1
|
Remmers S, Dausmann K, Schoroth M, Rabarison H, Reher S. Intraspecific variation in metabolic responses to diverse environmental conditions in the Malagasy bat Triaenops menamena. J Comp Physiol B 2025; 195:247-262. [PMID: 40111435 PMCID: PMC12069135 DOI: 10.1007/s00360-025-01608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025]
Abstract
Widespread species often display traits of generalists, yet local adaptations may limit their ability to cope with diverse environmental conditions. With climate change being a pressing issue, distinguishing between the general ecological and physiological capacities of a species and those of individual populations is vital for assessing the capability to adapt rapidly to changing habitats. Despite its importance, physiological variation across broad range distributions, particularly among free-ranging bats in natural environments, has rarely been assessed. Studies focusing on physiological variation among different populations across seasons are even more limited. We investigated physiological variation in the Malagasy Trident Bat Triaenops menamena across three different roost types in Madagascar during the wet and dry season, examining aspects such as energy regimes, body temperature, and roost microclimates. We focused on patterns of torpor in relation to roosting conditions. We hypothesized that torpor occurrence would be higher during the colder, more demanding dry season. We predicted that populations roosting in more variable microclimates would expend less energy than those in mores stable ones due to more frequent use of torpor and greater metabolic rate reductions. Our findings highlight complex thermoregulatory strategies, with varying torpor expression across seasons and roosts. We observed an overall higher energy expenditure during the wet season but also greater energy savings during torpor in that season, regardless of roost type. We found that reductions in metabolic rate were positively correlated with greater fluctuations in ambient conditions, demonstrating these bats' adaptability to dynamic environments. Notably, we observed diverse torpor patterns, indicating the species' ability to use prolonged torpor under extreme conditions. This individual-level variation is crucial for adaptation to changing environmental conditions. Moreover, the flexibility in body temperature during torpor suggests caution in relying solely on it as an indicator for torpor use. Our study emphasizes the necessity to investigate thermoregulatory responses across different populations in their respective habitats to fully understand a species' adaptive potential.
Collapse
Affiliation(s)
- Sina Remmers
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany.
| | - K Dausmann
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
| | - M Schoroth
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
| | - H Rabarison
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
| | - S Reher
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Mezzini S, Fleming CH, Medici EP, Noonan MJ. How resource abundance and resource stochasticity affect organisms' range sizes. MOVEMENT ECOLOGY 2025; 13:20. [PMID: 40114205 PMCID: PMC11927164 DOI: 10.1186/s40462-025-00546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND From megafauna to amoebas, the amount of space heterotrophic organisms use is thought to be tightly linked to the availability of resources within their habitats, such that organisms living in productive habitats generally require less space than those in resource-poor habitats. This hypothesis has widespread empirical support, but existing studies have focused primarily on responses to spatiotemporal changes in mean resources, while responses to unpredictable changes in resources (i.e., variance in resources or resource stochasticity) are still largely unknown. Since organisms adjust to variable environmental conditions, failing to consider the effects of resource unpredictability can result in an insufficient understanding of an organism's range size. METHODS We leverage the available literature to provide a unifying framework and hypothesis for the effects of resource abundance and stochasticity on organisms' range sizes. We then use simulated movement data to demonstrate how the combined effects of resource abundance and stochasticity interact to shape predictable patterns in range size. Finally, we test the hypothesis using real-world tracking data on a lowland tapir (Tapirus terrestris) from the Brazilian Cerrado. RESULTS Organisms' range sizes decrease nonlinearly with resource abundance and increase nonlinearly with resource stochasticity, and the effects of resource stochasticity depend strongly on resource abundance. Additionally, the distribution and predictability of resources can exacerbate the effects of other drivers of movement, such as resource depletion, competition, and predation. CONCLUSIONS Accounting for resource abundance and stochasticity is crucial for understanding the movement behavior of free-ranging organisms. Failing to account for resource stochasticity can lead to an incomplete and incorrect understanding of how and why organisms move, particularly during periods of rapid change.
Collapse
Affiliation(s)
- Stefano Mezzini
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, The University of British Columbia Okanagan, Kelowna, BC, Canada
- Department of Biology, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Christen H Fleming
- Department of Biology, University of Central Florida, Orlando, Florida, 32816, USA
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Rd., Front Royal, VA, 22630, USA
| | - E Patrícia Medici
- Lowland Tapir Conservation Initiative (LTCI), Instituto de Pesquisas Ecológicas (IPÊ), Rodovia Dom Pedro I, km 47, Nazaré Paulista, São Paulo, 12960-000, Brazil
- IUCN SSC Tapir Specialist Group (TSG), Campo Grande, Brazil
- Escola Superior de Conservação Ambiental E Sustentabilidade (ESCAS/IPÊ), Rodovia Dom Pedro I, km 47, Nazaré Paulista, São Paulo, 12960-000, Brazil
| | - Michael J Noonan
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, The University of British Columbia Okanagan, Kelowna, BC, Canada.
- Department of Biology, The University of British Columbia Okanagan, Kelowna, BC, Canada.
- Department of Computer Science, Math, Physics, and Statistics, The University of British Columbia Okanagan, Kelowna, BC, Canada.
| |
Collapse
|
3
|
Wolf JM, Lehmann P, Kerth G. Field respirometry in a wild maternity colony of Bechstein's bats (Myotis bechsteinii) indicates high metabolic costs above but not below the thermoneutral zone. J Exp Biol 2025; 228:JEB249975. [PMID: 39713849 DOI: 10.1242/jeb.249975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
In a warming world, it is crucial to understand how rising temperature affects the physiology of organisms. To investigate the effect of a warming environment on the metabolism of heterothermic bats during the costly lactation period, we characterised metabolic rates in relation to roost temperature, the bats' thermoregulatory state (normothermia or torpor), time of day and age of juveniles. In a field experiment, we heated the communal roosts of a wild colony of Bechstein's bats (Myotis bechsteinii) every other day while measuring metabolic rates using flow-through respirometry. As expected, metabolic rates were lowest when the bats were in torpor. However, when bats were normothermic, colder temperatures had little effect on metabolic rates, which we attribute to the thermoregulatory benefits of digestion-induced thermogenesis and social thermoregulation. In contrast, metabolic rates increased significantly at temperatures above the thermoneutral zone. Contrary to our expectations, metabolic rates were not lower in heated roosts, where temperatures remained close to the bats' thermoneutral zone, than in unheated roosts, where temperatures were more variable. Our results show that torpor and digestion-induced thermogenesis are effective mechanisms that allow bats to energetically buffer cold conditions. The finding that metabolic rates increased significantly at temperatures above the thermoneutral zone suggests that the physiological and behavioural abilities of Bechstein's bats to keep energy costs low at high temperatures are limited. Our study highlights that temperate-zone bats are well adapted to tolerate cold temperatures, but may lack protective mechanisms against heat, which could be a threat in times of global warming.
Collapse
Affiliation(s)
- Janis M Wolf
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Philipp Lehmann
- Animal Physiology, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Str. 1, 17489 Greifswald, Germany
| | - Gerald Kerth
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| |
Collapse
|
4
|
Voges JJ, Freeman MT, Wolf BO, McKechnie AE. Functional role of metabolic suppression in avian thermoregulation in the heat. J Therm Biol 2024; 123:103924. [PMID: 39089117 DOI: 10.1016/j.jtherbio.2024.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024]
Abstract
Hypometabolism arising from active metabolic suppression occurs in several contexts among endotherms, particularly during heterothermic states such as torpor. However, observed Q10 ≈ 1 for avian resting metabolic rate within the thermoneutral zone, values far below the Q10 = 2-3 expected on the basis of Arrhenius effects, suggests hypometabolism also plays a role in birds' thermoregulation at environmental temperatures approaching or exceeding normothermic body temperature (Tb). We evaluated the occurrence of hypometabolism during heat exposure among birds by re-analysing literature data to quantify changes in Tb and resting metabolic rate (RMR) near the upper boundary of the thermoneutral zone, at air temperatures (Tair) between the inflection above which Tb increases above normothermic levels (Tb.inf) and the upper critical limit of thermoneutrality (Tuc). Among the ∼55 % of species in which Tuc - Tb.inf > 0, Q10 < 2-3 occurred in nine of 10 orders for which suitable data exist, indicating that hypometabolism during heat exposure is widespread across the avian phylogeny. Values of Q10 < 2-3 were not restricted to small body mass, as previously proposed. Our findings support the idea that metabolic suppression reduces avian metabolic heat production and hence evaporative cooling requirements during heat exposure, with reductions of 20-30 % in RMR in some species. Moreover, these findings add to evidence that hypometabolism is an important component of heat tolerance among endotherms such as birds and tropical arboreal mammals.
Collapse
Affiliation(s)
- Jochen J Voges
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, 0001, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, 0028, South Africa
| | - Marc T Freeman
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, 0001, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, 0028, South Africa
| | - Blair O Wolf
- UNM Biology Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, 0001, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, 0028, South Africa.
| |
Collapse
|
5
|
de Mel RK, Moseby KE, Stewart KA, Rankin KE, Czenze ZJ. The heat is on: Thermoregulatory and evaporative cooling patterns of desert-dwelling bats. J Therm Biol 2024; 123:103919. [PMID: 39024847 DOI: 10.1016/j.jtherbio.2024.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
For small endotherms inhabiting desert ecosystems, defending body temperatures (Tb) is challenging as they contend with extremely high ambient temperatures (Ta) and limited standing water. In the arid zone, bats may thermoconform whereby Tb varies with Ta, or may evaporatively cool themselves to maintain Tb < Ta. We used an integrative approach that combined both temperature telemetry and flow through respirometry to investigate the ecological and physiological strategies of lesser long-eared bats (Nyctophilus geoffroyi) in Australia's arid zone. We predicted individuals would exhibit desert-adapted thermoregulatory patterns (i.e., thermoconform to prioritise water conservation), and that females would be more conservative with their water reserves for evaporative cooling compared to males. Temperature telemetry data indicated that free-ranging N. geoffroyi were heterothermic (Tskin = 18.9-44.9 °C) during summer and thermoconformed over a wide range of temperatures, likely to conserve water and energy during the day. Experimentally, at high Tas, females maintained significantly lower Tb and resting metabolic rates, despite lower evaporative water loss (EWL) rates compared to males. Females only increased EWL at experimental Ta = 42.5 °C, significantly higher than males (40.7 °C), and higher than any bat species yet recorded. During the hottest day of this study, our estimates suggest the water required for evaporative cooling ranged from 18.3% (females) and 25.5% (males) of body mass. However, if we extrapolate these results to a recent heatwave these values increase to 36.5% and 47.3%, which are likely beyond lethal limits. It appears this population is under selective pressures to conserve water reserves and that these pressures are more pronounced in females than males. Bats in arid ecosystems are threatened by both current and future heatwaves and we recommend future conservation efforts focus on protecting current roost trees and creating artificial standing water sites near vulnerable populations.
Collapse
Affiliation(s)
- Ruvinda K de Mel
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia.
| | - Katherine E Moseby
- School of Biological, Earth and Environment Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Kathleen A Stewart
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia
| | - Kate E Rankin
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia
| | - Zenon J Czenze
- Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
6
|
Levesque DL, Breit AM, Brown E, Nowack J, Welman S. Non-Torpid Heterothermy in Mammals: Another Category along the Homeothermy-Hibernation Continuum. Integr Comp Biol 2023; 63:1039-1048. [PMID: 37407285 DOI: 10.1093/icb/icad094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Variability in body temperature is now recognized to be widespread among whole-body endotherms with homeothermy being the exception rather than the norm. A wide range of body temperature patterns exists in extant endotherms, spanning from strict homeothermy, to occasional use of torpor, to deep seasonal hibernation with many points in between. What is often lost in discussions of heterothermy in endotherms are the benefits of variations in body temperature outside of torpor. Endotherms that do not use torpor can still obtain extensive energy and water savings from varying levels of flexibility in normothermic body temperature regulation. Flexibility at higher temperatures (heat storage or facultative hyperthermia) can provide significant water savings, while decreases at cooler temperatures, even outside of torpor, can lower the energetic costs of thermoregulation during rest. We discuss the varying uses of the terms heterothermy, thermolability, and torpor to describe differences in the amplitude of body temperature cycles and advocate for a broader use of the term "heterothermy" to include non-torpid variations in body temperature.
Collapse
Affiliation(s)
| | - Ana M Breit
- School of Biology and Ecology, University of Maine, 04469 Orono, ME, USA
| | - Eric Brown
- School of Biology and Ecology, University of Maine, 04469 Orono, ME, USA
| | - Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Shaun Welman
- Department of Zoology, Nelson Mandela University, Gqeberha 6031, South Africa
| |
Collapse
|
7
|
McKechnie AE, Freeman MT, Brigham RM. Avian Heterothermy: A Review of Patterns and Processes. Integr Comp Biol 2023; 63:1028-1038. [PMID: 37156524 DOI: 10.1093/icb/icad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Many birds reduce rest-phase energy demands through heterothermy, physiological responses involving facultative, reversible reductions in metabolic rate and body temperature (Tb). Here, we review the phylogenetic distribution and ecological contexts of avian heterothermy. Heterothermy has been reported in 140 species representing 15 orders and 39 families. Recent work supports the view that deep heterothermy is most pronounced in phylogenetically older taxa whereas heterothermy in passerines and other recently diverged taxa is shallower and confined to minimum Tb > 20°C. The reasons why deep heterothermy is absent in passerines remain unclear; we speculate an evolutionary trade-off may exist between the capacity to achieve low heterothermic Tb and the tolerance of hyperthermic Tb. Inter- and intraspecific variation in heterothermy is correlated with factors including foraging ecology (e.g., territoriality and defense of food resources among hummingbirds), food availability and foraging opportunities (e.g., lunar phase predicts torpor use in caprimulgids), and predation risk. Heterothermy also plays a major role before and during migration. Emerging questions include the magnitude of energy savings associated with heterothermy among free-ranging birds, the role phylogenetic variation in the capacity for heterothermy has played in evolutionary radiations into extreme habitats, and how the capacity for heterothermy affects avian vulnerability to rapid anthropogenic climate change.
Collapse
Affiliation(s)
- Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - Marc T Freeman
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - R Mark Brigham
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
8
|
Nowack J, Stawski C, Geiser F, Levesque DL. Rare and Opportunistic Use of Torpor in Mammals-An Echo from the Past? Integr Comp Biol 2023; 63:1049-1059. [PMID: 37328423 PMCID: PMC10714912 DOI: 10.1093/icb/icad067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Torpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception.
Collapse
Affiliation(s)
- Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Clare Stawski
- School of Science, Technology and Engineering, University of the Sunshine Coast (USC), Maroochydore DC, QLD 4558, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | | |
Collapse
|
9
|
Nowack J, Mzilikazi N, Dausmann KH. Saving energy via short and shallow torpor bouts. J Therm Biol 2023; 114:103572. [PMID: 37344030 DOI: 10.1016/j.jtherbio.2023.103572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/23/2023]
Abstract
Maintaining a high and stable body temperature as observed in most endothermic mammals and birds is energetically costly and many heterothermic species reduce their metabolic demands during energetic bottlenecks through the use of torpor. With the increasing number of heterotherms revealed in a diversity of habitats, it becomes apparent that triggers and patterns of torpor use are more variable than previously thought. Here, we report the previously overlooked use of, shallow rest-time torpor (body temperature >30 °C) in African lesser bushbabies, Galago moholi. Body core temperature of three adult male bushbabies recorded over five months showed a clear bimodal distribution with an average active modal temperature of 39.2 °C and a resting modal body temperature of 36.7 °C. Shallow torpor was observed in two out of three males (n = 29 torpor bouts) between June and August (austral winter), with body temperatures dropping to an overall minimum of 30.7 °C and calculated energy savings of up to 10%. We suggest that shallow torpor may be an ecologically important, yet mostly overlooked energy-saving strategy employed by heterothermic mammals. Our data emphasise that torpor threshold temperatures need to be used with care if we aim to fully understand the level of physiological plasticity displayed by heterothermic species.
Collapse
Affiliation(s)
- Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, United Kingdom; Department of Biology, Institute of Cell and Systems Biology of Animals, Functional Ecology, University Hamburg, Hamburg, Germany.
| | - Nomakwezi Mzilikazi
- Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Kathrin H Dausmann
- Department of Biology, Institute of Cell and Systems Biology of Animals, Functional Ecology, University Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
City comfort: weaker metabolic response to changes in ambient temperature in urban red squirrels. Sci Rep 2023; 13:1393. [PMID: 36697502 PMCID: PMC9876937 DOI: 10.1038/s41598-023-28624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The ecophysiological responses of species to urbanisation reveal important information regarding the processes of successful urban colonization and biodiversity patterns in urban landscapes. Investigating these responses will also help uncover whether synurban species are indeed urban 'winners'. Yet we still lack basic knowledge about the physiological costs and overall energy budgets of most species living in urban habitats, especially for mammals. Within this context, we compared the energetic demands of Eurasian red squirrels (Sciurus vulgaris) from the core of an urban environment with those from a nearby forest. We measured oxygen consumption as a proxy for resting metabolic rate (RMR) of 20 wild individuals (13 urban, 7 forest), at naturally varying ambient temperature (Ta) in an outdoor-enclosure experiment. We found that the variation in RMR was best explained by the interaction between Ta and habitat, with a significant difference between populations. Urban squirrels showed a shallower response of metabolic rate to decreasing Ta than woodland squirrels. We suggest that this is likely a consequence of urban heat island effects, as well as widespread supplemental food abundance. Our results indicate energy savings for urban squirrels at cooler temperatures, yet with possible increased costs at higher temperatures compared to their woodland conspecifics. Thus, the changed patterns of metabolic regulation in urban individuals might not necessarily represent an overall advantage for urban squirrels, especially in view of increasing temperatures globally.
Collapse
|
11
|
Pronounced differences in heart rate and metabolism distinguish daily torpor and short-term hibernation in two bat species. Sci Rep 2022; 12:21721. [PMID: 36522368 PMCID: PMC9755216 DOI: 10.1038/s41598-022-25590-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Torpor, and its differential expression, is essential to the survival of many mammals and birds. Physiological characteristics of torpor appear to vary between those species that express strict daily heterothermy and those capable of multiday hibernation, but comparisons are complicated by the temperature-dependence of variables. Previous reviews have compared these different torpor strategies by measuring the depth and duration of torpor in multiple species. However, direct comparison of multiple physiological parameters under similar thermal conditions are lacking. Here, we quantified three physiological variables; body temperature, metabolic rate (MR) and heart rate (HR) of two small heterothermic bats (daily heterotherm Syconycteris australis, and hibernator Nyctophilus gouldi) under comparable thermal conditions and torpor bout durations. When normothermic and resting both MR and HR were similar for the two species. However, during torpor the minimum HR was more than fivefold higher, and minimum MR was 6.5-fold higher for the daily heterotherm than for the hibernator at the same subcutaneous Tb (16 ± 0.5 °C). The data show that the degree of heterothermy defined using Tb is not necessarily a precise proxy for physiological capacity during torpor in these bats and is unlikely to reveal accurate energy budgets. Our study provides evidence supporting a distinction between daily torpor in a daily heterotherm and short term torpor in a hibernator, at least within the Chiroptera with regard to these physiological variables. This exists even when individuals display the same degree of Tb reduction, which has clear implications for the modelling of their energy expenditure.
Collapse
|
12
|
Power ML, Foley NM, Jones G, Teeling EC. Taking flight: An ecological, evolutionary and genomic perspective on bat telomeres. Mol Ecol 2022; 31:6053-6068. [PMID: 34387012 DOI: 10.1111/mec.16117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 01/31/2023]
Abstract
Over 20% of all living mammals are bats (order Chiroptera). Bats possess extraordinary adaptations including powered flight, laryngeal echolocation and a unique immune system that enables them to tolerate a diversity of viral infections without presenting clinical disease symptoms. They occupy multiple trophic niches and environments globally. Significant physiological and ecological diversity occurs across the order. Bats also exhibit extreme longevity given their body size with many species showing few signs of ageing. The molecular basis of this extended longevity has recently attracted attention. Telomere maintenance potentially underpins bats' extended healthspan, although functional studies are still required to validate the causative mechanisms. In this review, we detail the current knowledge on bat telomeres, telomerase expression, and how these relate to ecology, longevity and life-history strategies. Patterns of telomere shortening and telomerase expression vary across species, and comparative genomic analyses suggest that alternative telomere maintenance mechanisms evolved in the longest-lived bats. We discuss the unique challenges faced when working with populations of wild bats and highlight ways to advance the field including expanding long-term monitoring across species that display contrasting life-histories and occupy different environmental niches. We further review how new high quality, chromosome-level genome assemblies can enable us to uncover the molecular mechanisms governing telomere dynamics and how phylogenomic analyses can reveal the adaptive significance of telomere maintenance and variation in bats.
Collapse
Affiliation(s)
- Megan L Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Ireland
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Ireland
| |
Collapse
|
13
|
Fjelldal MA, Sørås R, Stawski C. Universality of torpor expression in bats. Physiol Biochem Zool 2022; 95:326-339. [DOI: 10.1086/720273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Reher S, Rabarison H, Nowack J, Dausmann KH. Limited Physiological Compensation in Response to an Acute Microclimate Change in a Malagasy Bat. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.779381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid environmental changes are challenging for endothermic species because they have direct and immediate impacts on their physiology by affecting microclimate and fundamental resource availability. Physiological flexibility can compensate for certain ecological perturbations, but our basic understanding of how species function in a given habitat and the extent of their adaptive scope is limited. Here we studied the effect of acute, experimental microclimate change on the thermal physiology of two populations of the widespread Malagasy bat, Macronycteris commersoni. Populations of this species are found roosting under contrasting conditions, i.e., in a constant hot and humid cave or below foliage unprotected from fluctuations in ambient conditions. We exposed free-ranging individuals of each population to the respective opposite condition and thus to novel microclimate within an ecologically realistic scope while measuring metabolic rate and skin temperature. Cave bats in forest setting had a limited capacity to maintain euthermia to the point that two individuals became hypothermic when ambient temperature dropped below their commonly experienced cave temperature. Forest bats on the other hand, had difficulties to dissipate heat in the humid cave set-up. The response to heat, however, was surprisingly uniform and all bats entered torpor combined with hyperthermia at temperatures exceeding their thermoneutral zone. Thus, while we observed potential for flexible compensation of heat through “hot” torpor, both populations showed patterns suggestive of limited potential to cope with acute microclimate changes deviating from their typically occupied roosts. Our study emphasizes that intraspecific variation among populations could be misleading when assessing species’ adaptive scopes, as variation may arise from genetic adaptation, developmental plasticity or phenotypic flexibility, all of which allow for compensatory responses at differing time scales. Disentangling these mechanisms and identifying the basis of variation is vital to make accurate predictions of species’ chances for persisting in ever rapidly changing habitats and climates.
Collapse
|
15
|
Fasel NJ, Vullioud C, Genoud M. Assigning metabolic rate measurements to torpor and euthermy in heterothermic endotherms: "torpor", a new package for R. Biol Open 2022; 11:274272. [PMID: 35128558 PMCID: PMC9002798 DOI: 10.1242/bio.059064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Torpor is a state of controlled reduction of metabolic rate (M) in endotherms. Assigning measurements of M to torpor or euthermy can be challenging, especially when the difference between euthermic M and torpid M is small, in species defending a high minimal body temperature in torpor, in thermolabile species, and slightly below the thermoneutral zone (TNZ). Here, we propose a novel method for distinguishing torpor from euthermy. We use the variation in M measured during euthermic rest and torpor at varying ambient temperatures (Ta) to objectively estimate the lower critical temperature (Tlc) of the TNZ and to assign measurements to torpor, euthermic rest or rest within TNZ. In addition, this method allows the prediction of M during euthermic rest and torpor at varying Ta, including resting M within the TNZ. The present method has shown highly satisfactory results using 28 published sets of metabolic data obtained by respirometry on 26 species of mammals. Ultimately, this novel method aims to facilitate analysis of respirometry data in heterothermic endotherms. Finally, the development of the associated R-package (torpor) will enable widespread use of the method amongst biologists. Summary: The presented method and its associated R-package (torpor) enable the assignment of metabolic rate measurements to torpor or euthermy, ultimately improving the standardization of respirometry analyses in heterotherms.
Collapse
Affiliation(s)
- Nicolas J Fasel
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Colin Vullioud
- Department Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany
| | - Michel Genoud
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Reher S, Rabarison H, Montero BK, Turner JM, Dausmann KH. Disparate roost sites drive intraspecific physiological variation in a Malagasy bat. Oecologia 2021; 198:35-52. [PMID: 34951669 PMCID: PMC8803705 DOI: 10.1007/s00442-021-05088-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/21/2021] [Indexed: 11/07/2022]
Abstract
Many species are widely distributed and individual populations can experience vastly different environmental conditions over seasonal and geographic scales. With such a broad ecological reality, datasets with limited spatial and temporal resolution may not accurately represent a species and could lead to poorly informed management decisions. Because physiological flexibility can help species tolerate environmental variation, we studied the physiological responses of two separate populations of Macronycteris commersoni, a bat widespread across Madagascar, in contrasting seasons. The populations roost under the following dissimilar conditions: either a hot, well-buffered cave or within open foliage, unprotected from the local weather. We found that flexible torpor patterns, used in response to prevailing ambient temperature and relative humidity, were central to keeping energy budgets balanced in both populations. While bats’ metabolic rate during torpor and rest did not differ between roosts, adjusting torpor frequency, duration and timing helped bats maintain body condition. Interestingly, the exposed forest roost induced extensive use of torpor, which exceeded the torpor frequency of overwintering bats that stayed in the cave for months and consequently minimised daytime resting energy expenditure in the forest. Our current understanding of intraspecific physiological variation is limited and physiological traits are often considered to be fixed. The results of our study therefore highlight the need for examining species at broad environmental scales to avoid underestimating a species’ full capacity for withstanding environmental variation, especially in the face of ongoing, disruptive human interference in natural habitats.
Collapse
Affiliation(s)
- Stephanie Reher
- Functional Ecology, Institute of Zoology, Universität Hamburg, Hamburg, Germany.
| | - Hajatiana Rabarison
- Functional Ecology, Institute of Zoology, Universität Hamburg, Hamburg, Germany.,Mention Zoologie et Biodiversité Animale, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | - B Karina Montero
- Biodiversity Research Institute, Campus of Mieres, Universidad de Oviedo, Mieres, Spain.,Animal Ecology and Conservation, Institute of Zoology, Universität Hamburg, Hamburg, Germany
| | - James M Turner
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, South Lanarkshire, Scotland, UK
| | - Kathrin H Dausmann
- Functional Ecology, Institute of Zoology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Czenze ZJ, Smit B, Jaarsveld B, Freeman MT, McKechnie AE. Caves, crevices and cooling capacity: Roost microclimate predicts heat tolerance in bats. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zenon J. Czenze
- South African Research Chair in Conservation Physiology South African National Biodiversity Institute Pretoria South Africa
- Mammal Research Institute, Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| | - Ben Smit
- Department of Zoology and Entomology Rhodes University Makhanda South Africa
| | - Barry Jaarsveld
- South African Research Chair in Conservation Physiology South African National Biodiversity Institute Pretoria South Africa
- Mammal Research Institute, Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| | - Marc T. Freeman
- South African Research Chair in Conservation Physiology South African National Biodiversity Institute Pretoria South Africa
- Mammal Research Institute, Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| | - Andrew E. McKechnie
- South African Research Chair in Conservation Physiology South African National Biodiversity Institute Pretoria South Africa
- Mammal Research Institute, Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| |
Collapse
|
18
|
Nowack J, Turbill C. Survivable hypothermia or torpor in a wild-living rat: rare insights broaden our understanding of endothermic physiology. J Comp Physiol B 2021; 192:183-192. [PMID: 34668054 PMCID: PMC8817056 DOI: 10.1007/s00360-021-01416-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Maintaining a high and stable body temperature as observed in endothermic mammals and birds is energetically costly. Thus, it is not surprising that we discover more and more heterothermic species that can reduce their energetic needs during energetic bottlenecks through the use of torpor. However, not all heterothermic animals use torpor on a regular basis. Torpor may also be important to an individual’s probability of survival, and hence fitness, when used infrequently. We here report the observation of a single, ~ 5.5 h long hypothermic bout with a decrease in body temperature by 12 °C in the native Australian bush rat (Rattus fuscipes). Our data suggest that bush rats are able to rewarm from a body temperature of 24 °C, albeit with a rewarming rate lower than that expected on the basis of their body mass. Heterothermy, i.e. the ability to withstand and overcome periods of reduced body temperature, is assumed to be an evolutionarily ancestral (plesiomorphic) trait. We thus argue that such rare hypothermic events in species that otherwise appear to be strictly homeothermic could be heterothermic rudiments, i.e. a less derived form of torpor with limited capacity for rewarming. Importantly, observations of rare and extreme thermoregulatory responses by wild animals are more likely to be discovered with long-term data sets and may not only provide valuable insight about the physiological capability of a population, but can also help us to understand the constraints and evolutionary pathways of different phenologies.
Collapse
Affiliation(s)
- Julia Nowack
- Hawkesbury Institute for the Environment and School of Science, Western Sydney University, Richmond, NSW, Australia. .,School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Christopher Turbill
- Hawkesbury Institute for the Environment and School of Science, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
19
|
Alumbaugh JL, Goodman SM, Samonds KE. Morphometric Analyses of Modern and Subfossil Macronycteris (Family Hipposideridae) Refine Groups from Anjohibe Cave, Northwestern Madagascar. ACTA CHIROPTEROLOGICA 2021. [DOI: 10.3161/15081109acc2021.23.1.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jamie L. Alumbaugh
- Department of Geography, University of Tennessee, Knoxville, 1000 Phillip Fulmer Way, Knoxville, TN 37996, USA
| | - Steven M. Goodman
- Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - Karen E. Samonds
- Department of Biological Sciences, Northern Illinois University, 356 Montgomery Hall, DeKalb, IL 60115, USA
| |
Collapse
|
20
|
Noakes MJ, McKechnie AE, Brigham RM. Interspecific variation in heat tolerance and evaporative cooling capacity among sympatric temperate-latitude bats. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that interspecific variation in chiropteran heat tolerance and evaporative cooling capacity is correlated with day-roost microclimates, using three vespertilionid bats that occur sympatrically during summer in Saskatchewan, Canada. We predicted that hoary bats (Lasiurus cinereus (Palisot de Beauvois, 1796); ∼22 g) would have higher heat tolerance than little brown bats (Myotis lucifugus (Le Conte, 1831); ∼7 g) and silver-haired bats (Lasionycteris noctivagans (Le Conte, 1831); ∼13 g), as the latter two species roost in tree crevices or cavities that are more thermally buffered than the foliage roosts of hoary bats. We measured core body temperature (Tb; passive integrated transponder tags), evaporative water loss, and resting metabolic rate (flow-through respirometry) while exposing individuals to a stepped profile of increasing air temperature (Ta) from ∼30 °C in ∼2 °C increments. Experiments were terminated when individuals became hyperthermic (Tb ≈ 42.5 °C), with maximum Ta (Ta,max) ranging from 42.0 to 49.7 °C. As predicted, hoary bats had the highest heat tolerance and evaporative cooling capacity, reaching Ta,max ∼2.4 and 1.2 °C higher than little brown and silver-haired bats, respectively. Our results are consistent with the hypothesis that heat tolerance of bats is correlated with roost microclimates, although interspecific variation in body mass and phylogeny may confound these conclusions.
Collapse
Affiliation(s)
- Matthew J. Noakes
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Toruń, Poland
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, 0002, South Africa
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Andrew E. McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, Gauteng, 0001, South Africa
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, 0002, South Africa
| | - R. Mark Brigham
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
21
|
Heat tolerance in desert rodents is correlated with microclimate at inter- and intraspecific levels. J Comp Physiol B 2021; 191:575-588. [PMID: 33638667 DOI: 10.1007/s00360-021-01352-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/14/2020] [Accepted: 01/23/2021] [Indexed: 01/21/2023]
Abstract
Physiological diversity in thermoregulatory traits has been extensively investigated in both endo- and ectothermic vertebrates, with many studies revealing that thermal physiology has evolved in response to selection arising from climate. The majority of studies have investigated how adaptative variation in thermal physiology is correlated with broad-scale climate, but the role of fine-scale microclimate remains less clear . We hypothesised that the heat tolerance limits and evaporative cooling capacity of desert rodents are correlated with microclimates within species-specific diurnal refugia. We tested predictions arising from this hypothesis by comparing thermoregulation in the heat among arboreal black-tailed tree rats (Thallomys nigricauda), Namaqua rock rats (Micaelamys namaquensis) and hairy-footed gerbils (Gerbillurus paeba). Species and populations that occupy hotter diurnal microsites tolerated air temperatures (Ta) ~ 2-4 ℃ higher compared to those species occupying cooler, more thermally buffered microsites. Inter- and intraspecific variation in heat tolerance was attributable to ~ 30% greater evaporative water loss and ~ 44 % lower resting metabolic rates at high Ta, respectively. Our results suggest that microclimates within rodent diurnal refugia are an important correlate of intra- and interspecific physiological variation and reiterate the need to incorporate fine-scale microclimatic conditions when investigating adaptative variation in thermal physiology.
Collapse
|
22
|
van Jaarsveld B, Bennett NC, Czenze ZJ, Kemp R, van de Ven TMFN, Cunningham SJ, McKechnie AE. How hornbills handle heat: sex-specific thermoregulation in the southern yellow-billed hornbill. J Exp Biol 2021; 224:jeb.232777. [PMID: 33504586 DOI: 10.1242/jeb.232777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
At a global scale, thermal physiology is correlated with climatic variables such as temperature and aridity. There is also evidence that thermoregulatory traits vary with fine-scale microclimate, but this has received less attention in endotherms. Here, we test the hypothesis that avian thermoregulation varies with microclimate and behavioural constraints in a non-passerine bird. Male and female southern yellow-billed hornbills (Tockus leucomelas) experience markedly different microclimates while breeding, with the female sealing herself into a tree cavity and moulting all her flight feathers during the breeding attempt, becoming entirely reliant on the male for provisioning. We examined interactions between resting metabolic rate (RMR), evaporative water loss (EWL) and core body temperature (T b) at air temperatures (T a) between 30°C and 52°C in male and female hornbills, and quantified evaporative cooling efficiencies and heat tolerance limits. At thermoneutral T a, neither RMR, EWL nor T b differed between sexes. At T a >40°C, however, RMR and EWL of females were significantly lower than those of males, by ∼13% and ∼17%, respectively, despite similar relationships between T b and T a, maximum ratio of evaporative heat loss to metabolic heat production and heat tolerance limits (∼50°C). These sex-specific differences in hornbill thermoregulation support the hypothesis that avian thermal physiology can vary within species in response to fine-scale microclimatic factors. In addition, Q 10 for RMR varied substantially, with Q 10 ≤2 in some individuals, supporting recent arguments that active metabolic suppression may be an underappreciated aspect of endotherm thermoregulation in the heat.
Collapse
Affiliation(s)
- Barry van Jaarsveld
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa .,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
| | - Zenon J Czenze
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Ryno Kemp
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Tanja M F N van de Ven
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.,Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Reher S, Dausmann KH. Tropical bats counter heat by combining torpor with adaptive hyperthermia. Proc Biol Sci 2021; 288:20202059. [PMID: 33434466 DOI: 10.1098/rspb.2020.2059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many tropical mammals are vulnerable to heat because their water budget limits the use of evaporative cooling for heat compensation. Further increasing temperatures and aridity might consequently exceed their thermoregulatory capacities. Here, we describe two novel modes of torpor, a response usually associated with cold or resource bottlenecks, as efficient mechanisms to counter heat. We conducted a field study on the Malagasy bat Macronycteris commersoni resting in foliage during the hot season, unprotected from environmental extremes. On warm days, the bats alternated between remarkably short micro-torpor bouts and normal resting metabolism within a few minutes. On hot days, the bats extended their torpor bouts over the hottest time of the day while tolerating body temperatures up to 42.9°C. Adaptive hyperthermia combined with lowered metabolic heat production from torpor allows higher heat storage from the environment, negates the need for evaporative cooling and thus increases heat tolerance. However, it is a high-risk response as the torpid bats cannot defend body temperature if ambient temperature increases above a critical/lethal threshold. Torpor coupled with hyperthermia and micro-torpor bouts broaden our understanding of the basic principles of thermal physiology and demonstrate how mammals can perform near their upper thermal limits in an increasingly warmer world.
Collapse
Affiliation(s)
- Stephanie Reher
- Functional Ecology, Institute of Zoology, Universität Hamburg, Hamburg, Germany
| | - Kathrin H Dausmann
- Functional Ecology, Institute of Zoology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
24
|
Nowack J, Dill V, Dausmann KH. Open-flow respirometry under field conditions: How does the airflow through the nest influence our results? J Therm Biol 2020; 92:102667. [PMID: 32888570 DOI: 10.1016/j.jtherbio.2020.102667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 11/26/2022]
Abstract
Open-flow respirometry is a common method to measure oxygen-uptake as a proxy of energy expenditure of organisms in real-time. Although most often used in the laboratory it has seen increasing application under field conditions. Air is drawn or pushed through a metabolic chamber or the nest with the animal, and the O2 depletion and/or CO2 accumulation in the air is analysed to calculate metabolic rate and energy expenditure. Under field conditions, animals are often measured within the microclimate of their nest and in contrast to laboratory work, the temperature of the air entering the nest cannot be controlled. Thus, the aim of our study was to determine the explanatory power of respirometry in a set-up mimicking field conditions. We measured O2 consumption of 14 laboratory mice (Mus musculus) using three different flow rates [50 L*h-1 (834 mL*min-1), 60 L*h-1 (1000 mL*min-1) and 70 L*h-1 (1167 mL*min-1)] and two different temperatures of the inflowing air; either the same as the temperature inside the metabolic chamber (no temperature differential; 20 °C), or cooler (temperature differential of 10 °C). Our results show that the energy expenditure of the mice did not change significantly in relation to a cooler airflow, nor was it affected by different flow rates, despite a slight, but significant decrease of about 1.5 °C in chamber temperature with the cooler airflow. Our study emphasises the validity of the results obtained by open-flow respirometry when investigating energy budgets and physiological responses of animals to ambient conditions. Nevertheless, subtle changes in chamber temperature in response to changes in the temperature and flow rate of the air pulled or pushed through the system were detectable. Thus, constant airflow during open-flow respirometry and consequent changes in nest/chamber temperature should be measured.
Collapse
Affiliation(s)
- Julia Nowack
- Institute of Zoology, Animal Ecology and Conservation, University Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany; School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, L3 3AF, Liverpool, UK.
| | - Veronika Dill
- Institute of Zoology, Animal Ecology and Conservation, University Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany; Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Kathrin H Dausmann
- Institute of Zoology, Animal Ecology and Conservation, University Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
25
|
Dausmann KH, Levesque DL, Wein J, Nowack J. Ambient Temperature Cycles Affect Daily Torpor and Hibernation Patterns in Malagasy Tenrecs. Front Physiol 2020; 11:522. [PMID: 32547412 PMCID: PMC7270353 DOI: 10.3389/fphys.2020.00522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
Hibernation and daily torpor (heterothermy) allow endotherms to cope with demanding environmental conditions. The depth and duration of torpor bouts vary considerably between tropical and temperate climates, and tropical hibernators manage to cope with a wider spectrum of ambient temperature (Ta) regimes during heterothermy. As cycles in Ta can have profound effects on activity and torpor patterns as well as energy expenditure, we examined how these characteristics are affected by daily fluctuating versus constant Ta in a tropical hibernator, the lesser hedgehog tenrec (Echinops telfairi). Throughout the study, regardless of season, the tenrecs became torpid every day. In summer, E. telfairi used daily fluctuations in Ta to passively rewarm from daily torpor, which led to synchrony in the activity phases and torpor bouts between individuals and generally decreased energy expenditure. In contrast, animals housed at constant Ta showed considerable variation in timing and they had to invest more energy through endogenous heat production. During the hibernation season (winter) E. telfairi hibernated for several months in constant, as well as in fluctuating Ta and, as in summer, under fluctuating Ta arousals were much more uniform and showed less variation in timing compared to constant temperature regimes. The timing of torpor is not only important for its effective use, but synchronization of activity patterns could also be essential for social interactions, and successful foraging bouts. Our results highlight that Ta cycles can be an effective zeitgeber for activity and thermoregulatory rhythms throughout the year and that consideration should be given to the choice of temperature regime when studying heterothermy under laboratory conditions.
Collapse
Affiliation(s)
- Kathrin H Dausmann
- Functional Ecology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Danielle L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Jens Wein
- Functional Ecology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
26
|
Nowack J, Levesque DL, Reher S, Dausmann KH. Variable Climates Lead to Varying Phenotypes: “Weird” Mammalian Torpor and Lessons From Non-Holarctic Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
27
|
Parker CA, Geiser F, Stawski C. Thermal physiology and activity in relation to reproductive status and sex in a free-ranging semelparous marsupial. CONSERVATION PHYSIOLOGY 2019; 7:coz073. [PMID: 31737272 PMCID: PMC6846706 DOI: 10.1093/conphys/coz073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/26/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
In a changing climate, southern hemisphere mammals are predicted to face rising temperatures and aridity, resulting in food and water shortages, which may further challenge already constrained energetic demands. Especially semelparous mammals may be threatened because survival of the entire population depends on the success of a single breeding event. One of these species, the yellow-footed antechinus, Antechinus flavipes, a small, heterothermic marsupial mammal, commences reproduction during winter, when insect prey is limited and energetic constraints are high. We examined the inter-relations between thermal and foraging biology of free-ranging A. flavipes and examined whether they use torpor for energy conservation, despite the fact that reproduction and torpor are considered to be incompatible for many mammals. Females used torpor during the reproductive season, but patterns changed with reproductive status. Prior to breeding, females used frequent (86% of days), deep and long torpor that was more pronounced than any other reproductive group, including pre-mating males (64% of days). Pregnant females continued to use torpor, albeit torpor was less frequent (28% of days) and significantly shorter and shallower than before breeding. Parturient and lactating females did not express torpor. During the mating period, males reduced torpor use (24% of days). Pre-reproductive females and pre-mating males were the least active and may use torpor to minimize predator exposure and enhance fat deposition in anticipation of the energetic demands associated with impending mating, gestation and lactation. Reproductive females were most active and likely foraged and fed to promote growth and development of young. Our data show that A. flavipes are balancing energetic demands during the reproductive season by modifying torpor and activity patterns. As the timing of reproduction is fixed for this genus, it is probable that climate change will render these behavioural and physiological adaptations as inadequate and threaten this and other semelparous species.
Collapse
Affiliation(s)
- Cassandra A Parker
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
28
|
Rakotoarivelo AR, Goodman SM, Schoeman MC, Willows-Munro S. Phylogeography and population genetics of the endemic Malagasy bat, Macronycteris commersoni s.s. (Chiroptera: Hipposideridae). PeerJ 2019; 7:e5866. [PMID: 30671293 PMCID: PMC6339777 DOI: 10.7717/peerj.5866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
Macronycteris commersoni (Hipposideridae), a bat species endemic to Madagascar, is widespread across the island and utilizes a range of habitat types including open woodland, degraded habitats, and forested areas from sea level to 1,325 m. Despite being widely distributed, there is evidence that M. commersoni exhibits morphological and bioacoustic variation across its geographical range. We investigated the fine-scale phylogeographic structure of populations in the western half of the island using extensive spatial sampling and sequence data from two mitochondrial DNA regions. Our results indicated several lineages within M. commersoni. Individuals collected from northern Madagascar formed a single monophyletic clade (clade C). A second clade (clade B) included individuals collected from the south-western portion of the island. This second clade displayed more phylogeographical partitioning with differences in mtDNA haplotypes frequency detected between populations collected in different bioclimatic regions. Lineage dispersal, genetic divergence, and timing of expansion events of M. commersoni were probably associated with Pleistocene climate fluctuations. Our data suggest that the northern and the central western regions of Madagascar may have acted as refugia for this species during periods of cooler and drier climate conditions associated with the Pleistocene.
Collapse
Affiliation(s)
- Andrinajoro R. Rakotoarivelo
- Department of Zoology, University of Venda, Thohoyandou, Limpopo, South Africa
- School of Life Sciences, University of Kwa-Zulu Natal, Pietermaritzburg, Kwa-Zulu Natal, South Africa
- Natiora Ahy, Antananarivo, Madagascar
| | - Steven M. Goodman
- Field Museum of Natural History, Chicago, IL, United States of America
- Association Vahatra, Antananarivo, Madagascar
| | - M. Corrie Schoeman
- School of Life Sciences, University of Kwa-Zulu Natal, Westville, Kwa-Zulu Natal, South Africa
| | - Sandi Willows-Munro
- School of Life Sciences, University of Kwa-Zulu Natal, Pietermaritzburg, Kwa-Zulu Natal, South Africa
| |
Collapse
|