1
|
Chen F, Pan Y, Xu J, Liu B, Song H. Research progress of matrine's anticancer activity and its molecular mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114914. [PMID: 34919987 DOI: 10.1016/j.jep.2021.114914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND and ethnopharmacological relevance: Matrine (MT), a type of alkaloid extracted from the Sophora family of traditional Chinese medicine, has been documented to exert a variety of pharmacological effects, including anti-inflammatory, anti-allergic, anti-viral, anti-fibrosis, and cardiovascular protection. Sophora flavescens Aiton is a traditional Chinese medicine that is bitter and cold. Additionally, it also exhibits the effects of clearing heat, eliminating dampness, expelling insects, and promoting urination. Malignant tumors are the most important medical issue and are also the second leading cause of death worldwide. Numerous natural substances have recently been revealed to have potent anticancer properties, and several have been used in clinical trials. AIMS OF THE STUDY To summarize the antitumor effects and associated mechanisms of MT, we compiled this review by combining a huge body of relevant literature and our previous research. MATERIALS AND METHODS As demonstrated, we grouped the pharmacological effects of MT via a PubMed search. Further, we described the mechanism and current pharmacological research on MT's antitumor activity. RESULTS Additionally, extensive research has demonstrated that MT possesses superior antitumor properties, including accelerating cell apoptosis, inhibiting tumor cell growth and proliferation, inducing cell cycle arrest, inhibiting cancer metastasis and invasion, inhibiting angiogenesis, inducing autophagy, reversing multidrug resistance and inhibiting cell differentiation, thus indicating its significant potential for cancer treatment and prognosis. CONCLUSION This article summarizes current advances in research on the anticancer properties of MT and its molecular mechanism, to provide references for future research.
Collapse
Affiliation(s)
- Fengyuan Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Yunxia Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
2
|
Zu Y, Wang J, Ping W, Sun W. Tan IIA inhibits H1299 cell viability through the MDM4‑IAP3 signaling pathway. Mol Med Rep 2018; 17:2384-2392. [PMID: 29207086 PMCID: PMC5783490 DOI: 10.3892/mmr.2017.8152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
Tanshinone IIA (Tan IIA), as a bioactive compound extracted from the dried roots of Salvia miltiorrhiza (also known as Danshen), is known to inhibit cancer cell proliferation and induce apoptosis. However, the mechanisms underlying the function of Tan IIA in cancer cell apoptosis remain to be elucidated The aim of the present study was to identify the molecular mechanisms underlying the anti‑cancer effects of Tan IIA in p53‑deficient H1299 cells. Tan IIA was demonstrated to suppress murine double minute 4 (MDM4) expression in a time‑ and dose‑dependent manner through the inhibition of MDM4 mRNA synthesis. Tan IIA‑induced downregulation of MDM4 resulted in an increase of P73α and a decrease of inhibitor of apoptosis 3 (IAP3). However, P73α was not activated as two P73α target genes, BCL2 binding component 3 and phorbol‑12‑myristate‑13‑acetate‑induced protein 1, were not significantly induced. Tan IIA‑induced inhibition of IAP3 expression may be involved in Tan IIA‑induced apoptosis and inhibition of H1299 cell viability. Notably, a combination of Tan IIA and doxorubicin (DOX) exposure resulted in further MDM4 overexpression in H1299 cells, indicating that Tan IIA sensitized p53‑deficient and MDM4‑overexpressing H1299 cells to DOX‑induced apoptosis.
Collapse
Affiliation(s)
- Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianning Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
3
|
Zhou N, Li J, Li T, Chen G, Zhang Z, Si Z. Matrine‑induced apoptosis in Hep3B cells via the inhibition of MDM2. Mol Med Rep 2016; 15:442-450. [PMID: 27959389 DOI: 10.3892/mmr.2016.5999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/22/2016] [Indexed: 11/05/2022] Open
Abstract
Matrine, an alkaloid component derived from the Sophora root, can inhibit cancer cell proliferation and induce autophagy via p53 associated pathways. However, numerous tumor cells lack functional p53 and little is known about the effect of matrine on the p53‑deficient/mutant cancer cells. The present study aimed to assess anticancer effects of matrine in p53‑deficient human Hep3B hepatoma cells. The present results demonstrated that matrine caused Hep3B cell apoptosis by suppressing gene expression of minute double‑mutant (MDM)2. Notably, it was revealed that matrine inhibited MDM2 at the transcriptional level in a time‑ and dose‑dependent manner. This MDM2 inhibition resulted in induction of the p53 family member, p73; however, the functions of p73 were not induced since matrine‑induced p73 failed to activate its target genes, p21 and p53 upregulated modulator of apoptosis. The matrine‑induced downregulation of MDM2 led to an inhibition of inhibitor of apoptosis protein 3, which might serve a critical role in matrine‑induced apoptosis in MDM2‑overexpressing Hep3B cells. Finally, combination therapy of matrine with 100 µM epotoside successfully killed more Hep3B cells, suggesting that matrine can sensitize p53‑deficient Hep3B cells to epotoside‑induced apoptosis.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jiequn Li
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting Li
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Guangshun Chen
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhongqiang Zhang
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhongzhou Si
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
4
|
Kwon KA, Yun J, Oh SY, Seo BG, Lee S, Lee JH, Kim SH, Choi HJ, Roh MS, Kim HJ. Clinical Significance of Peroxisome Proliferator-Activated Receptor γ and TRAP220 in Patients with Operable Colorectal Cancer. Cancer Res Treat 2015; 48:198-207. [PMID: 26130665 PMCID: PMC4720060 DOI: 10.4143/crt.2015.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/30/2015] [Indexed: 11/21/2022] Open
Abstract
Purpose The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that regulates expression of mediators of lipid metabolism and the inflammatory response. Thyroid hormone receptor-associated proteins 220 (TRAP220) is an essential component of the TRAP/Mediator complex. The objective of this study was to clarify whether PPARγ or TRAP220 are significant prognostic markers in resectable colorectal cancer (CRC). Materials and Methods A total of 399 patients who underwent curative resection for CRC were enrolled. We investigated the presence of PPARγ and TARP220 in CRC tissues and adjacent normal tissues by immunohistochemistry. Correlation between the expression of these factors and clinicopathologic features and survival was investigated. Results Median age of the patients was 63 years (range, 22 to 87 years), and median follow-up duration 61.1 months (range, 2 to 114 months). PPARγ and TRAP220 expression showed significant correlation with depth of invasion (p=0.013 and p=0.001, respectively). Expression of TRAP220 also showed association with lymph node metastasis and TNM stage (p=0.001). Compared with patients with TRAP220 negative tumors, patients with TRAP220 positive tumors had longer 5-year disease-free survival (DFS) tendency (p=0.051). Patients who were PPARγ positive combined with TRAP220 positive had a better 5-year DFS (64.8% vs. 79.3%, p=0.013). In multivariate analysis expression of both PPARγ and TRAP220 significantly affected DFS (hazard ratio, 0.620; 95% confidence interval, 0.379 to 0.997; p=0.048). Conclusion TRAP220 may be a valuable marker for nodal metastasis and TNM stage. Tumor co-expression of PPARγ and TRAP220 represents a biomarker for good prognosis in CRC patients.
Collapse
Affiliation(s)
- Kyung A Kwon
- Division of Hematology-Oncology, Department of Internal Medicine, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Jeanho Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Korea
| | - Sung Yong Oh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Bong-Gun Seo
- Division of Hematology-Oncology, Department of Internal Medicine, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Suee Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Ji-Hyun Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Sung-Hyun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Hong Jo Choi
- Department of Surgery, Dong-A University College of Medicine, Busan, Korea
| | - Mee Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
| | - Hyo-Jin Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
5
|
Lunardi A, Ala U, Epping MT, Salmena L, Clohessy JG, Webster KA, Wang G, Mazzucchelli R, Bianconi M, Stack EC, Lis R, Patnaik A, Cantley LC, Bubley G, Cordon-Cardo C, Gerald WL, Montironi R, Signoretti S, Loda M, Nardella C, Pandolfi PP. A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nat Genet 2013; 45:747-55. [PMID: 23727860 PMCID: PMC3787876 DOI: 10.1038/ng.2650] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/01/2013] [Indexed: 12/14/2022]
Abstract
Here we report an integrated analysis that leverages data from treatment of genetic mouse models of prostate cancer along with clinical data from patients to elucidate new mechanisms of castration resistance. We show that castration counteracts tumor progression in a Pten-loss driven mouse model of prostate cancer through the induction of apoptosis and proliferation block. Conversely, this response is bypassed upon deletion of either Trp53 or Lrf together with Pten, leading to the development of castration resistant prostate cancer (CRPC). Mechanistically, the integrated acquisition of data from mouse models and patients identifies the expression patterns of XAF1-XIAP/SRD5A1 as a predictive and actionable signature for CRPC. Importantly, we show that combined inhibition of XIAP, SRD5A1, and AR pathways overcomes castration resistance. Thus, our co-clinical approach facilitates stratification of patients and the development of tailored and innovative therapeutic treatments.
Collapse
Affiliation(s)
- Andrea Lunardi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ling X, Cao S, Cheng Q, Keefe JT, Rustum YM, Li F. A novel small molecule FL118 that selectively inhibits survivin, Mcl-1, XIAP and cIAP2 in a p53-independent manner, shows superior antitumor activity. PLoS One 2012; 7:e45571. [PMID: 23029106 PMCID: PMC3446924 DOI: 10.1371/journal.pone.0045571] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Drug/radiation resistance to treatment and tumor relapse are major obstacles in identifying a cure for cancer. Development of novel agents that address these challenges would therefore be of the upmost importance in the fight against cancer. In this regard, studies show that the antiapoptotic protein survivin is a central molecule involved in both hurdles. Using cancer cell-based survivin-reporter systems (US 7,569,221 B2) via high throughput screening (HTS) of compound libraries, followed by in vitro and in vivo analyses of HTS-derived hit-lead compounds, we identified a novel anticancer compound (designated FL118). FL118 shows structural similarity to irinotecan. However, while the inhibition of DNA topoisomerase 1 activity by FL118 was no better than the active form of irinotecan, SN-38 at 1 µM, FL118 effectively inhibited cancer cell growth at less than nM levels in a p53 status-independent manner. Moreover, FL118 selectively inhibited survivin promoter activity and gene expression also in a p53 status-independent manner. Although the survivin promoter-reporter system was used for the identification of FL118, our studies revealed that FL118 not only inhibits survivin expression but also selectively and independently inhibits three additional cancer-associated survival genes (Mcl-1, XIAP and cIAP2) in a p53 status-independent manner, while showing no inhibitory effects on control genes. Genetic silencing or overexpression of FL118 targets demonstrated a role for these targets in FL118's effects. Follow-up in vivo studies revealed that FL118 exhibits superior antitumor efficacy in human tumor xenograft models in comparison with irinotecan, topotecan, doxorubicin, 5-FU, gemcitabine, docetaxel, oxaliplatin, cytoxan and cisplatin, and a majority of mice treated with FL118 showed tumor regression with a weekly × 4 schedule. FL118 induced favorable body-weight-loss profiles (temporary and reversible) and was able to eliminate large tumors. Together, the molecular targeting features of FL118 plus its superior antitumor activity warrant its further development toward clinical trials.
Collapse
Affiliation(s)
- Xiang Ling
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Shousong Cao
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Qiuying Cheng
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - James T. Keefe
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Youcef M. Rustum
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- NCI-supported Experimental Therapeutics Program, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Fengzhi Li
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- NCI-supported Experimental Therapeutics Program, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily and ligand-activated transcription factors. PPARγ plays an important role in adipocyte differentiation, lipid storage and energy dissipation in adipose tissue, and is involved in the control of inflammatory reactions as well as in glucose metabolism through the improvement of insulin sensitivity. Growing evidence has demonstrated that activation of PPARγ has an antineoplastic effect in tumors, including colorectal cancer. High expression of PPARγ is detected in human colon cancer cell lines and adenocarcinoma. This review describes the molecular mechanisms by which PPARγ regulates tumorigenesis in colorectal cancer, and examines current clinical trials evaluating PPARγ agonists as therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Yun Dai
- Yun Dai, Wei-Hong Wang, Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | | |
Collapse
|
8
|
Dai Y, Wang WH. Peroxisome proliferator-activated receptor γ and colorectal cancer. World J Gastrointest Oncol 2010; 2:159-64. [PMID: 21160824 PMCID: PMC2999174 DOI: 10.4251/wjgo.v2.i3.159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/07/2009] [Accepted: 07/14/2009] [Indexed: 02/05/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily and ligand-activated transcription factors. PPARγ plays an important role in adipocyte differentiation, lipid storage and energy dissipation in adipose tissue, and is involved in the control of inflammatory reactions as well as in glucose metabolism through the improvement of insulin sensitivity. Growing evidence has demonstrated that activation of PPARγ has an antineoplastic effect in tumors, including colorectal cancer. High expression of PPARγ is detected in human colon cancer cell lines and adenocarcinoma. This review describes the molecular mechanisms by which PPARγ regulates tumorigenesis in colorectal cancer, and examines current clinical trials evaluating PPARγ agonists as therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Yun Dai
- Yun Dai, Wei-Hong Wang, Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | | |
Collapse
|
9
|
Dai Y, Qiao L, Chan KW, Yang M, Ye J, Zhang R, Ma J, Zou B, Lam CSC, Wang J, Pang R, Tan VPY, Lan HY, Wong BCY. Adenovirus-mediated down-regulation of X-linked inhibitor of apoptosis protein inhibits colon cancer. Mol Cancer Ther 2009; 8:2762-70. [PMID: 19737940 DOI: 10.1158/1535-7163.mct-09-0509] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our previous studies and those of others have indicated that X-linked inhibitor of apoptosis protein (XIAP) holds promise as a target gene in colon cancer gene therapy. In this study, we constructed an adenoviral vector to deliver small hairpin RNA (shRNA) against XIAP (XIAP-shRNA) into colon cancer cells and tested its therapeutic efficacy in vitro and in vivo. We first confirmed an overexpression of XIAP in colon cancer cells and human cancer tissues. We then designed XIAP-small interfering RNA (siRNA) and confirmed the knockdown effect of these siRNAs in colon cancer cells. The sequences of the effective siRNAs were converted into shRNA and then packed into replication-deficient adenoviral vectors using BLOCK-iT Adenoviral RNAi Expression System to generate Adv-XIAP-shRNA. Infection of HT29 and HCT116 cells with Adv-XIAP-shRNA led to enhanced caspase-3 activity, which was associated with increased apoptosis and reduced cell proliferation. The therapeutic effect of Adv-XIAP-shRNA was then tested in xenograft tumors in nude mice. We showed that treatment of the xenograft tumors derived from HCT116 cells with Adv-XIAP-shRNA resulted in a retardation of tumor growth, which was associated with enhanced apoptosis, increased caspase-3 activity, and reduced expression of proliferating cell nuclear antigen in the tumor tissues. Treatment of xenograft tumors with Adv-XIAP-shRNA did not affect the expressions of inflammatory cytokines in tumor-bearing mice. Thus, Adv-XIAP-shRNA-mediated down-regulation of XIAP exerts a therapeutic effect in colon cancer by promoting apoptosis and inhibiting proliferation of colon cancer cells, and the antitumor effect of Adv-XIAP-shRNA was unlikely to be related to virus-induced immune response.
Collapse
Affiliation(s)
- Yun Dai
- Department of Gastroenterology, PekingUniversity First Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dai Y, Qiao L, Chan KW, Yang M, Ye J, Ma J, Zou B, Gu Q, Wang J, Pang R, Lan HY, Wong BCY. Peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of Embelin on colon carcinogenesis. Cancer Res 2009; 69:4776-83. [PMID: 19458067 DOI: 10.1158/0008-5472.can-08-4754] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Down-regulation of XIAP (X-linked inhibitor of apoptosis protein) sensitizes colon cancer cells to the anticancer effect of peroxisome proliferator-activated receptor-gamma (PPARgamma) ligands in mice. The aims of this study were to evaluate the effect of embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone), an antagonist of XIAP, on colon cancer, with a particular focus on whether PPARgamma is required for embelin to exert its effect. A dominant-negative PPARgamma was used to antagonize endogenous PPARgamma in HCT116 cells. Cells were treated with or without embelin. Cell proliferation, apoptosis, and nuclear factor-kappaB (NF-kappaB) activity were measured. For in vivo studies, 1,2-dimethylhydrazine dihydrochloride (DMH) was s.c. injected to induce colon cancer in PPARgamma(+/+) and PPARgamma(+/-) mice. Mice were fed embelin daily for 10 days before DMH injection, and continued for 30 more weeks. Embelin inhibited proliferation and induced apoptosis in HCT116 cells with marked up-regulation of PPARgamma. In addition, embelin significantly inhibited the expressions of survivin, cyclin D1, and c-Myc. These effects were partially dependent on PPARgamma. PPARgamma(+/-) mice were more susceptible to DMH-induced colon carcinogenesis than PPARgamma(+/+) mice, and embelin significantly reduced the incidence of colon cancer in PPARgamma(+/+) mice but not in PPARgamma(+/-) mice. Embelin inhibited NF-kappaB activity in PPARgamma(+/+) mice but marginally so in PPARgamma(+/-) mice. Thus, reduced expression of PPARgamma significantly sensitizes colonic tissues to the carcinogenic effect of DMH. Embelin inhibits chemical carcinogen-induced colon carcinogenesis, but this effect is partially dependent on the presence of functional PPARgamma, indicating that PPARgamma is a necessary signaling pathway involved in the antitumor activity of normal organisms.
Collapse
Affiliation(s)
- Yun Dai
- Departments of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 2009; 12:55-64. [PMID: 19278896 DOI: 10.1016/j.drup.2009.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 12/27/2022]
Abstract
Cancers in the gastrointestinal system account for a large proportion of malignancies and cancer-related deaths with gastric cancer and colorectal cancer being the most common ones. For those patients in whom surgical resection is not possible, other therapeutic approaches are necessary. Disordered apoptosis has been linked to cancer development and treatment resistance. Apoptosis occurs via extrinsic or intrinsic signaling each triggered and regulated by many different molecular pathways. In recent years, the selective induction of apoptosis in tumor cells has been increasingly recognized as a promising approach for cancer therapy. A detailed understanding of the molecular pathways involved in the regulation of apoptosis is essential for developing novel effective therapeutic approaches. Apoptosis can be induced by many different approaches including activating cell surface death receptors (for example, Fas, TRAIL and TNF receptors), inhibiting cell survival signaling (such as EGFR, MAPK and PI3K), altering apoptosis threshold by modulating pro-apoptotic and anti-apoptotic members of the Bcl-2 family, down-regulating anti-apoptosis proteins (such as XIAP, survivin and c-IAP2), and using other pro-apoptotic agents. In this review, the authors reviewed the currently reported apoptosis-targeting approaches in gastrointestinal cancers.
Collapse
|