1
|
Schilperoort M, Ngai D, Sukka SR, Avrampou K, Shi H, Tabas I. The role of efferocytosis-fueled macrophage metabolism in the resolution of inflammation. Immunol Rev 2023; 319:65-80. [PMID: 37158427 PMCID: PMC10615666 DOI: 10.1111/imr.13214] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
The phagocytosis of dying cells by macrophages, termed efferocytosis, is a tightly regulated process that involves the sensing, binding, engulfment, and digestion of apoptotic cells. Efferocytosis not only prevents tissue necrosis and inflammation caused by secondary necrosis of dying cells, but it also promotes pro-resolving signaling in macrophages, which is essential for tissue resolution and repair following injury or inflammation. An important factor that contributes to this pro-resolving reprogramming is the cargo that is released from apoptotic cells after their engulfment and phagolysosomal digestion by macrophages. The apoptotic cell cargo contains amino acids, nucleotides, fatty acids, and cholesterol that function as metabolites and signaling molecules to bring about this re-programming. Here, we review efferocytosis-induced changes in macrophage metabolism that mediate the pro-resolving functions of macrophages. We also discuss various strategies, challenges, and future perspectives related to drugging efferocytosis-fueled macrophage metabolism as strategy to dampen inflammation and promote resolution in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Santosh R Sukka
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kleopatra Avrampou
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Eivazi A, Akbari B, Falahi S, Gorgin Karaji A, Rezaiemanesh A, Mortazavi SHR, Daneshfar N, Salari F. Association of Rs7217186 Polymorphism of Arachidonic Acid 15-Lipoxygenase (ALOX15) Gene with Susceptibility to Allergic Rhinitis. Rep Biochem Mol Biol 2023; 12:269-276. [PMID: 38317810 PMCID: PMC10838593 DOI: 10.61186/rbmb.12.2.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/15/2023] [Indexed: 02/07/2024]
Abstract
Background Allergic rhinitis (AR) is an inflammatory disorder of the nasal mucosa, caused by exposure to environmental allergens. It is known that 15-lipoxygenase (15-LOX) is involved in the biosynthetic pathways of anti-inflammatory lipid mediators, including resolvins and protectins. Methods In this study, which was performed on 130 AR patients and 130 healthy controls, we aimed to investigate the association of susceptibility to AR with two selected single-nucleotide polymorphisms (SNPs), that is, rs2619112:A>G and rs7217186:C>T, in the intron regions of arachidonic acid 15-LOX (ALOX15) gene, using SNPinfo and Regulome DB tools. Results The results showed that the CT genotype of rs7217186: C>T was significantly associated with the increased risk of AR compared to the CC genotype (P= 0.037, OR=1.943, CI: 1.038-0.638). However, there was no strong evidence of the association of rs2619112: A>G with susceptibility to AR (P> 0.05). Conclusions The present results indicated that rs7217186 polymorphism of ALOX15 gene might be a potential biomarker for susceptibility to AR.
Collapse
Affiliation(s)
- Atefeh Eivazi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahman Akbari
- Department of Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sara Falahi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyed Hamid Reza Mortazavi
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Niloofar Daneshfar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Polymorphisms in genes expressed during amelogenesis and their association with dental caries: a case–control study. Clin Oral Investig 2022; 27:1681-1695. [PMID: 36422720 PMCID: PMC10102052 DOI: 10.1007/s00784-022-04794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Objectives
Dental caries is a widespread multifactorial disease, caused by the demineralization of hard dental tissues. Susceptibility to dental caries is partially genetically conditioned; this study was aimed at finding an association of selected single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in amelogenesis with this disease in children.
Materials and methods
In this case–control study, 15 SNPs in ALOX15, AMBN, AMELX, KLK4, TFIP11, and TUFT1 genes were analyzed in 150 children with primary dentition and 611 children with permanent teeth with/without dental caries from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) cohort.
Results
Dental caries in primary dentition was associated with SNPs in AMELX (rs17878486) and KLK4 (rs198968, rs2242670), and dental caries in permanent dentition with SNPs in AMELX (rs17878486) and KLK4 (rs2235091, rs2242670, rs2978642), (p ≤ 0.05). No significant differences between cases and controls were observed in the allele or genotype frequencies of any of the selected SNPs in ALOX15, AMBN, TFIP11, and TUFT1 genes (p > 0.05). Some KLK4 haplotypes were associated with dental caries in permanent dentition (p ≤ 0.05).
Conclusions
Based on this study, we found that although the SNPs in AMELX and KLK4 are localized in intronic regions and their functional significance has not yet been determined, they are associated with susceptibility to dental caries in children.
Clinical relevance
AMELX and KLK4 variants could be considered in the risk assessment of dental caries, especially in permanent dentition, in the European Caucasian population.
Collapse
|
4
|
Genetic associations of TP53 codon Pro72Arg polymorphism (rs1042522) in coronary artery disease: A meta-analysis of candidate genetic mutants. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Çolakoğlu M, Tunçer S, Banerjee S. Emerging cellular functions of the lipid metabolizing enzyme 15-Lipoxygenase-1. Cell Prolif 2018; 51:e12472. [PMID: 30062726 DOI: 10.1111/cpr.12472] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through lipoxygenases (LOXs) and cyclooxygenases (COXs) leads to the production of bioactive lipids that are important both in the induction of acute inflammation and its resolution. Amongst the several isoforms of LOX that are expressed in mammals, 15-LOX-1 was shown to be important both in the context of inflammation, being expressed in cells of the immune system, and in epithelial cells where the enzyme has been shown to crosstalk with a number of important signalling pathways. This review looks into the latest developments in understanding the role of 15-LOX-1 in different disease states with emphasis on the emerging role of the enzyme in the tumour microenvironment as well as a newly re-discovered form of cell death called ferroptosis. We also discuss future perspectives on the feasibility of use of this protein as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Melis Çolakoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sinem Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
6
|
Kaur N, Singh J, Reddy S. Interaction between ALOX15 polymorphisms and coronary artery disease in North Indian population. Clin Exp Hypertens 2017; 40:398-405. [DOI: 10.1080/10641963.2017.1384485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Naindeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Sreenivas Reddy
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Ayati M, Koyutürk M. PoCos: Population Covering Locus Sets for Risk Assessment in Complex Diseases. PLoS Comput Biol 2016; 12:e1005195. [PMID: 27835645 PMCID: PMC5105987 DOI: 10.1371/journal.pcbi.1005195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022] Open
Abstract
Susceptibility loci identified by GWAS generally account for a limited fraction of heritability. Predictive models based on identified loci also have modest success in risk assessment and therefore are of limited practical use. Many methods have been developed to overcome these limitations by incorporating prior biological knowledge. However, most of the information utilized by these methods is at the level of genes, limiting analyses to variants that are in or proximate to coding regions. We propose a new method that integrates protein protein interaction (PPI) as well as expression quantitative trait loci (eQTL) data to identify sets of functionally related loci that are collectively associated with a trait of interest. We call such sets of loci “population covering locus sets” (PoCos). The contributions of the proposed approach are three-fold: 1) We consider all possible genotype models for each locus, thereby enabling identification of combinatorial relationships between multiple loci. 2) We develop a framework for the integration of PPI and eQTL into a heterogenous network model, enabling efficient identification of functionally related variants that are associated with the disease. 3) We develop a novel method to integrate the genotypes of multiple loci in a PoCo into a representative genotype to be used in risk assessment. We test the proposed framework in the context of risk assessment for seven complex diseases, type 1 diabetes (T1D), type 2 diabetes (T2D), psoriasis (PS), bipolar disorder (BD), coronary artery disease (CAD), hypertension (HT), and multiple sclerosis (MS). Our results show that the proposed method significantly outperforms individual variant based risk assessment models as well as the state-of-the-art polygenic score. We also show that incorporation of eQTL data improves the performance of identified POCOs in risk assessment. We also assess the biological relevance of PoCos for three diseases that have similar biological mechanisms and identify novel candidate genes. The resulting software is publicly available at http://compbio.case.edu/pocos/. Several studies try to predict the individual disease risk using genetic data obtained from genome wide association studies (GWAS). Earlier studies only focus on individual genetic variants. However, studies on disease mechanisms suggest the aggregation of genomic variants may contribute to diseases. For this reason, researchers commonly use prior biological knowledge to identify genetic variants that are functionally related. However, these approaches are often limited to variants that are in the coding regions of genes. However, several risk variants are in the regulatory region. Here, we incorporate known regulatory and functional interactions to find sets of genetic variants which are informative features for risk assessment. Our result on seven complex diseases show that our method outperforms individual variant based risk assessment models, as well as other methods that integrate multiple genetic variants.
Collapse
Affiliation(s)
- Marzieh Ayati
- Electrical Engineering and Computer Science Department, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| | - Mehmet Koyutürk
- Electrical Engineering and Computer Science Department, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
8
|
POSTULA MAREK, JANICKI PIOTRKAZIMIERZ, ROSIAK MAREK, EYILETEN CEREN, ZAREMBA MAŁGORZATA, KAPLON-CIESLICKA AGNIESZKA, SUGINO SHIGEKAZU, KOSIOR DARIUSZARTUR, OPOLSKI GRZEGORZ, FILIPIAK KRZYSZTOFJERZY, MIROWSKA-GUZEL DAGMARA. Targeted deep resequencing of ALOX5 and ALOX5AP in patients with diabetes and association of rare variants with leukotriene pathways. Exp Ther Med 2016; 12:415-421. [PMID: 27347071 PMCID: PMC4906979 DOI: 10.3892/etm.2016.3334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate a possible association between the accumulation of rare coding variants in the genes for arachidonate 5-lipoxygenase (ALOX5) and ALOX5-activating protein (ALOX5AP), and corresponding production of leukotrienes (LTs) in patients with type 2 diabetes mellitus (T2DM) receiving acetylsalicylic therapy. Twenty exons and corresponding introns of the selected genes were resequenced in 303 DNA samples from patients with T2DM using pooled polymerase chain reaction amplification and next-generation sequencing, using an Illumina HiSeq 2000 sequencing system. The observed non-synonymous variants were further confirmed by individual genotyping of DNA samples comprising of all individuals from the original discovery pools. The association between the investigated phenotypes was based on LTB4 and LTE4 concentrations, and the accumulation of rare missense variants (genetic burden) in investigated genes was evaluated using statistical collapsing tests. A total of 10 exonic variants were identified for each resequenced gene, including 5 missense and 5 synonymous variants. The rare missense variants did not exhibit statistically significant differences in the accumulation pattern between the patients with low and high LTs concentrations. As the present study only included patients with T2DM, it is unclear whether the absence of observed association between the accumulation of rare missense variants in investigated genes and LT production is associated with diabetic populations only or may also be applied to other populations.
Collapse
Affiliation(s)
- MAREK POSTULA
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02-097, Poland
- Perioperative Genomics Laboratory, Penn State University, College of Medicine, Hershey, PA 17033, USA
| | - PIOTR KAZIMIERZ JANICKI
- Perioperative Genomics Laboratory, Penn State University, College of Medicine, Hershey, PA 17033, USA
| | - MAREK ROSIAK
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02-097, Poland
- Department of Cardiology and Hypertension, Central Clinical Hospital, The Ministry of the Interior, Warsaw 02-507, Poland
| | - CEREN EYILETEN
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02-097, Poland
| | - MAŁGORZATA ZAREMBA
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02-097, Poland
| | | | - SHIGEKAZU SUGINO
- Perioperative Genomics Laboratory, Penn State University, College of Medicine, Hershey, PA 17033, USA
| | - DARIUSZ ARTUR KOSIOR
- Department of Cardiology and Hypertension, Central Clinical Hospital, The Ministry of the Interior, Warsaw 02-507, Poland
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - GRZEGORZ OPOLSKI
- Department of Cardiology, Medical University of Warsaw, Warsaw 02-091, Poland
| | | | - DAGMARA MIROWSKA-GUZEL
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02-097, Poland
| |
Collapse
|
9
|
Genetic associations with coronary heart disease: Meta-analyses of 12 candidate genetic variants. Gene 2013; 531:71-7. [DOI: 10.1016/j.gene.2013.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/21/2013] [Accepted: 07/04/2013] [Indexed: 01/30/2023]
|
10
|
Horn T, Ivanov I, Di Venere A, Kakularam KR, Reddanna P, Conrad ML, Richter C, Scheerer P, Kuhn H. Molecular basis for the catalytic inactivity of a naturally occurring near-null variant of human ALOX15. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1702-13. [PMID: 23958500 DOI: 10.1016/j.bbalip.2013.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 11/15/2022]
Abstract
Mammalian lipoxygenases belong to a family of lipid-peroxidizing enzymes, which have been implicated in cardiovascular, hyperproliferative and neurodegenerative diseases. Here we report that a naturally occurring mutation in the hALOX15 gene leads to expression of a catalytically near-null enzyme variant (hGly422Glu). The inactivity may be related to severe misfolding of the enzyme protein, which was concluded from CD-spectra as well as from thermal and chemical stability assays. In silico mutagenesis experiments suggest that most mutations at hGly422 have the potential to induce sterical clash, which might be considered a reason for protein misfolding. hGly422 is conserved among ALOX5, ALOX12 and ALOX15 isoforms and corresponding hALOX12 and hALOX5 mutants also exhibited a reduced catalytic activity. Interestingly, in the hALOX5 Gly429Glu mutants the reaction specificity of arachidonic acid oxygenation was shifted from 5S- to 8S- and 12R-H(p)ETE formation. Taken together, our data indicate that the conserved glycine is of functional importance for these enzyme variants and most mutants at this position lose catalytic activity.
Collapse
Key Words
- (5Z,8Z,10E,14Z)-12-hydroperoxyeicosa-5,8,10,14-tetraenoic acid
- (5Z,8Z,11Z,13E)-15-hydroperoxyeicosa-5,8,11,13-tetraenoic acid
- (5Z,9E,11Z,14Z)-8-hydroperoxyicosa-5,9,11,14-tetraenoic acid
- (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoic acid
- 12-H(p)ETE
- 13-H(p)ODE
- 15-H(p)ETE
- 8-H(p)ETE
- ALOX
- ALOX15
- ALOX15 gene variation
- HETE
- HpETE
- IPTG
- Isopropyl-β-d-thiogalactopyranoside
- LOXs
- Lipid peroxidation
- Lipoxygenase
- Misfolding
- UTR
- arachidonate lipoxygenase
- hydroperoxyeicosatetraenoic acid
- hydroxyeicosatetraenoic acid
- lipoxygenases
- untranslated region
Collapse
Affiliation(s)
- Thomas Horn
- Institute of Biochemistry, University Medicine Berlin-Charité, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
ROSIAK MAREK, POSTULA MAREK, KAPLON-CIESLICKA AGNIESZKA, KONDRACKA AGNIESZKA, TRZEPLA EWA, ZAREMBA MALGORZATA, FILIPIAK KRZYSZTOFJ, KOSIOR DARIUSZA, CZLONKOWSKI ANDRZEJ, OPOLSKI GRZEGORZ, JANICKI PIOTRK. Lack of effect of common single nucleotide polymorphisms in leukotriene pathway genes on platelet reactivity in patients with diabetes. Mol Med Rep 2013; 8:853-60. [DOI: 10.3892/mmr.2013.1567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/17/2013] [Indexed: 11/06/2022] Open
|
12
|
Foody J, Huo Y, Ji L, Zhao D, Boyd D, Meng HJ, Shiff S, Hu D. Unique and Varied Contributions of Traditional CVD Risk Factors: A Systematic Literature Review of CAD Risk Factors in China. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2013; 7:59-86. [PMID: 23645989 PMCID: PMC3623600 DOI: 10.4137/cmc.s10225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study is the first systematic review of risk factors for stroke in China and supports the importance of current public health initiatives to manage the risk factors appropriately to reduce risk of stroke in high risk patients. Additionally, this study has been co-authored by prominent Chinese and US physicians and researchers with expertise in cardiovascular disease, neurologic disorders, epidemiology, and real world data. While there have been several systematic reviews of real world associations of risk factors for coronary artery disease, none focus specifically on the population of China, where there is growing evidence that such risk factors are poorly treated or uncontrolled, especially in rural areas.
Collapse
Affiliation(s)
- Joanne Foody
- Cardiovascular Wellness Program, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kleinstein SE, Heath L, Makar KW, Poole EM, Seufert BL, Slattery ML, Xiao L, Duggan DJ, Hsu L, Curtin K, Koepl L, Muehling J, Taverna D, Caan BJ, Carlson CS, Potter JD, Ulrich CM. Genetic variation in the lipoxygenase pathway and risk of colorectal neoplasia. Genes Chromosomes Cancer 2013; 52:437-49. [PMID: 23404351 DOI: 10.1002/gcc.22042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/20/2023] Open
Abstract
Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases. We investigated associations between colorectal cancer risk and polymorphisms in ALOX5, FLAP, ALOX12, and ALOX15, and their interactions with nonsteroidal anti-inflammatory drug (NSAID) use. We genotyped fifty tagSNPs, one candidate SNP, and two functional promoter variable nucleotide tandem repeat (VNTR) polymorphisms in three US population-based case-control studies of colon cancer (1,424 cases/1,780 controls), rectal cancer (583 cases/775 controls), and colorectal adenomas (485 cases/578 controls). Individuals with variant genotypes of the ALOX5 VNTR had a decreased risk of rectal cancer, with the strongest association seen for individuals with one or more alleles of >5 repeats (wild type = 5, OR>5/≥5 = 0.42, 95% CI 0.20-0.92; P = 0.01). Four SNPs in FLAP (rs17239025), ALOX12 (rs2073438), and ALOX15 (rs4796535 and rs2619112) were associated with rectal cancer risk at P ≤ 0.05. One SNP in FLAP (rs12429692) was associated with adenoma risk. A false discovery rate (FDR) was applied to account for false positives due to multiple testing; the ALOX15 associations were noteworthy at 25% FDR. Colorectal neoplasia risk appeared to be modified by NSAID use in individuals with variant alleles in FLAP and ALOX15. One noteworthy interaction (25% FDR) was observed for rectal cancer. Genetic variability in ALOXs may affect risk of colorectal neoplasia, particularly for rectal cancer. Additionally, genetic variability in FLAP and ALOX15 may modify the protective effect of NSAID use against colorectal neoplasia.
Collapse
Affiliation(s)
- Sarah E Kleinstein
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Samanta S, Anderson K, Moran S, Hawke D, Gorenstein D, Fornage M. Characterization of a human 12/15-lipoxygenase promoter variant associated with atherosclerosis identifies vimentin as a promoter binding protein. PLoS One 2012; 7:e42417. [PMID: 22879973 PMCID: PMC3413658 DOI: 10.1371/journal.pone.0042417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/04/2012] [Indexed: 11/18/2022] Open
Abstract
Background Sequence variation in the human 12/15 lipoxygenase (ALOX15) has been associated with atherosclerotic disease. We functionally characterized an ALOX15 promoter polymorphism, rs2255888, previously associated with carotid plaque burden. Methodology/Principal Findings We demonstrate specific in vitro and in vivo binding of the cytoskeletal protein, vimentin, to the ALOX15 promoter. We show that the two promoter haplotypes carrying alternate alleles at rs2255888 exhibit significant differences in promoter activity by luciferase reporter assay in two cell lines. Differences in in-vitro vimentin-binding to and formation of DNA secondary structures in the polymorphic promoter sequence are also detected by electrophoretic mobility shift assay and biophysical analysis, respectively. We show regulation of ALOX15 protein by vimentin. Conclusions/Significance This study suggests that vimentin binds the ALOX15 promoter and regulates its promoter activity and protein expression. Sequence variation that results in changes in DNA conformation and vimentin binding to the promoter may be relevant to ALOX15 gene regulation.
Collapse
Affiliation(s)
- Susmita Samanta
- Research Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|
15
|
Zhao J, He Z, Ma S, Li L. Association of ALOX15 Gene Polymorphism with Ischemic Stroke in Northern Chinese Han Population. J Mol Neurosci 2012; 47:458-64. [DOI: 10.1007/s12031-012-9721-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 02/08/2012] [Indexed: 01/08/2023]
|
16
|
Asp J, Synnergren J, Jonsson M, Dellgren G, Jeppsson A. Comparison of human cardiac gene expression profiles in paired samples of right atrium and left ventricle collected in vivo. Physiol Genomics 2012; 44:89-98. [DOI: 10.1152/physiolgenomics.00137.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Studies of expressed genes in human heart provide insight into both physiological and pathophysiological mechanisms. This is of importance for extended understanding of cardiac function as well as development of new therapeutic drugs. Heart tissue for gene expression studies is generally hard to obtain, particularly from the ventricles. Since different parts of the heart have different functions, expression profiles should likely differ between these parts. The aim of the study was therefore to compare the global gene expression in cardiac tissue from the more accessible auricula of the right atrium to expression in tissue from the left ventricle. Tissue samples were collected from five men undergoing aortic valve replacement or coronary artery bypass grafting. Global gene expression analysis identified 542 genes as differentially expressed between the samples extracted from these two locations, corresponding to ∼2% of the genes covered by the microarray; 416 genes were identified as abundantly expressed in right atrium, and 126 genes were abundantly expressed in left ventricle. Further analysis of the differentially expressed genes according to available annotations, information from curated pathways and known protein interactions, showed that genes with higher expression in the ventricle were mainly associated with contractile work of the heart. Transcription in biopsies from the auricula of the right atrium on the other hand indicated a wider area of functions, including immunity and defense. In conclusion, our results suggest that biopsies from the auricula of the right atrium may be suitable for various genetic studies, but not studies directly related to muscle work.
Collapse
Affiliation(s)
- Julia Asp
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg
| | - Jane Synnergren
- Systems Biology Research Center, School of Life Sciences, University of Skövde, Skövde
| | - Marianne Jonsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg
| | - Göran Dellgren
- Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, and Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, and Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|