Sidas
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Lizandro R. Rivera-Rangel
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Néstor Gutiérrez-Méndez
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Gloria Yepiz-Plascencia
- Research Center in Food & Development (CIAD), Gustavo Enrique Astiazarán Rosas Road, No 46, La Victoria Suburb, Hermosillo 83304, Sonora, Mexico;
| | - David Chávez-Flores
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Francisco J. Zavala-Díaz de la Serna
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - María del R. Peralta-Pérez
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Antonio García-Triana
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| |
Collapse
|
4
|
Lette ED, Burnham QF, Lawler N, Horwitz P, Boyce MC, Broadhurst DI, Duffy R, Koenders A. Detecting Sex-Related Changes to the Metabolome of a Critically Endangered Freshwater Crayfish During the Mating Season. Front Mol Biosci 2021; 8:650839. [PMID: 33937331 PMCID: PMC8085417 DOI: 10.3389/fmolb.2021.650839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
Captive breeding is a vital tool in the conservation of highly endangered species, as it is for the Margaret River hairy marron, Cherax tenuimanus, from the south west of Australia. A close relative, Cherax cainii, has almost completely displaced C. tenuimanus in the wild and is a successful aquaculture species, whereas C. tenuimanus has performed poorly in captivity. We used untargeted liquid chromatography-mass spectrometry to obtain metabolomic profiles of female and male C. tenuimanus held in controlled aquarium conditions during their reproductive period. Using repeated haemolymph sampling we tracked the metabolomic profiles of animals just prior to and for a period of up to 34 days after pairing with a similar sized potential mate. We identified 54 reproducible annotated metabolites including amino acids, fatty acids, biogenic amines, purine and pyrimidine metabolites and excretion metabolites. Hierarchical clustering analysis distinguished five metabolite clusters. Principal component-canonical variate analysis clearly distinguished females from males, both unpaired and paired; similar trends in profile changes in both sexes after pairing; and a striking shift in males upon pairing. We discuss three main patterns of metabolomic responses: differentiation between sexes; reactive responses to the disturbance of pairing; and convergent response to the disturbance of pairing for males. Females generally had higher concentrations of metabolites involved in metabolic rate, mobilisation of energy stores and stress. Responses to the disturbance of pairing were also related to elevated stress. Females were mobilising lipid stores to deposit yolk, whereas males had a rapid and strong response to pairing, with shifts in metabolites associated with gonad development and communication, indicating males could complete reproductive readiness only once paired with a female. The metabolomic profiles support a previously proposed potential mechanism for displacement of C. tenuimanus by C. cainii in the wild and identify several biomarkers for testing hypotheses regarding reproductive success using targeted metabolomics.
Collapse
Affiliation(s)
- Emily D. Lette
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| | - Quinton F. Burnham
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| | - Nathan Lawler
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, WA, Australia
| | - Pierre Horwitz
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| | - Mary C. Boyce
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, WA, Australia
| | - David I. Broadhurst
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, WA, Australia
| | - Rodney Duffy
- Department of Primary Industries and Regional Development of Western Australia, Perth, WA, Australia
| | - Annette Koenders
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|