1
|
Möllerke A, Schulz S. Small animals with unique chemistry - the natural product chemistry of Collembola. Nat Prod Rep 2025; 42:672-680. [PMID: 39530271 DOI: 10.1039/d4np00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Covering up to September 2024Collembola, commonly known as springtails, are abundant and important members of soil ecosystems. Due to their small size and hidden life, not much is known about their secondary metabolites. This chemistry is remarkably different from that of insects, with which they share a common ancestor, although they diverged already around 450 mya. Here we describe what is known so far, mainly compounds for chemical defence and cuticular lipids, as well as chemical signals. The uniqueness of the structures found is striking, many of which are not known from other natural sources. These include polychlorinated benzopyranones, small alkaloids, hetero-substituted aromatic compounds, and a diverse terpene chemistry, including highly branched compounds.
Collapse
Affiliation(s)
- Anton Möllerke
- Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Stefan Schulz
- Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
2
|
Ge J, Slotsbo S, Sørensen JG, Holmstrup M. Copper-contaminated soil compromises thermal performance in the springtail Folsomia candida (Collembola). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165334. [PMID: 37419362 DOI: 10.1016/j.scitotenv.2023.165334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The widespread agricultural and industrial emissions of copper-based chemicals have increased copper levels in soils worldwide. Copper contamination can cause a range of toxic effects on soil animals and influence thermal tolerance. However, toxic effects are commonly investigated using simple endpoints (e.g., mortality) and acute tests. Thus, how organisms respond to ecological realistic sub-lethal and chronic exposures across the entire thermal scope of an organism is not known. In this study, we investigated the effects of copper exposure on the thermal performance of a springtail (Folsomia candida), regarding its survival, individual growth, population growth, and the composition of membrane phospholipid fatty acids. Folsomia candida (Collembola) is a typical representative of soil arthropods and a model organism that has been widely used for ecotoxicological studies. In a full-factorial soil microcosm experiment, springtails were exposed to three levels of copper (ca. 17 (control), 436, and 1629 mg/kg dry soil) and ten temperatures from 0 to 30 °C. Results showed that three-week copper exposure at temperatures below 15 °C and above 26 °C negatively influenced the springtail survival. The body growth was significantly lower for the springtails in high-dose copper soils at temperatures above 24 °C. A high copper level reduced the number of juveniles by 50 %, thereby impairing population growth. Both temperature and copper exposure significantly impacted membrane properties. Our results indicated that high-dose copper exposure compromised the tolerance to suboptimal temperatures and decreased maximal performance, whereas medium copper exposure partially reduced the performance at suboptimal temperatures. Overall, copper contamination reduced the thermal tolerance of springtails at suboptimal temperatures, probably by interfering with membrane homeoviscous adaptation. Our results show that soil organisms living in copper-contaminated areas might be more sensitive to thermally stressful periods.
Collapse
Affiliation(s)
- Jian Ge
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 8, Aarhus, Denmark.
| | - Stine Slotsbo
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 8, Aarhus, Denmark
| | - Jesper G Sørensen
- Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus, Denmark
| | - Martin Holmstrup
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 8, Aarhus, Denmark
| |
Collapse
|
3
|
Aupic‐Samain A, Baldy V, Delcourt N, Krogh PH, Gauquelin T, Fernandez C, Santonja M. Water availability rather than temperature control soil fauna community structure and prey–predator interactions. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Virginie Baldy
- Aix Marseille UnivAvignon UniversitéCNRSIRDIMBE Marseille France
| | - Ninon Delcourt
- Aix Marseille UnivAvignon UniversitéCNRSIRDIMBE Marseille France
| | | | | | | | - Mathieu Santonja
- Aix Marseille UnivAvignon UniversitéCNRSIRDIMBE Marseille France
| |
Collapse
|
4
|
Ling Y, Li W, Tong T, Li Z, Li Q, Bai Z, Wang G, Chen J, Wang Y. Assessing the Microbial Communities in Four Different Daqus by Using PCR-DGGE, PLFA, and Biolog Analyses. Pol J Microbiol 2020; 69:1-11. [PMID: 32067441 PMCID: PMC7256838 DOI: 10.33073/pjm-2020-004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/04/2020] [Accepted: 07/19/2020] [Indexed: 12/30/2022] Open
Abstract
Daqu made from raw wheat, barley or pea is used as an inoculum for the fermentation of Chinese Baijiu. In this study, the microbial communities of four different types of Daqus (sauce-flavor Wuling Daqu, sauce and strong-flavor Baisha Daqu, strong-flavor Deshan Daqu, and light-flavor Niulanshan Daqu) were analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), phospholipid fatty acid (PLFA) analysis, and Biolog EcoPlates analysis (Biolog). Clear differences were seen between the microbial communities of the four Daqus. PCR-DGGE showed differences in the number and brightness of bands between the Daqus, indicating the presence of unique bacterial species in Deshan Daqu, Wuling Daqu, and Niulanshan Daqu. Lactobacillus sanfranciscensis, Bacillus thermoamylovorans, and some unclassified bacteria were unique to Wuling Daqu, Deshan Daqu, and Niulanshan Daqu, respectively. Moreover, some bacterial species were observed in all four Daqus. A total of 26 PLFAs between C12 to C20 were detected from the four Daqus by PLFA analysis. Wuling Daqu had the highest total and fungal biomasses, Baisha Daqu had the highest bacterial biomass, and Niulanshan Daqu had the highest ratio of fungal biomass to bacterial biomass. The Biolog results indicated differences in the carbon source use and mode of the four Daqus, and also demonstrated that each Daqu had varying abilities to utilize different types of carbon sources. The cluster analysis of the three methods showed that the microbial communities of the four Daqus were different. This study also demonstrates the applicability of the three analytical methods in the evaluating of the microbial communities of Daqus.
Collapse
Affiliation(s)
- Yuxi Ling
- College of Biochemical Engineering , Beijing Union University , Beijing , China
| | - Wenying Li
- College of Liberal Arts and Sciences , National University of Defense Technology , Changsha , China
| | - Tong Tong
- College of Biochemical Engineering , Beijing Union University , Beijing , China
| | - Zuming Li
- College of Biochemical Engineering , Beijing Union University , Beijing , China
| | - Qian Li
- College of Biochemical Engineering , Beijing Union University , Beijing , China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , China
| | - Guijun Wang
- Hunan Wuling Spirits Co., Ltd. , Changde , China
| | - Jiahao Chen
- Hunan Wuling Spirits Co., Ltd. , Changde , China
| | - Yuguang Wang
- Hunan Wuling Spirits Co., Ltd. , Changde , China
| |
Collapse
|
5
|
Le Hesran S, Groot T, Knapp M, Nugroho JE, Beretta G, Salomé-Abarca LF, Choi YH, Vancová M, Moreno-Rodenas AM, Dicke M. Proximate mechanisms of drought resistance in Phytoseiulus persimilis eggs. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:279-298. [PMID: 31768808 DOI: 10.1007/s10493-019-00442-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Under drought stress, Phytoseiulus persimilis females are able to lay drought-resistant eggs through an adaptive maternal effect. The mechanisms making these eggs drought resistant still remain to be investigated. For this purpose, we studied the physiological differences between drought-resistant and drought-sensitive eggs. We compared the volume and the surface-area-to-volume ratio (SA:V) of the eggs, their sex ratio, their chemical composition (by gas chromatography-mass spectrometry), their internal and external structure [by scanning electron microscope (SEM) and transmission electron microscope (TEM) images], and their developmental time. Our results show that drought-resistant and drought-sensitive eggs have a different chemical composition: drought-resistant eggs contain more compatible solutes (free amino acids and sugar alcohols) and saturated hydrocarbons than drought-sensitive eggs. This difference may contribute to reducing water loss in drought-resistant eggs. Moreover, drought-resistant eggs are on average 8.4% larger in volume, and have a 2.4% smaller SA:V than drought-sensitive eggs. This larger volume and smaller SA:V, probably the result of a higher water content, may make drought-resistant eggs less vulnerable to water loss. We did not find any difference in sex ratio, internal or external structure nor developmental time between drought-resistant and drought-sensitive eggs. These results mark the first step in the understanding of the strategies and the energetic costs involved in the production of drought-resistant eggs in P. persimilis females.
Collapse
Affiliation(s)
- Sophie Le Hesran
- Koppert BV, Veilingweg 14, Postbus 155, 2650 AD, Berkel en Rodenrijs, The Netherlands.
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Thomas Groot
- Koppert BV, Veilingweg 14, Postbus 155, 2650 AD, Berkel en Rodenrijs, The Netherlands
| | - Markus Knapp
- Koppert BV, Veilingweg 14, Postbus 155, 2650 AD, Berkel en Rodenrijs, The Netherlands
| | - Jovano Erris Nugroho
- Koppert BV, Veilingweg 14, Postbus 155, 2650 AD, Berkel en Rodenrijs, The Netherlands
| | - Giuditta Beretta
- Koppert BV, Veilingweg 14, Postbus 155, 2650 AD, Berkel en Rodenrijs, The Netherlands
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Luis Francisco Salomé-Abarca
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Antonio M Moreno-Rodenas
- Section Sanitary Engineering, Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN, Delft, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
6
|
Jensen K, Toft S, Sigsgaard L, Sørensen JG, Holmstrup M. Prey-specific impact of cold pre-exposure on kill rate and reproduction. J Anim Ecol 2018; 88:258-268. [PMID: 30303532 DOI: 10.1111/1365-2656.12916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022]
Abstract
Temperature influences biological processes of ectotherms including ecological interactions, but interaction strengths may depend on species-specific traits. Furthermore, ectotherms acclimate to prevailing thermal conditions by adjusting physiological parameters, which often implies costs to other fitness-related parameters. Both predators and prey may therefore pay thermal acclimation costs following exposure to suboptimal temperatures. However, these costs may be asymmetrical between predator and prey, and between the predator and different species of concurrent prey. We investigated whether thermal pre-exposure affected subsequent kill rate and predator fitness when foraging on prey that differ in ease of capture, and whether changes were primarily caused by predator or by prey pre-exposure effects. Specifically, we were interested in whether there were interactions between predator pre-exposed temperature and specific prey. Using the mesostigmatid mite Gaeolaelaps aculeifer as a generalist predator and the collembolans Folsomia candida and Protaphorura fimata as prey, we measured the impact of present temperature, predator pre-exposure temperature, prey pre-exposure temperature (all 10 or 20°C), prey species, and all interactions on prey numbers killed, predator eggs produced, and exploitation of killed prey in a full factorial design. Mites killed P. fimata in equal numbers independent of the presence of F. candida, but killed F. candida when P. fimata was absent. Mite kill rate and reproduction were significantly affected by mite pre-exposure temperature and test temperature, but not by prey pre-exposure temperature. Significantly more of the slower prey was killed than of the quicker prey. Importantly, we found significant synergistic negative interaction effects between predator cold pre-exposure and hunting prey of higher agility on predator kill rate and reproduction. Our findings show that the negative effects of cold and cold pre-exposure on kill rate and reproduction may be more severe when predators forage on quick prey. The study implies that predator cold exposure has consequences for specific prey survival following cold due to altered predation pressures, which in nature should influence the specific prey population dynamics and apparent competition outcomes. The findings exemplify how not only current but also preceding conditions affect ecological interactions, and that effect strength depends on the species involved.
Collapse
Affiliation(s)
- Kim Jensen
- Department of Bioscience, Section for Soil Ecology and Ecotoxicology, Aarhus University, Silkeborg, Denmark
| | - Søren Toft
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Lene Sigsgaard
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Frederiksberg C, Denmark
| | - Jesper G Sørensen
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Martin Holmstrup
- Department of Bioscience, Section for Soil Ecology and Ecotoxicology, Aarhus University, Silkeborg, Denmark
| |
Collapse
|
7
|
The springtail Megaphorura arctica survives extremely high osmolality of body fluids during drought. J Comp Physiol B 2018; 188:939-945. [PMID: 30194462 DOI: 10.1007/s00360-018-1180-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 09/03/2018] [Indexed: 01/14/2023]
Abstract
The springtail Megaphorura arctica Tullberg 1876 is widespread in the arctic and subarctic regions where it can be abundant along beaches. This species survives winters using cryoprotective dehydration as a cold tolerance strategy during which it becomes drastically dehydrated. Several studies have investigated the physiological responses associated with water loss of M. arctica under exposure to freezing temperatures, but little is known of the dynamics of body water and hemolymph osmolality when subjected to gradually increasing drought stress at temperatures above the freezing point. Therefore, an experiment was conducted in which M. arctica was subjected to relative humidities (RH) decreasing from fully saturated conditions to ca. 89%RH over a period of 30 days. During the experiment water content of springtails decreased from about 3 to ca. 0.5 mg mg-1 dry weight. Alongside with water loss, trehalose concentrations increased from nearly nothing to 0.12 mg mg-1 dry weight, which contributed to an increase in hemolymph osmolality from ca. 250 mOsm to at least 7 Osm. All springtails survived water loss down to 0.7 mg mg-1 dry weight and hemolymph osmolality of ca. 4 Osm, and about 60% of the springtails survived with only 0.5 mg water mg-1 dry weight and osmolality of ca. 7 Osm. At this level of dehydration, Differential Scanning Calorimetry analysis showed that most, but not all, osmotically active water was lost. It is discussed that the extensive dehydration must be associated with high concentrations of salts potentially causing denaturation and precipitation of cellular proteins. M. arctica is remarkably tolerant of dehydration, but because it does not endure loss of the osmotically inactive water it cannot be categorized as a truly anhydrobiotic species.
Collapse
|