1
|
Anttila K, Mauduit F, Kanerva M, Götting M, Nikinmaa M, Claireaux G. Cardiovascular oxygen transport and peripheral oxygen extraction capacity contribute to acute heat tolerance in European seabass. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111340. [PMID: 36347467 DOI: 10.1016/j.cbpa.2022.111340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
This study evaluated whether different parameters describing cardiovascular function, energy metabolism, oxygen transport and oxidative stress were related to the critical thermal maximum (CTMAX) of European seabass (Dicentrarchus labrax) and if there were differential changes in these parameters during and after heat shock in animals with different CTMAX in order to characterize which physiological features make seabass vulnerable to heat waves. Seabass (n = 621) were tested for CTMAX and the physiological parameters were measured in individuals with good or poor temperature tolerance before and after a heat shock (change in temperature from 15 °C to 28 °C in 1.5 h). Fish with good thermal tolerance had larger ventricles with higher maximal heart rate during the heat shock than individuals with poor tolerance. Furthermore, they initially had a high ventricular Ca2+-ATPase activity, which was reduced to a similar level as in fish with poor tolerance following heat shock. The activity of heart lactate dehydrogenase increased in fish with high tolerance, when they were exposed to heat shock, while the aerobic enzyme activity did not differ between groups. The tolerant individuals had smaller red muscle fibers with higher myoglobin content than the poorly tolerant ones. The poorly tolerant individuals had higher hematocrit, which increased with heat shock in both groups. The poorly tolerant individuals had also higher activity of enzymes related to oxidative stress especially after heat shock. In general, CTMAX was not depending on merely one physiological factor but several organ and cellular parameters were related to the CTMAX of seabass and when working in combination they might protect the highly tolerant seabass from future heat waves.
Collapse
Affiliation(s)
- Katja Anttila
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Florian Mauduit
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| | - Mirella Kanerva
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Miriam Götting
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| |
Collapse
|
2
|
Shiels HA. Avian cardiomyocyte architecture and what it reveals about the evolution of the vertebrate heart. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210332. [PMID: 36189815 PMCID: PMC9527935 DOI: 10.1098/rstb.2021.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Bird cardiomyocytes are long, thin and lack transverse (t)-tubules, which is akin to the cardiomyocyte morphology of ectothermic non-avian reptiles, who are typified by low maximum heart rates and low pressure development. However, birds can achieve greater contractile rates and developed pressures than mammals, whose wide cardiomyocytes contain a dense t-tubular network allowing for uniform excitation-contraction coupling and strong contractile force. To address this apparent paradox, this paper functionally links recent electrophysiological studies on bird cardiomyocytes with decades of ultrastructure measurements. It shows that it is the strong transsarcolemmal Ca2+ influx via the L-type Ca2+ current (ICaL) and the high gain of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR), coupled with an internal SR Ca2+ release relay system, that facilitates the strong fast contractions in the long thin bird cardiomyocytes, without the need for t-tubules. The maintenance of an elongated myocyte morphology following the post-hatch transition from ectothermy to endothermy in birds is discussed in relation to cardiac load, myocyte ploidy, and cardiac regeneration potential in adult cardiomyocytes. Overall, the paper shows how little we know about cellular Ca2+ dynamics in the bird heart and suggests how increased research efforts in this area would provide vital information in our quest to understand the role of myocyte architecture in the evolution of the vertebrate heart. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'. Please see glossary at the end of the paper for definitions of specialized terms.
Collapse
Affiliation(s)
- Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Badr A, Hassinen M, Vornanen M. Spatial uniformity of action potentials indicates base-to-apex depolarization and repolarization of rainbow trout (Oncorhynchus mykiss) ventricle. J Exp Biol 2022; 225:276292. [PMID: 35950359 DOI: 10.1242/jeb.244466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
The spatial pattern of electrical activation is crucial for a full understanding of fish heart function. However, it remains unclear whether there is regional variation in action potential (AP) morphologies and underlying ion currents. Because the direction of depolarization and spatial differences in the durations of ventricular APs set limits to potential patterns of ventricular repolarization, we determined AP morphologies, underlying ion currents, and ion channel expression in 4 different regions (spongy myocardium; and apex, base, and middle of the compact myocardium), and correlated them with in vivo electrocardiogram (ECG) in rainbow trout (Oncorhynchus mykiss). ECG recorded from 3 leads indicated that the depolarization and repolarization of AP propagate from base-to-apex, and the main depolarization axis of the ventricle is between +90° and +120°. AP shape was uniform across the whole ventricle, and little regional differences were found in density of repolarizing K+ currents or depolarizing Ca2+ and Na+ currents and the underlying transcripts of ion channels, providing compelling evidence for the suggested excitation pattern. The spatial uniformity of AP durations and base-to-apex propagation of activation with a relatively slow velocity of propagation indicates no special ventricular conduction pathway in the trout ventricle like the His-Purkinje system of mammalian hearts. The sequence of repolarization is solely determined by activation time without being affected by regional differences in AP duration.
Collapse
Affiliation(s)
- Ahmed Badr
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland.,Sohag University, Faculty of Science, Department of Zoology, 82524 Sohag, Egypt
| | - Minna Hassinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
4
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
5
|
Country MW, Haase K, Blank K, Canez CR, Roberts JA, Campbell BFN, Smith JC, Pelling AE, Jonz MG. Seasonal changes in membrane structure and excitability in retinal neurons of goldfish (Carassius auratus) under constant environmental conditions. J Exp Biol 2022; 225:275230. [PMID: 35485205 DOI: 10.1242/jeb.244238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
Seasonal modifications in the structure of cellular membranes occur as an adaptive measure to withstand exposure to prolonged environmental change. Little is known about whether such changes may occur independently of external cues, such as photoperiod or temperature, or how they may impact the central nervous system. We compared membrane properties of neurons isolated from the retina of goldfish (Carassius auratus), an organism well-adapted to extreme environmental change, during the summer and winter months. Goldfish were maintained in a facility under constant environmental conditions throughout the year. Analysis of whole-retina phospholipid composition using mass spectrometry-based lipidomics revealed a two-fold increase in phosphatidylethanolamine species during the winter, suggesting an increase in cell membrane fluidity. Atomic force microscopy was used to produce localized, nanoscale-force deformation of neuronal membranes. Measurement of Young's modulus indicated increased membrane-cortical stiffness (or decreased elasticity) in neurons isolated during the winter. Voltage-clamp electrophysiology was used to assess physiological changes in neurons between seasons. Winter neurons displayed a hyperpolarized reversal potential (Vrev) and a significantly lower input resistance (Rin) compared to summer neurons. This was indicative of a decrease in membrane excitability during the winter. Subsequent measurement of intracellular Ca2+ activity using Fura-2 microspectrofluorometry confirmed a reduction in action potential activity, including duration and action potential profile, in neurons isolated during the winter. These studies demonstrate chemical and biophysical changes that occur in retinal neurons of goldfish throughout the year without exposure to seasonal cues, and suggest a novel mechanism of seasonal regulation of retinal activity.
Collapse
Affiliation(s)
| | | | - Katrin Blank
- Department of Chemistry, Carleton University, Canada
| | | | | | | | | | | | - Michael G Jonz
- Department of Biology, University of Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Canada
| |
Collapse
|
6
|
Haverinen J, Badr A, Vornanen M. Cardiac Toxicity of Cadmium Involves Complex Interactions Among Multiple Ion Currents in Rainbow Trout (Oncorhynchus mykiss) Ventricular Myocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2874-2885. [PMID: 34255886 DOI: 10.1002/etc.5161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd2+ ) is cardiotoxic to fish, but its effect on the electrical excitability of cardiac myocytes is largely unknown. To this end, we used the whole-cell patch-clamp method to investigate the effects of Cd2+ on ventricular action potentials (APs) and major ion currents in rainbow trout (Oncorhynchus mykiss) ventricular myocytes. Trout were acclimated to +4 °C, and APs were measured at the acclimated temperature and elevated temperature (+18 °C). Cd2+ (10, 20, and 100 µM) altered the shape of the ventricular AP in a complex manner. The early plateau fell to less positive membrane voltages, and the total duration of AP prolonged. These effects were obvious at both +4 °C and +18 °C. The depression of the early plateau is due to the strong Cd2+ -induced inhibition of the L-type calcium (Ca2+ ) current (ICaL ), whereas the prolongation of the AP is an indirect consequence of the ICaL inhibition: at low voltages of the early plateau, the delayed rectifier potassium (K+ ) current (IKr ) remains small, delaying repolarization of AP. Cd2+ reduced the density and slowed the kinetics of the Na+ current (INa ) but left the inward rectifier K+ current (IK1 ) intact. These altered cellular and molecular functions can explain several Cd2+ -induced changes in impulse conduction of the fish heart, for example, slowed propagation of the AP in atrial and ventricular myocardia (inhibition of INa ), delayed relaxation of the ventricle (prolongation of ventricular AP duration), bradycardia, and atrioventricular block (inhibition of ICaL ). These findings indicate that the cardiotoxicity of Cd2+ in fish involves multiple ion currents that are directly and indirectly altered by Cd2+ . Through these mechanisms, Cd2+ may trigger cardiac arrhythmias and impair myocardial contraction. Elevated temperature (+18 °C) slightly increases Cd2+ toxicity in trout ventricular myocytes. Environ Toxicol Chem 2021;40:2874-2885. © 2021 SETAC.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Zoology Department, Sohag University, Sohag, Egypt
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
7
|
Abramochkin DV, Kompella SN, Shiels HA. Phenanthrene alters the electrical activity of atrial and ventricular myocytes of a polar fish, the Navaga cod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105823. [PMID: 33906022 PMCID: PMC8121755 DOI: 10.1016/j.aquatox.2021.105823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Oil and gas exploration in the Arctic can result in the release of polycyclic aromatic hydrocarbons (PAHs) into relatively pristine environments. Following the recent spill of approximately 17 500 tonnes of diesel fuel in Norilsk, Russia, May 2020, our study focussed on the effects of phenanthrene, a low molecular weight PAH found in diesel and crude oil, on the isolated atrial and ventricular myocytes from the heart of the polar teleost, the Navaga cod (Eleginus nawaga). Acute exposure to phenanthrene in navaga cardiomyocytes caused significant action potential (AP) prolongation, confirming the proarrhythmic effects of this pollutant. We show AP prolongation was due to potent inhibition of the main repolarising current, IKr, with an IC50 value of ~2 µM. We also show a potent inhibitory effect (~55%) of 1 µM phenanthrene on the transient IKr currents that protects the heart from early-after-depolarizations and arrhythmias. These data, along with more minor effects on inward sodium (INa) (~17% inhibition at 10 µM) and calcium (ICa) (~17% inhibition at 30 µM) currents, and no effects on inward rectifier (IK1 and IKAch) currents, demonstrate the cardiotoxic effects exerted by phenanthrene on the atrium and ventricle of navaga cod. Moreover, we report the first data that we are aware of on the impact of phenanthrene on atrial myocyte function in any fish species.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya, 15a, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia; Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Shiva N Kompella
- Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
8
|
Filatova TS, Abramochkin DV, Shiels HA. Warmer, faster, stronger: Ca 2+ cycling in avian myocardium. J Exp Biol 2020; 223:jeb228205. [PMID: 32843363 DOI: 10.1242/jeb.228205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022]
Abstract
Birds occupy a unique position in the evolution of cardiac design. Their hearts are capable of cardiac performance on par with, or exceeding that of mammals, and yet the structure of their cardiomyocytes resembles those of reptiles. It has been suggested that birds use intracellular Ca2+ stored within the sarcoplasmic reticulum (SR) to power contractile function, but neither SR Ca2+ content nor the cross-talk between channels underlying Ca2+-induced Ca2+ release (CICR) have been studied in adult birds. Here we used voltage clamp to investigate the Ca2+ storage and refilling capacities of the SR and the degree of trans-sarcolemmal and intracellular Ca2+ channel interplay in freshly isolated atrial and ventricular myocytes from the heart of the Japanese quail (Coturnix japonica). A trans-sarcolemmal Ca2+ current (ICa) was detectable in both quail atrial and ventricular myocytes, and was mediated only by L-type Ca2+ channels. The peak density of ICa was larger in ventricular cells than in atrial cells, and exceeded that reported for mammalian myocardium recorded under similar conditions. Steady-state SR Ca2+ content of quail myocardium was also larger than that reported for mammals, and reached 750.6±128.2 μmol l-1 in atrial cells and 423.3±47.2 μmol l-1 in ventricular cells at 24°C. We observed SR Ca2+-dependent inactivation of ICa in ventricular myocytes, indicating cross-talk between sarcolemmal Ca2+ channels and ryanodine receptors in the SR. However, this phenomenon was not observed in atrial myocytes. Taken together, these findings help to explain the high-efficiency avian myocyte excitation-contraction coupling with regard to their reptilian-like cellular ultrastructure.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str.,1, Moscow 117997, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str.,1, Moscow 117997, Russia
- Ural Federal University, Mira 19, Ekaterinburg 620002, Russia
- Laboratory of Cardiac Physiology, Institute of Physiology of komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Pervomayskaya str., 50, 167982 Syktyvkar, Komi Republic, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
9
|
Vornanen M. Feeling the heat: source–sink mismatch as a mechanism underlying the failure of thermal tolerance. J Exp Biol 2020; 223:223/16/jeb225680. [DOI: 10.1242/jeb.225680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
A mechanistic explanation for the tolerance limits of animals at high temperatures is still missing, but one potential target for thermal failure is the electrical signaling off cells and tissues. With this in mind, here I review the effects of high temperature on the electrical excitability of heart, muscle and nerves, and refine a hypothesis regarding high temperature-induced failure of electrical excitation and signal transfer [the temperature-dependent deterioration of electrical excitability (TDEE) hypothesis]. A central tenet of the hypothesis is temperature-dependent mismatch between the depolarizing ion current (i.e. source) of the signaling cell and the repolarizing ion current (i.e. sink) of the receiving cell, which prevents the generation of action potentials (APs) in the latter. A source–sink mismatch can develop in heart, muscles and nerves at high temperatures owing to opposite effects of temperature on source and sink currents. AP propagation is more likely to fail at the sites of structural discontinuities, including electrically coupled cells, synapses and branching points of nerves and muscle, which impose an increased demand of inward current. At these sites, temperature-induced source–sink mismatch can reduce AP frequency, resulting in low-pass filtering or a complete block of signal transmission. In principle, this hypothesis can explain a number of heat-induced effects, including reduced heart rate, reduced synaptic transmission between neurons and reduced impulse transfer from neurons to muscles. The hypothesis is equally valid for ectothermic and endothermic animals, and for both aquatic and terrestrial species. Importantly, the hypothesis is strictly mechanistic and lends itself to experimental falsification.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences , University of Eastern Finland, 80101 Joensuu, Finland
| |
Collapse
|
10
|
Haverinen J, Vornanen M. Reduced ventricular excitability causes atrioventricular block and depression of heart rate in fish at critically high temperatures. J Exp Biol 2020; 223:jeb225227. [PMID: 32434803 DOI: 10.1242/jeb.225227] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
At critically high temperature, cardiac output in fish collapses as a result of depression of heart rate (bradycardia). However, the cause of bradycardia remains unresolved. To investigate this, rainbow trout (Oncorhynchus mykiss; acclimated at 12°C) were exposed to acute warming while electrocardiograms were recorded. From 12°C to 25.3°C, electrical excitation between different parts of the heart was coordinated, but above 25.3°C, atrial and ventricular beating rates became partly dissociated because of 2:1 atrioventricular (AV) block. With further warming, atrial rate increased to a peak value of 188±22 beats min-1 at 27°C, whereas the ventricle rate peaked at 124±10 beats min-1 at 25.3°C and thereafter dropped to 111±15 beats min-1 at 27°C. In single ventricular myocytes, warming from 12°C to 25°C attenuated electrical excitability as evidenced by increases in rheobase current and the size of critical depolarization required to trigger action potential. Depression of excitability was caused by temperature-induced decrease in input resistance (sarcolemmal K+ leak via the outward IK1 current) of resting myocytes and decrease in inward charge transfer by the Na+ current (INa) of active myocytes. Collectively, these findings show that at critically high temperatures AV block causes ventricular bradycardia owing to the increased excitation threshold of the ventricle, which is due to changes in the passive (resting ion leak) and active (inward charge movement) electrical properties of ventricular myocytes. The sequence of events from the level of ion channels to cardiac function in vivo provides a mechanistic explanation for the depression of cardiac output in fish at critically high temperature.
Collapse
Affiliation(s)
- Jaakko Haverinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, 80101 Joensuu, Finland
| |
Collapse
|
11
|
Badr A, Abu-Amra ES, El-Sayed MF, Vornanen M. Electrical excitability of roach (Rutilus rutilus) ventricular myocytes: effects of extracellular K+, temperature, and pacing frequency. Am J Physiol Regul Integr Comp Physiol 2018; 315:R303-R311. [DOI: 10.1152/ajpregu.00436.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exercise, capture, and handling stress in fish can elevate extracellular K+ concentration ([K+]o) with potential impact on heart function in a temperature- and frequency-dependent manner. To this end, the effects of [K+]o on the excitability of ventricular myocytes of winter-acclimatized roach ( Rutilus rutilus) (4 ± 0.5°C) were examined at different test temperatures and varying pacing rates. Frequencies corresponding to in vivo heart rates at 4°C (0.37 Hz), 14°C (1.16 Hz), and 24°C (1.96 Hz) had no significant effect on the excitability of ventricular myocytes. Acute increase of temperature from 4 to 14°C did not affect excitability, but a further rise to 24 markedly decreased excitability: stimulus current and critical depolarization needed to elicit an action potential (AP) were ~25 and 14% higher, respectively, at 24°C than at 4°C and 14°C ( P < 0.05). This depression could be due to temperature-related mismatch between inward Na+ and outward K+ currents. In contrast, an increase of [K+]o from 3 to 5.4 or 8 mM at 24°C reduced the stimulus current needed to trigger AP. However, other aspects of excitability were strongly depressed by high [K+]o: maximum rate of AP upstroke and AP duration were drastically (89 and 50%, respectively) reduced at 8 mM [K+]o in comparison with 3 mM ( P < 0.05). As an extreme case, some myocytes completely failed to elicit all-or-none AP at 8 mM [K+]o at 24°C. Also, amplitude and overshoot of AP were reduced by elevation of [K+]o ( P < 0.05). Although high [K+]o antagonizes the negative effects of high temperature on excitation threshold, the precipitous depression of the rate of AP upstroke and complete loss of excitability in some myocytes suggest that the combination of high temperature and high [K+]o will severely impair ventricular excitability in roach.
Collapse
Affiliation(s)
- Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - El-Sabry Abu-Amra
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|