1
|
Borowczyk M, Kaczmarek-Ryś M, Hryhorowicz S, Sypniewski M, Filipowicz D, Dobosz P, Oszywa M, Ruchała M, Ziemnicka K. Germline polymorphisms of the NOD2 pathway may predict the effectiveness of radioiodine in differentiated thyroid cancer treatment. J Endocrinol Invest 2024; 47:2969-2980. [PMID: 38755492 PMCID: PMC11549118 DOI: 10.1007/s40618-024-02389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Differentiated thyroid cancer (DTC) presents a complex clinical challenge, especially in patients with distant metastases and resistance to standard treatments. This study aimed to investigate the influence of specific genes and their germline single nucleotide polymorphisms (SNPs) linked to both inflammatory processes and other neoplasms on the clinical and pathological characteristics of DTC, particularly their potential impact on radioiodine (RAI) treatment efficacy. METHODS This retrospective analysis involved a cohort of 646 patients diagnosed with DTC after thyroidectomy. Study covering 1998-2014, updated in 2023, included 567 women and 79 men (median age: 49; range: 7-83). SNP selection targeted functional significance, while mutational status was assessed by pyrosequencing for comprehensive characterization. Patient genetic profiles were assessed for associations with disease characteristics, RAI response, and cancer pathology. RESULTS Significant correlations emerged between certain SNPs and DTC features. Notably, the NOD2 c.802 T > C variant (rs2066842) was identified as a marker distinguishing between papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC). Moreover, the c.802 T allele was associated with an enhanced response to RAI treatment, indicating a more substantial decrease in posttreatment stimulated thyroglobulin (sTg) concentrations. The NFKB1A allele c.126A (rs696) exhibited connections with lower FTC stages and a reduced probability of multifocality. CONCLUSION This study explored the molecular mechanisms of particular SNPs, highlighting the role of NOD2 in innate immunity and the stress response, and its potential impact on RAI efficacy. This research underscores the clinical promise of SNP analysis and contributes to personalized treatment strategies for DTC, emphasizing the relevance of genetic factors in cancer progression and treatment outcomes.
Collapse
MESH Headings
- Humans
- Iodine Radioisotopes/therapeutic use
- Male
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/radiotherapy
- Thyroid Neoplasms/therapy
- Female
- Middle Aged
- Polymorphism, Single Nucleotide
- Adult
- Retrospective Studies
- Aged
- Young Adult
- Adolescent
- Aged, 80 and over
- Nod2 Signaling Adaptor Protein/genetics
- Child
- Germ-Line Mutation
- Thyroidectomy
- Prognosis
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/pathology
- Adenocarcinoma, Follicular/radiotherapy
- Adenocarcinoma, Follicular/therapy
- Treatment Outcome
- Biomarkers, Tumor/genetics
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/radiotherapy
- Thyroid Cancer, Papillary/therapy
- Follow-Up Studies
Collapse
Affiliation(s)
- M Borowczyk
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland.
| | - M Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - S Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - M Sypniewski
- University Cancer Diagnostic Center, Poznan University of Medical Sciences, Poznan, Poland
| | - D Filipowicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland
| | - P Dobosz
- University Cancer Diagnostic Center, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - M Oszywa
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland
| | - M Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland
| | - K Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland
- University Cancer Diagnostic Center, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Gurses S, Varghese N, Gupta D. Innate immunity gene Nod2 protects mice from orthotopic breast cancer. Mol Biol Rep 2024; 51:988. [PMID: 39285089 PMCID: PMC11405536 DOI: 10.1007/s11033-024-09927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Nod2 is involved in innate immune responses to bacteria, regulation of metabolism, and sensitivity to cancer. A Nod2 polymorphism is associated with breast cancer, but the role of Nod2 in the development and progression of breast cancer is unknown. METHODS Here, we tested the hypothesis that Nod2 protects mice from breast cancer using the 4T1 orthotopic model of mammary tumorigenesis. WT and Nod2-/- mice were injected with 4T1 mammary carcinoma cells and the development of tumors was monitored. A detailed analysis of the tumor transcriptome was performed and genes that were differentially expressed and pathways that were predicted to be altered between WT and Nod2-/- mice were identified. The activation of key signaling molecules involved in metabolism and development of cancer was studied. RESULTS Our data demonstrate that Nod2-/- mice had a higher incidence and larger tumors than WT mice. Nod2-/- mice had increased expression of genes that promote DNA replication and cell division, and decreased expression of genes required for lipolysis, lipogenesis, and steroid biosynthesis compared with WT mice. Nod2-/- mice also had lower expression of genes required for adipogenesis and reduced levels of lipids compared with WT mice. The tumors in Nod2-/- mice had decreased expression of genes associated with PPARα/γ signaling, increased activation of STAT3, decreased activation of STAT5, and no change in the activation of ERK compared with WT mice. CONCLUSIONS We conclude that Nod2 protects mice from the 4T1 orthotopic breast tumor, and that tumors in Nod2-/- mice are predicted to have increased DNA replication and cell proliferation and decreased lipid metabolism compared with WT mice.
Collapse
Affiliation(s)
- Serdar Gurses
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nivya Varghese
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA.
| |
Collapse
|
3
|
Szuman M, Kaczmarek-Ryś M, Hryhorowicz S, Kryszczyńska A, Grot N, Pławski A. Low-Penetrance Susceptibility Variants in Colorectal Cancer-Current Outlook in the Field. Int J Mol Sci 2024; 25:8338. [PMID: 39125905 PMCID: PMC11313073 DOI: 10.3390/ijms25158338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent and mortality-causing neoplasia, with various distributions between populations. Strong hereditary predispositions are the causatives of a small percentage of CRC, and most cases have no transparent genetic background. This is a vast arena for exploring cancer low-susceptibility genetic variants. Nonetheless, the research that has been conducted to date has failed to deliver consistent conclusions and often features conflicting messages, causing chaos in this field. Therefore, we decided to organize the existing knowledge on this topic. We screened the PubMed and Google Scholar databases. We drew up markers by gene locus gathered by hallmark: oncogenes, tumor suppressor genes, genes involved in DNA damage repair, genes involved in metabolic pathways, genes involved in methylation, genes that modify the colonic microenvironment, and genes involved in the immune response. Low-penetration genetic variants increasing the risk of cancer are often population-specific, hence the urgent need for large-scale testing. Such endeavors can be successful only when financial decision-makers are united with social educators, medical specialists, genetic consultants, and the scientific community. Countries' policies should prioritize research on this subject regardless of cost because it is the best investment. In this review, we listed potential low-penetrance CRC susceptibility alleles whose role remains to be established.
Collapse
Affiliation(s)
- Marcin Szuman
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Marta Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
- University Clinical Hospital, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Alicja Kryszczyńska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| |
Collapse
|
4
|
Giambra V, Pagliari D, Rio P, Totti B, Di Nunzio C, Bosi A, Giaroni C, Gasbarrini A, Gambassi G, Cianci R. Gut Microbiota, Inflammatory Bowel Disease, and Cancer: The Role of Guardians of Innate Immunity. Cells 2023; 12:2654. [PMID: 37998389 PMCID: PMC10669933 DOI: 10.3390/cells12222654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by a persistent low-grade inflammation that leads to an increased risk of colorectal cancer (CRC) development. Several factors are implicated in this pathogenetic pathway, such as innate and adaptive immunity, gut microbiota, environment, and xenobiotics. At the gut mucosa level, a complex interplay between the immune system and gut microbiota occurs; a disequilibrium between these two factors leads to an alteration in the gut permeability, called 'leaky gut'. Subsequently, an activation of several inflammatory pathways and an alteration of gut microbiota composition with a proliferation of pro-inflammatory bacteria, known as 'pathobionts', take place, leading to a further increase in inflammation. This narrative review provides an overview on the principal Pattern Recognition Receptors (PRRs), including Toll-like receptors (TLRs) and NOD-like receptors (NLRs), focusing on their recognition mechanisms, signaling pathways, and contributions to immune responses. We also report the genetic polymorphisms of TLRs and dysregulation of NLR signaling pathways that can influence immune regulation and contribute to the development and progression of inflammatory disease and cancer.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.); (B.T.); (C.D.N.)
| | - Danilo Pagliari
- Medical Officer of the Carabinieri Corps, Health Service of the Carabinieri General Headquarters, 00197 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| | - Beatrice Totti
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.); (B.T.); (C.D.N.)
| | - Chiara Di Nunzio
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.); (B.T.); (C.D.N.)
| | - Annalisa Bosi
- Department of Medicine and Technological Innovation, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (A.B.); (C.G.)
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (A.B.); (C.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| |
Collapse
|
5
|
Iyer K, Erkert L, Becker C. Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease. Front Cell Dev Biol 2023; 11:1228283. [PMID: 37519301 PMCID: PMC10375050 DOI: 10.3389/fcell.2023.1228283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal epithelial cells (IECs) perform several physiological and metabolic functions at the epithelial barrier. IECs also play an important role in defining the overall immune functions at the mucosal region. Pattern recognition receptors (PRRs) on the cell surface and in other cellular compartments enable them to sense the presence of microbes and microbial products in the intestinal lumen. IECs are thus at the crossroads of mediating a bidirectional interaction between the microbial population and the immune cells present at the intestinal mucosa. This communication between the microbial population, the IECs and the underlying immune cells has a profound impact on the overall health of the host. In this review, we focus on the various PRRs present in different cellular compartments of IECs and discuss the recent developments in the understanding of their role in microbial recognition. Microbial recognition and signaling at the epithelial barrier have implications in the maintenance of intestinal homeostasis, epithelial barrier function, maintenance of commensals, and the overall tolerogenic function of PRRs in the gut mucosa. We also highlight the role of an aberrant microbial sensing at the epithelial barrier in the pathogenesis of inflammatory bowel disease (IBD) and the development of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Iyer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Gao J, Wang L, Jiang J, Xu Q, Zeng N, Lu B, Yuan P, Sun K, Zhou H, He X. A probiotic bi-functional peptidoglycan hydrolase sheds NOD2 ligands to regulate gut homeostasis in female mice. Nat Commun 2023; 14:3338. [PMID: 37286542 PMCID: PMC10247697 DOI: 10.1038/s41467-023-38950-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Secreted proteins are one of the direct molecular mechanisms by which microbiota influence the host, thus constituting a promising field for drug discovery. Here, through bioinformatics-guided screening of the secretome of clinically established probiotics from Lactobacillus, we identify an uncharacterized secreted protein (named LPH here) that is shared by most of these probiotic strains (8/10) and demonstrate that it protects female mice from colitis in multiple models. Functional studies show that LPH is a bi-functional peptidoglycan hydrolase with both N-Acetyl-β-D-muramidase and DL-endopeptidase activities that can generate muramyl dipeptide (MDP), a NOD2 ligand. Different active site mutants of LPH in combination with Nod2 knockout female mice confirm that LPH exerts anti-colitis effects through MDP-NOD2 signaling. Furthermore, we validate that LPH can also exert protective effects on inflammation-associated colorectal cancer in female mice. Our study reports a probiotic enzyme that enhances NOD2 signaling in vivo in female mice and describes a molecular mechanism that may contribute to the effects of traditional Lactobacillus probiotics.
Collapse
Affiliation(s)
- Jie Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Lei Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Jing Jiang
- Department Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China
| | - Qian Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Bingyun Lu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, 518101, Shenzhen, Guangdong, China
| | - Peibo Yuan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Kai Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, 510655, Guangzhou, Guangdong, China.
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
8
|
Gurses SA, Banskar S, Stewart C, Trimoski B, Dziarski R, Gupta D. Nod2 protects mice from inflammation and obesity-dependent liver cancer. Sci Rep 2020; 10:20519. [PMID: 33239685 PMCID: PMC7688964 DOI: 10.1038/s41598-020-77463-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Nod2 is a pattern recognition receptor that modulates host innate immune responses and protects from inflammation, steatosis, and obesity. Obesity and inflammation are risk factors for hepatocellular carcinoma, however, the role of Nod2 in obesity-dependent hepatic tumorigenesis is not known. Here we tested the hypothesis that Nod2 protects from high fat diet (HFD)-dependent hepatic cancer. We used an obesity-dependent hepatic tumor model. WT and Nod2−/− mice were treated with the carcinogen dimethylbenz[a]anthracene (DMBA) and maintained on HFD. Nod2−/− mice treated with DMBA and maintained on HFD gain significantly more weight and develop more liver tumors than similarly treated WT mice. Livers of Nod2−/− tumorigenic mice had increased expression of genes involved in cell proliferation, immune responses, and cholesterol biosynthesis, increased infiltration of neutrophils, inflammatory monocytes, and T cells, and increased activation of STAT3 and ERK during the later stages of tumorigenesis. Bioinformatic analyses of genes with differential expression predicted an increase in cancer, immune, and cholesterol biosynthesis pathways. In summary, we have identified a novel role for Nod2 and demonstrate that Nod2 protects from HFD-dependent liver malignancy and this protection is accompanied by decreased cell proliferation, inflammation, steroid biosynthesis, neutrophils and macrophages infiltration, and STAT3 and MAPK signaling in the liver.
Collapse
Affiliation(s)
- Serdar A Gurses
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Sunil Banskar
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Cody Stewart
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Bill Trimoski
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA.
| |
Collapse
|
9
|
Hnatyszyn A, Hryhorowicz S, Kaczmarek-Ryś M, Lis E, Słomski R, Scott RJ, Pławski A. Colorectal carcinoma in the course of inflammatory bowel diseases. Hered Cancer Clin Pract 2019; 17:18. [PMID: 31338130 PMCID: PMC6626407 DOI: 10.1186/s13053-019-0118-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) and inflammatory bowel disease (IBD) are the most prevalent diseases of the digestive system, and their association is unequivocal. A long-standing inflammatory process is one of the causes of sporadic as well as inherited cancers as it impacts on malignant transformation in a wide variety of neoplastic diseases, including colorectal cancer. Methods An extensive publication search was performed in Medline and PubMed database. The keywords: colorectal carcinoma, inflammation, Crohn disease, ulcerative colitis and inflammatory bowel disease were used. Results The nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and toll like receptor (TLR) signaling pathways are clearly involved in the inflammatory process and are therefore implicated in the transformation of normal colonic mucosa to premalignant and malignant disease. Focal sites of inflammation could significantly increase the risk of initiation and development of cancer. Altered inflammatory activity is likely to be a result of either a disturbance of intestinal bacterial flora or an inadequate cellular response to it. Additionally, increasing the level of inflammation-related factors may also interfere with the control of cellular proliferation. Conclusions This review shows an overview of the genetic and environmental factors that appear to influence both the occurrence of IBD and CRC with particular reference to NOD2 and TLRs as well as pro- and anti-inflammatory cytokines associated with tumor initiation and progression (encompassing both tumor invasion and metastases), as they constitute potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrzej Hnatyszyn
- Health Care Center, Independent Public Hospital, Chałubińskiego 7, 67-100 Nowa Sól, Poland
| | - Szymon Hryhorowicz
- 2Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Marta Kaczmarek-Ryś
- 2Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Emilia Lis
- 2Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Ryszard Słomski
- 2Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.,3Department of Biochemistry and Biotechnology, University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Rodney J Scott
- Division of Molecular Medicine, NSW Health Pathology (Newcastle) New South Wales, Newcastle, NSW 2308 Australia.,5School of Biomedical Sciences, University of Newcastle, Newcastle, NSW 2308 Australia
| | - Andrzej Pławski
- 2Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.,6Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| |
Collapse
|
10
|
DNA variants in Helicobacter pylori infected patients with chronic gastritis, dysplasia and gastric cancer. Adv Med Sci 2019; 64:79-84. [PMID: 30553995 DOI: 10.1016/j.advms.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/29/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE The main scope of this study was to evaluate the importance of selected DNA variants for developing inflammation of gastric mucosa and carcinogenesis in gastrointestinal diseases in patients infected with Helicobacter pylori. PATIENTS AND METHODS Patients subjected to analysis constituted a group of 131 consecutive cases, with control groups consisting of 100 healthy volunteers and 13 dyspeptic patients. Molecular analysis included the following genes: TP53 (c.743 G > A, c.746 G > A, c.749C > T), MSH2 (c.942 + 3A > T), MLH1 (c.2041 G > A), NOD2/CARD15 (c.3016_3017insC, c.802C > T), IL1A (c.-949C > T) and IL1B (c.315C > T). DNA variants were detected using PCR-RFLP, pyrosequencing and sequencing. RESULTS Mutations of the analyzed genes were observed more frequently in patients with a higher degree of mucosal lesions (50.9%) than in patients with milder mucosal changes (27.6%). Single mutations and polymorphisms did not affect the course of the disease. Our analysis confirms the influence of the NOD2/CARD15 c.802C > T polymorphism on the development of mucosal changes. A correlation of the frequency of the CT genotype of the NOD2/CARD15 c.802C > T polymorphism with the NOD2/CARD15 c.3016_3017insC mutation was observed. The TT genotype frequency in the c.315C > T IL1B gene polymorphism was statistically significantly higher in patients with mucosa changes. CONCLUSIONS Accumulation of molecular abnormalities may increase the susceptibility to inflammatory response of the gastric mucosa in H. pylori-infected patients and play an important role in the development of chronic active gastritis, atrophy, intestinal metaplasia, dysplasia and the intestinal type of gastric cancer. The severity of gastric mucosal damage correlates with the presence of mutations in the gastric mucosa and the age of patients.
Collapse
|
11
|
The Association between Nod2 R702w Polymorphism and Susceptibility to Colorectal Cancer in Romanian Patients. CURRENT HEALTH SCIENCES JOURNAL 2019; 44:135-139. [PMID: 30746160 PMCID: PMC6320464 DOI: 10.12865/chsj.44.02.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/27/2018] [Indexed: 11/18/2022]
Abstract
It is well recognized that the inflammatory bowel disease (IBD) is associated with an increased risk of colorectal cancer (CRC). More susceptibility IBD genes have been reported, NOD2 being one of the most extensively investigated. The aim of this study was to evaluate a possible correlation between NOD2 rs2066844 C>T (also known as Arg702Trp or R702W) variant and CRC risk in a Romanian population. A total of 373 Romanian subjects (108 patients diagnosed with sporadic CRC and 265 controls) were enrolled in this hospital-based case-control study. The NOD2 R702W variants were detected by Real-time PCR using a predesigned TaqMan Genotyping Assay. The association between the genetic risk variant and CRC was expressed as odds ratios (OR) with 95% confidence intervals (CI). We did not find any statistically significant difference when we compared CC genotype with CT genotype (OR 1.1, 95% CI: 0.46-2.61; p=0.83) between CRC patients and controls. No TT homozygous genotype was detected. Also, we compared allele frequencies and no correlation was found (OR 1.09, 95% CI: 0.47-2.56; p=0.84). No association was found in the stratified analysis by tumor site, Dukes' stage and histological subtype. Our study suggests that the NOD2 R702W variant is not associated with CRC risk in the Romanian population. Further data from different and larger populations is required to determine whether NOD R702W SNP has effects on susceptibility to CRC.
Collapse
|
12
|
Abbaszadegan MR, Moghbeli M. Genetic and molecular origins of colorectal Cancer among the Iranians: an update. Diagn Pathol 2018; 13:97. [PMID: 30579343 PMCID: PMC6303916 DOI: 10.1186/s13000-018-0774-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one the leading causes of cancer related deaths among Iranians. Despite the various progresses in new therapeutic methods, it has still a low rate of survival. This high ratio of mortality is mainly related to the late diagnosis, in which the patients refer for treatment in advanced stages of tumor. MAIN BODY: colorectal cancer progression is largely associated with molecular and genetic bases. Although Iran has a high ratio of CRC mortality, there is not an efficient genetic panel for detection and prognosis. Therefore, it is critical to introduce new diagnostic markers with ability to detect in early stages. CONCLUSION Present review summarizes all of the genetic and epigenetic factors which are reported in CRC until now among the Iranian patients to pave the way of incorporation of new ethnic specific markers into the clinical practice and development of new targeted therapeutic methods.
Collapse
Affiliation(s)
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
NOD2 Expression in Intestinal Epithelial Cells Protects Toward the Development of Inflammation and Associated Carcinogenesis. Cell Mol Gastroenterol Hepatol 2018; 7:357-369. [PMID: 30704984 PMCID: PMC6357788 DOI: 10.1016/j.jcmgh.2018.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular pattern recognition receptor that senses bacterial peptidoglycan-conserved motifs in cytosol and stimulates host immune response including epithelial and immune cells. The association of NOD2 mutations with a number of inflammatory pathologies including Crohn's disease (CD), graft-versus-host diseases, or Blau syndrome, highlights its pivotal role in inflammatory response and the associated-carcinogenesis development. Since its identification in 2001 and its association with CD, the role of NOD2 in epithelial cells and immune cells has been investigated extensively but the precise mechanism by which NOD2 mutations lead to CD and the associated carcinogenesis development is largely unknown. In this review, we present and discuss recent developments about the role of NOD2 inside epithelial cells on the control of the inflammatory process and its linked carcinogenesis development.
Collapse
|
14
|
Udden SMN, Peng L, Gan JL, Shelton JM, Malter JS, Hooper LV, Zaki MH. NOD2 Suppresses Colorectal Tumorigenesis via Downregulation of the TLR Pathways. Cell Rep 2018; 19:2756-2770. [PMID: 28658623 DOI: 10.1016/j.celrep.2017.05.084] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/26/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Although NOD2 is the major inflammatory bowel disease susceptibility gene, its role in colorectal tumorigenesis is poorly defined. Here, we show that Nod2-deficient mice are highly susceptible to experimental colorectal tumorigenesis independent of gut microbial dysbiosis. Interestingly, the expression of inflammatory genes and the activation of inflammatory pathways, including NF-κB, ERK, and STAT3 are significantly higher in Nod2-/- mouse colons during colitis and colorectal tumorigenesis, but not at homeostasis. Consistent with higher inflammation, there is greater proliferation of epithelial cells in hyperplastic regions of Nod2-/- colons. In vitro studies demonstrate that, while NOD2 activates the NF-κB and MAPK pathways in response to MDP, it inhibits TLR-mediated activation of NF-κB and MAPK. Notably, NOD2-mediated downregulation of NF-κB and MAPK is associated with the induction of IRF4. Taken together, NOD2 plays a critical role in the suppression of inflammation and tumorigenesis in the colon via downregulation of the TLR signaling pathways.
Collapse
Affiliation(s)
- S M Nashir Udden
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jia-Liang Gan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M Shelton
- Molecular Pathology Core, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - James S Malter
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Md Hasan Zaki
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Raskov H, Burcharth J, Pommergaard HC. Linking Gut Microbiota to Colorectal Cancer. J Cancer 2017; 8:3378-3395. [PMID: 29151921 PMCID: PMC5687151 DOI: 10.7150/jca.20497] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
Pre-clinical and clinical data produce mounting evidence that the microbiota is strongly associated with colorectal carcinogenesis. Dysbiosis may change the course of carcinogenesis as microbial actions seem to impact genetic and epigenetic alterations leading to dysplasia, clonal expansion and malignant transformation. Initiation and promotion of colorectal cancer may result from direct bacterial actions, bacterial metabolites and inflammatory pathways. Newer aspects of microbiota and colorectal cancer include quorum sensing, biofilm formation, sidedness and effects/countereffects of microbiota and probiotics on chemotherapy. In the future, targeting the microbiota will probably be a powerful weapon in the battle against CRC as gut microbiology, genomics and metabolomics promise to uncover important linkages between microbiota and intestinal health.
Collapse
Affiliation(s)
- Hans Raskov
- Speciallægecentret ved Diakonissestiftelsen, Frederiksberg, Denmark
| | - Jakob Burcharth
- Department of Surgery, Zealand University Hospital, University of Copenhagen, Denmark
| | | |
Collapse
|
16
|
Drewes JL, Housseau F, Sears CL. Sporadic colorectal cancer: microbial contributors to disease prevention, development and therapy. Br J Cancer 2016; 115:273-80. [PMID: 27380134 PMCID: PMC4973155 DOI: 10.1038/bjc.2016.189] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota has been hailed as an accessory organ, with functions critical to the host including dietary metabolic activities and assistance in the development of a proper functioning immune system. However, an aberrant microbiota (dysbiosis) may influence disease processes such as colorectal cancer. In this review, we discuss recent advances in our understanding of the contributions of the microbiota to prevention, initiation/progression, and treatment of colorectal cancer, with a major focus on biofilms and the antimicrobial and antitumoural immune response.
Collapse
Affiliation(s)
- Julia L Drewes
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Franck Housseau
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia L Sears
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| |
Collapse
|
17
|
Branquinho D, Freire P, Sofia C. NOD2 mutations and colorectal cancer - Where do we stand? World J Gastrointest Surg 2016; 8:284-293. [PMID: 27152134 PMCID: PMC4840167 DOI: 10.4240/wjgs.v8.i4.284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/20/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Due to the overwhelming burden of colorectal cancer (CRC), great effort has been placed on identifying genetic mutations that contribute to disease development and progression. One of the most studied polymorphisms that could potentially increase susceptibility to CRC involves the nucleotide-binding and oligomerization-domain containing 2 (NOD2) gene. There is growing evidence that the biological activity of NOD2 is far greater than previously thought and a link with intestinal microbiota and mucosal immunity is increasingly sought after. In fact, microbial composition may be an important contributor not only to inflammatory bowel diseases (IBD) but also to CRC. Recent studies have showed that deficient NOD2 function confers a communicable risk of colitis and CRC. Despite the evidence from experimental models, population-based studies that tried to link certain NOD2 polymorphisms and an increase in CRC risk have been described as conflicting. Significant geographic discrepancies in the frequency of such polymorphisms and different interpretations of the results may have limited the conclusions of those studies. Since being first associated to IBD and CRC, our understanding of the role of this gene has come a long way, and it is tempting to postulate that it may contribute to identify individuals with susceptible genetic background that may benefit from early CRC screening programs or in predicting response to current therapeutic tools. The aim of this review is to clarify the status quo of NOD2 mutations as genetic risk factors to chronic inflammation and ultimately to CRC. The use of NOD2 as a predictor of certain phenotypic characteristics of the disease will be analyzed as well.
Collapse
|
18
|
Omrane I, Benammar-Elgaaied A. The immune microenvironment of the colorectal tumor: Involvement of immunity genes and microRNAs belonging to the TH17 pathway. Biochim Biophys Acta Rev Cancer 2015; 1856:28-38. [PMID: 25911397 DOI: 10.1016/j.bbcan.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 12/17/2022]
Abstract
Colorectal cancer is a complex and multifactorial disease. Various factors such as genetic, immunological, epigenetic and environmental constitute minor risk factors with their additive effects contributing to the advent of colorectal cancer. In order to evaluate the role of innate and adaptive immunity in the susceptibility, the presentation and the development of colorectal cancer, we considered an immunogenetic approach on polymorphisms in the TLR4 gene and NOD2/CARD15 gene (receptors of innate immunity) as well as in cytokine genes of the TH17 pathway IL17A, IL17F and cytokine receptor IL23R. Then, we evaluated the expression of microRNAs regulated by TLR4 and NOD2/CARD15 or targeting TLR4, IL17 and proinflammatory cytokines (IL-6, TNF) induced by IL17. Through a case-control study, we showed that the polymorphism of IL17A is associated with its susceptibility to colorectal cancer. Considering the tumor location, we found that the mutated alleles of IL17A, IL17F and IL23R are rather associated with colon cancer and not with rectum cancer. This result confirms that the colon and rectum are two different physiological entities. This study shows that TLR4, IL17A/F and IL23R polymorphisms are involved in the presentation of the disease with regard to tumor architecture, histology, and differentiation, advanced stage of the disease and lymph node and metastasis. Overall, these polymorphisms are associated with a poor prognosis of the disease. Furthermore, in order to evaluate the involvement of epigenetic mechanisms in the occurrence of colorectal cancer, we aimed at analyzing the tumor compared to a normal adjacent tissue and the expression of miRNAs (miR21, miR146a, miR135a, miR147b and miR155) that regulate immunity genes especially the cytokines of the TH17 pathway. This research has shown that microRNAs 21, 135a and 146a are associated with colorectal cancer. Indeed, these three miRs are overexpressed in cancer tissue compared to healthy tissue. These results clearly confirm the involvement of epigenetics in colorectal cancer. In other words, this study reveals the importance of immunity and specifically the TH17 pathway in the development and presentation of colorectal cancer. These results suggest that TLR4, IL17A, IL17F and IL23R polymorphisms as well as the expression of microRNAs that regulate inflammation and the TH17 pathway are associated with the evolution and progression of the colorectal tumor that could be considered as biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Inés Omrane
- Laboratoire de Génétique Immunologie et Pathologie Humaine, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Tunisia.
| | - Amel Benammar-Elgaaied
- Laboratoire de Génétique Immunologie et Pathologie Humaine, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Tunisia
| |
Collapse
|
19
|
Z-100, extracted from Mycobacterium tuberculosis strain Aoyama B, promotes TNF-α production via nucleotide-binding oligomerization domain containing 2 (Nod2)-dependent NF-κB activation in RAW264.7 cells. Mol Immunol 2015; 64:218-27. [DOI: 10.1016/j.molimm.2014.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 01/07/2023]
|
20
|
A miRNA-binding site single nucleotide polymorphism in the 3'-UTR region of the NOD2 gene is associated with colorectal cancer. Med Oncol 2014; 31:173. [PMID: 25148897 DOI: 10.1007/s12032-014-0173-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/08/2014] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the common malignancies worldwide. Single nucleotide polymorphisms in miRNA-binding site on gene transcripts are reported to play important role in increased risk of CRC in different population. We performed a case-control study using 88 CRC patients and 88 non-cancer counterparts to evaluate the association between NOD2 rs3135500 polymorphism located at 3' untranslated region of the gene and risk of sporadic CRC. Genotyping of rs3135500 polymorphism was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. We found a significant association of AA genotype with risk of CRC (adjusted OR 3.100, CI 1.621-5.930, p < 0.001). Also, significant difference in physical activity (p = 0.001) between case and control groups was found. We also found that individuals in control group were more aspirin or NSAID user compared to sporadic CRC cases (p = 0.002). In the case group, individuals with GG genotype consumed more aspirin or NSAID compared with AA+AG genotypes (33.3 vs. 9.6 %, adjusted OR 4.71, CI 1.25-17.76, p = 0.02). However, in the control group, individuals with AA+AG genotypes used more aspirin or NSAID compared with GG genotypes (47.2 vs. 11.4 %, adjusted OR 14 %, CI 0.05-0.47, p < 0.001).
Collapse
|
21
|
Omrane I, Mezlini A, Baroudi O, Stambouli N, Bougatef K, Ayari H, Medimegh I, Bouzaienne H, Uhrhammer N, Bignon YJ, Benammar-Elgaaied A, Marrakchi R. 3020insC NOD2/CARD15 polymorphism associated with treatment of colorectal cancer. Med Oncol 2014; 31:954. [PMID: 24719038 DOI: 10.1007/s12032-014-0954-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/30/2014] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is closely linked to cancer. The risk of damage by colorectal cancer (CRC) may increase due to autoimmune disease and cryptogenic inflammation. Therefore, genetic factors implicated in the chronic irritation in inflammatory bowel disease such as NOD2/CARD15 may predispose to CRC. In this report, we shed the light on the possible contribution of the NOD2 3020insC variant to CRC risk in a series of 246 Tunisian subjects including 101 patients with CRC and 145 healthy controls. NOD2/CARD15 polymorphism was genotyped by sizing fluorescently labeled PCR products and automated sequencers. We analyzed the association between the molecular features at this gene in relation to tumor and patient characteristics and treatments. Through this qualitative analysis, we found that CRC patients with mutant allele of NOD2/CARD15 were suffering from Crohn's disease (CD) with canonic presentation. We also observed a positive association between 3020insC polymorphism and surgery and chemotherapy. We suppose that around 3% of colorectal cases which happen at an age older than 50 years are associated with the canonic form of CD along with the 3020insC mutation and that these patients are in need for chemotherapy.
Collapse
Affiliation(s)
- Inés Omrane
- Laboratory of Human Genetics Immunology and Pathology, Faculty of Sciences Tunis El Manar, University of Tunis EL Manar, 2092, Tunis, Tunisia,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Theodoratou E, Montazeri Z, Hawken S, Allum GC, Gong J, Tait V, Kirac I, Tazari M, Farrington SM, Demarsh A, Zgaga L, Landry D, Benson HE, Read SH, Rudan I, Tenesa A, Dunlop MG, Campbell H, Little J. Systematic Meta-Analyses and Field Synopsis of Genetic Association Studies in Colorectal Cancer. J Natl Cancer Inst 2012; 104:1433-57. [DOI: 10.1093/jnci/djs369] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Burada F, Plantinga TS, Ioana M, Rosentul D, Angelescu C, Joosten LA, Netea MG, Saftoiu A. IRGM gene polymorphisms and risk of gastric cancer. J Dig Dis 2012; 13:360-365. [PMID: 22713085 DOI: 10.1111/j.1751-2980.2012.00602.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The study aimed to assess the possible association of polymorphisms in the autophagy gene IRGM (rs13361189 and rs4958847) with the risk of gastric cancer. METHODS A total of 102 patients with gastric adenocarcinoma, 52 with chronic gastritis and 351 healthy controls were included in this study. IRGM allelic variants were genotyped by quantitative real-time polymerase chain reaction. The association between polymorphisms and gastric cancer risk was estimated by odds ratios (OR) and 95% confidence interval (CI). RESULTS A significant difference was found for rs4958847 A allele. Carriers of the A allele were protected against gastric cancer (OR = 0.58, 95% CI 0.35-0.97, P = 0.038). Moreover, the presence of this allele seems to play an important role in decreasing the risk for the intestinal type of gastric cancer (OR = 0.47, 95% CI 0.23-0.94, P = 0.03). In contrast, the rs13361189 IRGM polymorphism was not associated with susceptibility to gastric cancer. None of the targeted polymorphisms were associated with chronic gastritis. CONCLUSION IRGM rs4958847 polymorphism influences susceptibility to gastric cancer, mainly for the intestinal type.
Collapse
Affiliation(s)
- Florin Burada
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy from Craiova, Craiova, Romania
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Landi D, Gemignani F, Pardini B, Naccarati A, Garritano S, Vodicka P, Vodickova L, Canzian F, Novotny J, Barale R, Landi S. Identification of candidate genes carrying polymorphisms associated with the risk of colorectal cancer by analyzing the colorectal mutome and microRNAome. Cancer 2012; 118:4670-80. [PMID: 22282400 DOI: 10.1002/cncr.27435] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/31/2011] [Accepted: 11/18/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND The presence of single-nucleotide polymorphisms (SNPs) within the 3'-untranslated regions of genes could affect the binding between a microRNA (miRNA) and its target, with consequences on gene expression regulation. Considering the important role of miRNAs in carcinogenesis, it is hypothesized here that these SNPs could also affect the individual risk of colorectal cancer (CRC). METHODS To test this hypothesis, a list was developed of 140 somatically mutated genes deduced from previous works on the mutome of the CRC. A further selection was conducted of SNPs within target sites for miRNAs that are expressed only in the colorectum (the colorectal microRNAome) and having adequate population frequencies. This yielded 12 SNPs that were genotyped in a case-control association study on 717 colorectal cases and 1171 controls from the Czech Republic. RESULTS Statistically significant associations were found between the risk of CRC and the variant alleles of KIAA0182 (rs709805) (odds ratio = 1.57; 95% confidence interval = 1.06-2.78, for the variant homozygotes) and NUP210 genes (rs354476) (odds ratio = 1.36; 95% confidence interval = 1.02-1.82, for the variant homozygotes). CONCLUSIONS The results support the study hypothesis and highlight the importance of SNPs within miRNA-dependent regulatory regions. Further studies on the role exerted by NUP210 and KIAA0182 in colorectal carcinogenesis are warranted.
Collapse
Affiliation(s)
- Debora Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marques R, Boneca IG. Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cell Mol Life Sci 2011; 68:3661-73. [PMID: 21984599 PMCID: PMC11115018 DOI: 10.1007/s00018-011-0829-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 02/06/2023]
Abstract
Pattern recognition receptors are somatically encoded and participate in the innate immune responses of a host to microbes. It is increasingly acknowledged that these receptors play a central role both in beneficial and pathogenic interactions with microbes. In particular, these receptors participate actively in shaping the gut environment to establish a fruitful life-long relationship between a host and its microbiota. Commensal bacteria engage Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs) to induce specific responses by intestinal epithelial cells such as production of antimicrobial products or of a functional mucus layer. Furthermore, a complex crosstalk between intestinal epithelial cells and the immune system is initiated leading to a mature gut-associated lymphoid tissue to secrete IgA. Impairment in NLR and TLR functionality in epithelial cells is strongly associated with chronic inflammatory diseases such as Crohn's disease, cancer, and with control of the commensal microbiota creating a more favorable environment for the emergence of new infections.
Collapse
Affiliation(s)
- Rute Marques
- Development of Lymphoid Tissue Unit, Institut Pasteur, Paris, France.
| | | |
Collapse
|
27
|
Aldhous MC, Soo K, Stark LA, Ulanicka AA, Easterbrook JE, Dunlop MG, Satsangi J. Cigarette smoke extract (CSE) delays NOD2 expression and affects NOD2/RIPK2 interactions in intestinal epithelial cells. PLoS One 2011; 6:e24715. [PMID: 21931826 PMCID: PMC3171477 DOI: 10.1371/journal.pone.0024715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/19/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genetic and environmental factors influence susceptibility to Crohn's disease (CD): NOD2 is the strongest individual genetic determinant and smoking the best-characterised environmental factor. Carriage of NOD2 mutations predispose to small-intestinal, stricturing CD, a phenotype also associated with smoking. We hypothesised that cigarette smoke extract (CSE) altered NOD2 expression and function in intestinal epithelial cells. METHODS AND FINDINGS Intestinal epithelial cell-lines (SW480, HT29, HCT116) were stimulated with CSE and nicotine (to mimic smoking) ±TNFα (to mimic inflammation). NOD2 expression was measured by qRT-PCR and western blotting; NOD2-RIPK2 interactions by co-immunoprecipitation (CoIP); nuclear NFκB-p65 by ELISA; NFκB activity by luciferase reporter assays and chemokines (CCL20, IL8) in culture supernatants by ELISA. In SW480 and HT29 cells the TNFα-induced NOD2 expression at 4 hours was reduced by CSE (p = 0.0226), a response that was dose-dependent (p = 0.003) and time-dependent (p = 0.0004). Similar effects of CSE on NOD2 expression were seen in cultured ileal biopsies from healthy individuals. In SW480 cells CSE reduced TNFα-induced NFκB-p65 translocation at 15 minutes post-stimulation, upstream of NOD2. Levels of the NOD2-RIPK2 complex were no different at 8 hours post-stimulation with combinations of CSE, nicotine and TNFα, but at 18 hours it was increased in cells stimulated with TNFα+CSE but decreased with TNFα alone (p = 0.0330); CSE reduced TNFα-induced NFκB activity (p = 0.0014) at the same time-point. At 24 hours, basal CCL20 and IL8 (p<0.001 for both) and TNFα-induced CCL20 (p = 0.0330) production were decreased by CSE. CSE also reduced NOD2 expression, CCL20 and IL8 production seen with MDP-stimulation of SW480 cells pre-treated with combinations of TNFα and CSE. CONCLUSIONS CSE delayed TNFα-induced NOD2 mRNA expression and was associated with abnormal NOD2/RIPK2 interaction, reduced NFκB activity and decreased chemokine production. These effects may be involved in the pathogenesis of small-intestinal CD and may have wider implications for the effects of smoking in NOD2-mediated responses.
Collapse
Affiliation(s)
- Marian C Aldhous
- Gastrointestinal Unit, Molecular Medicine Centre, Western General Hospital, University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kutikhin AG. Role of NOD1/CARD4 and NOD2/CARD15 gene polymorphisms in cancer etiology. Hum Immunol 2011; 72:955-68. [PMID: 21745515 DOI: 10.1016/j.humimm.2011.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 02/08/2023]
Abstract
NOD1/CARD4 and NOD2/CARD15 are members of Nod-like receptor family. They are located in cytosol, bind bacterial and viral ligands and play a key role in realization of innate and adaptive immune response, apoptosis, autophagy, and reactive oxygen species generation. Polymorphisms in NOD1/CARD4 and NOD2/CARD15 genes may shift balance between pro- and anti-inflammatory cytokines, modulating the risk of infection, chronic inflammation and cancer. NOD1/CARD4 and NOD2/CARD15 gene polymorphisms may be associated with altered risk of gastric, colorectal, breast, ovarian, prostate, testicular, lung, laryngeal, liver, gallbladder, biliary tract, pancreatic, small bowel, kidney, urinary bladder cancer, skin cancer, nonthyroid endocrine tumors, lymphoma and leukemia. The short list of such polymorphisms perspective for oncogenomic investigations may include rs2006847, rs2066845, rs2066844, rs2066842, ND(1)+32656, rs2075820 whereas rs104895493, rs104895476, rs104895475, rs104895474, rs104895473, rs104895472, rs104895462, rs104895461, rs104895460, rs104895438, rs5743291, rs5743260, rs2076756, rs2066843, Pro371Thr, Ala794Pro, Gln908His, rs72551113, rs72551107, rs6958571, rs2907749, rs2907748, rs2075822, rs2075819, rs2075818 may be added to the extended list. Reasons of discrepancies between different studies include confounding host genetic, bacterial, or environmental factors modulating penetrance of variant allele and affecting risk of condition increasing cancer risk, different bacterial impact in aetiology of such conditions, differences in sample size, clinicopathological characteristics, diagnostics, stratification, genotyping methods, and chance.
Collapse
Affiliation(s)
- Anton G Kutikhin
- Department of Epidemiology, Kemerovo State Medical Academy, Kemerovo, Russia.
| |
Collapse
|
29
|
Werts C, Rubino S, Ling A, Girardin SE, Philpott DJ. Nod-like receptors in intestinal homeostasis, inflammation, and cancer. J Leukoc Biol 2011; 90:471-82. [PMID: 21653239 DOI: 10.1189/jlb.0411183] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NLRs have been shown in a number of models to protect against microbial infection through their ability to participate in "pattern recognition" and their triggering of inflammatory pathways to control infection. Over the past few years, however, the role of NLRs, especially Nod1, Nod2, and NLRP3, in intestinal homeostasis has been highlighted. Indeed, these specific NLRs have been implicated in IBD, in particular, the association of Nod2 with CD, yet a clear understanding of how dysfunctional NLR activation leads to aberrant inflammation is still the focus of much investigation. In this review, we will examine how NLRs participate in the maintenance of gut homeostasis and how upset of this regulation can tip the balance toward chronic inflammation and intestinal cancer.
Collapse
Affiliation(s)
- Catherine Werts
- Institut Pasteur, Biology and Genetics of Bacterial Cell Wall, Avenir Group INSERM, Paris, France
| | | | | | | | | |
Collapse
|
30
|
Abstract
The innate immune system relies on the recognition of pathogens by pattern recognition receptors as a first line of defense and to initiate the adaptive immune response. Substantial progress has been made in defining the role of Nod (nucleotide-binding oligimerization domain)-like receptors and AIM2 (absent in melanoma 2) as pattern recognition receptors that activate inflammasomes in macrophages. Inflammasomes are protein platforms essential for the activation of inflammatory caspases and subsequent maturation of their pro-inflammatory cytokine substrates and induction of pyroptosis. This paper summarizes recent developments regarding the function of Nod-like receptors in immunity and disease.
Collapse
Affiliation(s)
- Sonal Khare
- Division of Rheumatology, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Recently, an unprecedented effort has been directed at understanding the interplay between chronic inflammation and development of cancer, with the case of inflammatory bowel disease (IBD)-associated colorectal cancer at the forefront of this research endeavor. The last decade has been particularly fertile, with the discovery of numerous innovative paradigms linking various inflammatory, proliferative, and innate and adaptive immune signaling pathways to the development of colorectal cancer. Because of the preponderant role of the intestinal microbiota in the initiation and progression of IBD, recent efforts have been directed at understanding the relationship between bacteria and colorectal cancer. The microbiota and its collective genome, the microbiome, form a diverse and complex ecological community that profoundly impacts intestinal homeostasis and disease states. This review will discuss the differential influence of the microbiota on the development of IBD-associated colorectal cancer and highlight the role of innate immune sensor-dependent as well as -independent mechanisms in this pathology.
Collapse
Affiliation(s)
- Janelle C Arthur
- Department of Medicine and the Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina 27599-7080, USA
| | | |
Collapse
|
32
|
van der Sluis S, Verhage M, Posthuma D, Dolan CV. Phenotypic complexity, measurement bias, and poor phenotypic resolution contribute to the missing heritability problem in genetic association studies. PLoS One 2010; 5:e13929. [PMID: 21085666 PMCID: PMC2978099 DOI: 10.1371/journal.pone.0013929] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/18/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The variance explained by genetic variants as identified in (genome-wide) genetic association studies is typically small compared to family-based heritability estimates. Explanations of this 'missing heritability' have been mainly genetic, such as genetic heterogeneity and complex (epi-)genetic mechanisms. METHODOLOGY We used comprehensive simulation studies to show that three phenotypic measurement issues also provide viable explanations of the missing heritability: phenotypic complexity, measurement bias, and phenotypic resolution. We identify the circumstances in which the use of phenotypic sum-scores and the presence of measurement bias lower the power to detect genetic variants. In addition, we show how the differential resolution of psychometric instruments (i.e., whether the instrument includes items that resolve individual differences in the normal range or in the clinical range of a phenotype) affects the power to detect genetic variants. CONCLUSION We conclude that careful phenotypic data modelling can improve the genetic signal, and thus the statistical power to identify genetic variants by 20-99%.
Collapse
Affiliation(s)
- Sophie van der Sluis
- Functional Genomics Section, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University and VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: a review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutat Res 2010; 717:109-15. [PMID: 20971123 DOI: 10.1016/j.mrfmmm.2010.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/08/2010] [Accepted: 10/14/2010] [Indexed: 12/16/2022]
Abstract
In this review, we focus on the genetic variations (single nucleotide polymorphisms, SNPs) known to occur in microRNAs and in their binding sites and the susceptibility to cancers of the gastro-intestinal (GI) tract in humans. Since the sequence complementarity and the thermodynamics of binding play an essential role in the interaction of miRNA with its target mRNA, sequence variations in the miRNA-binding seed regions or in miRNA genes (either within pre-, pri-, or mature miRNA regions) should reinforce, weaken, or disrupt the miRNA-mRNA interaction and affect the expression of mRNA targets. Indirect evidences supporting these hypotheses are reported in the literature, essentially coming from case-control association studies. Several studies have been published on the association between miR-SNPs or SNPs within their binding sites and the risk of oesophageal, gastric, or colorectal cancer. Unfortunately, functional studies are lacking. Besides reviewing the available literature, we present here for the first time two SNPs (rs17281995 in CD86 and rs1051690 in INSR) previously associated with the risk of CRC in a Czech population are also associated with the risk in a Spanish population. Moreover, we show for the first time that both these alleles regulate differentially the amount of a reporter gene (luciferase) in an in vitro assay on HeLa cells. These findings suggest that both these SNPs may have a functional role in regulating the expression of CD-86 and INSR proteins acting at the level of the 3'UTR. More functional studies are needed in order to better understand the role of polymorphic regulatory sequences at the 3'UTR of genes.
Collapse
|