1
|
Zhang W, Xie Y, Liu Z, Zhang J, Ni B, Gao W, Xing W, Zhou Y, Si T. The aminophospholipid transporter, ATP8B3, as a potential biomarker and target for enhancing the therapeutic effect of PD-L1 blockade in colon adenocarcinoma. Genomics 2024; 116:110907. [PMID: 39074670 DOI: 10.1016/j.ygeno.2024.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a prevalent malignant tumor globally, contributing significantly to cancer-related mortality. COAD guidelines label MSI (Microsatellite instability) and MSS (Microsatellite stability) subtypes as global classification criteria and treatment strategy selection criteria for COAD. Various combination therapies involving PD-L1 inhibitors and adjuvant therapy to enhance anti-tumor efficacy. METHODS Datasets from single-cell RNA sequencing and bulk RNA sequencing in the TCGA and GEO databases were utilized to identify differentially expressed genes (DEGs). Furthermore, the correlation between ATP8B3 and PD-L1 was validated using siRNA, shRNA, and western blot analysis. Additionally, the association between ATP8B3 and immune checkpoint blockade (ICB) therapy was investigated through immune infiltration analysis and flow cytometry in both in vivo and in vitro assays. RESULTS In the COAD patient group, ATP8B3 significantly contributed to the establishment of an immunosuppressive microenvironment. Inhibiting ATP8B3 led to a reduction in PD-L1 expression in colon cancer cell lines. Additionally, ATP8B3 expression levels could serve as a potential guide for PD-L1 treatment in MSI-H COAD patients, with higher ATP8B3 expression associated with increased sensitivity to PD-L1 therapy. However, due to the lack of immuno-killer cells in the microenvironment of MSS subtypes, elevated ATP8B3 expression couldn't increase the sensitivity of MSS COAD patients to PD-L1 inhibitors. CONCLUSION Our research results support that Inhibiting ATP8B3 could enhance TIL (tumor-infiltrating lymphocyte) infiltration by reducing PD-L1 expression in MSI-H COAD, thereby serving as an effective strategy to improve PD-L1 blocker efficacy. The treatment strategy of combining ATP8B3 inhibitors and immunotherapy for MSI/MSS COAD patients will be the best choice.
Collapse
Affiliation(s)
- Weihao Zhang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 's Clinical Research Center for Cancer, Tianjin, China
| | - Ziyun Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Zhang
- Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Gao
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Wenge Xing
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yaoyao Zhou
- Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Tongguo Si
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
| |
Collapse
|
2
|
Bell B, Flores-Lovon K, Cueva-Chicaña LA, Macedo R. Role of chemokine receptors in gastrointestinal mucosa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:20-52. [PMID: 39260937 DOI: 10.1016/bs.ircmb.2024.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors are essential for the immune response in the oral and gut mucosa. The gastrointestinal mucosa is characterized by the presence of immune populations because it is susceptible to inflammatory and infectious diseases, necessitating immune surveillance. Chemokine receptors are expressed on immune cells and play a role in gastrointestinal tissue-homing, although other non-immune cells also express them for various biological functions. CCR9, CXCR3 and CXCR6 play an important role in the T cell response in inflammatory and neoplastic conditions of the gastrointestinal mucosa. However, CXCR6 could also be found in gastric cancer cells, highlighting the different roles of chemokine receptors in different pathologies. On the other hand, CCR4 and CCR8 are critical for Treg migration in gastrointestinal tissues, correlating with poor prognosis in mucosal cancers. Other chemokine receptors are also important in promoting myeloid infiltration with context-dependent roles. Further, CXCR4 and CXCR7 are also present in gastrointestinal tumor cells and are known to stimulate proliferation, migration, and invasion into other tissues, among other pro-tumorigenic functions. Determining the processes underlying mucosal immunity and creating tailored therapeutic approaches for gastrointestinal diseases requires an understanding of the complex interactions that occur between chemokine receptors and their ligands in these mucosal tissues.
Collapse
Affiliation(s)
- Brett Bell
- Albert Einstein College of Medicine, New York, NY, United States
| | - Kevin Flores-Lovon
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología (GII), Arequipa, Peru
| | - Luis A Cueva-Chicaña
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología (GII), Arequipa, Peru
| | - Rodney Macedo
- Albert Einstein College of Medicine, New York, NY, United States; Grupo de Investigación en Inmunología (GII), Arequipa, Peru; Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, United States.
| |
Collapse
|
3
|
Roussot N, Ghiringhelli F, Rébé C. Tumor Immunogenic Cell Death as a Mediator of Intratumor CD8 T-Cell Recruitment. Cells 2022; 11:cells11223672. [PMID: 36429101 PMCID: PMC9688834 DOI: 10.3390/cells11223672] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The success of anticancer treatments relies on a long-term response which can be mediated by the immune system. Thus, the concept of immunogenic cell death (ICD) describes the capacity of dying cancer cells, under chemotherapy or physical stress, to express or release danger-associated molecular patterns (DAMPs). These DAMPs are essential to activate dendritic cells (DCs) and to stimulate an antigen presentation to CD8 cytotoxic cells. Then, activated CD8 T cells exert their antitumor effects through cytotoxic molecules, an effect which is transitory due to the establishment of a feedback loop leading to T-cell exhaustion. This phenomenon can be reversed using immune checkpoint blockers (ICBs), such as anti-PD-1, PD-L1 or CTLA-4 Abs. However, the blockade of these checkpoints is efficient only if the CD8 T cells are recruited within the tumor. The CD8 T-cell chemoattraction is mediated by chemokines. Hence, an important question is whether the ICD can not only influence the DC activation and resulting CD8 T-cell activation but can also favor the chemokine production at the tumor site, thus triggering their recruitment. This is the aim of this review, in which we will decipher the role of some chemokines (and their specific receptors), shown to be released during ICD, on the CD8 T-cell recruitment and antitumor response. We will also analyze the clinical applications of these chemokines as predictive or prognostic markers or as new targets which should be used to improve patients' response.
Collapse
Affiliation(s)
- Nicolas Roussot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
- Genetic and Immunology Medical Institute, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| | - Cédric Rébé
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| |
Collapse
|
4
|
Atreya I, Neurath MF. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022; 10:biomedicines10112940. [PMID: 36428508 PMCID: PMC9687992 DOI: 10.3390/biomedicines10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8535204; Fax: +49-9131-8535209
| |
Collapse
|
5
|
Microenvironment immune reconstitution patterns correlate with outcomes after autologous transplant in multiple myeloma. Blood Adv 2021; 5:1797-1804. [PMID: 33787859 DOI: 10.1182/bloodadvances.2020003857] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
The immediate postautologous stem cell transplant (ASCT) period in multiple myeloma represents a unique opportunity for long-term disease control because many patients have eradicated most of their disease but also a challenge because it is characterized by the increase of immune subsets detrimental to tumor immunosurveillance. The impact of the tumor immune microenvironment (iTME) in post-ASCT outcomes is not known. In this study, we included 58 patients undergoing upfront ASCT and evaluated their cellular and humoral iTME with cytometry by time of flight (CyTOF) and luminex, respectively, at day +60 to 100 post-ASCT. We identified 2 cellular iTME patterns. Group 1 was enriched in T-cell subsets at the opposite ends of the spectrum of T-cell differentiation compared with the rest of the patients, that is, cells already terminally differentiated (immune senescent or exhausted) and naive T cells. This group had worse hematologic responses post-ASCT, inferior survival, and shorter time to hematologic progression independent of established risk factors. No differences in the humoral iTME were noted between the 2 groups. In addition, no differences in the cellular/humoral iTME were noted according to high-risk fluorescence in situ hybridization status, early or late relapse. Finally, males had higher levels of natural killer cells negative for CD16, a key receptor mediating antibody-dependent cell cytotoxicity, a major mechanism of antitumor efficacy by therapeutic antibodies such as elotuzumab. Our findings suggest that T-cell iTME dysfunction post-ASCT, some of which could be reversible (exhaustion), correlates with worse outcomes. These results could be used to guide rational selection of post-ASCT maintenance/consolidation approaches in these patients.
Collapse
|
6
|
Antineoplastic effects of targeting CCR5 and its therapeutic potential for colorectal cancer liver metastasis. J Cancer Res Clin Oncol 2020; 147:73-91. [PMID: 32902795 PMCID: PMC7810651 DOI: 10.1007/s00432-020-03382-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Purpose Liver metastasis is observed in up to 50% of colorectal cancer (CRC) patients. Available treatment options are limited and disease recurrence is often. Chemokine receptor 5 (CCR5) has attracted attention as novel therapeutic target for treating cancers. In this study, we reinforced the importance of CCR5 as therapeutic target in CRC and its liver metastasis by applying in vitro, in vivo and clinical investigations. Methods By targeting CCR5 via siRNAs or an FDA approved antagonist (maraviroc), we investigated the ensuing antineoplastic effects in three CRC cell lines. An animal model for CRC liver metastasis was used to evaluate time-dependent expressional modulation of the CCR5 axis by cDNA microarray. The model was also used to evaluate the in vivo efficacy of targeting CCR5 by maraviroc. Circulatory and tumor associated levels of CCR5 and its cognate ligands (CCL3, CCL4, CCL5) were analyzed by ELISA, qRT-PCR and immunohistochemistry. Results Targeting the CCR5 inhibited proliferative, migratory and clonogenic properties and interfered with cell cycle-related signaling cascades. In vivo findings showed significant induction of the CCR5 axis during the early liver colonization phase. Treatment with maraviroc significantly inhibited CRC liver metastasis in the animal model. Differential expression profiles of circulatory and tumor associated CCR5/ligands were observed in CRC patients and healthy controls. Conclusion The findings indicate that targeting the CCR5 axis can be an effective strategy for treating CRC liver metastasis. Electronic supplementary material The online version of this article (10.1007/s00432-020-03382-9) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Zhang J, Endres S, Kobold S. Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotherapy 2020; 11:201-213. [PMID: 30730277 DOI: 10.2217/imt-2018-0111] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cancer immunotherapy has changed the treatment landscape for cancer patients, especially for those with metastatic spread. While the immunotherapeutic armamentarium is constantly growing, as exemplified by approved compounds, clinical outcome remains variable both within and across entities. A sufficient infiltration into the tumor microenvironment and successful activation of effector T lymphocytes against tumor cells have been identified as predictors for responses to T cell-based immunotherapies. However, tumor cells have developed a variety of mechanisms to reduce T cell homing and access to the tumor tissue to prevent activity of anticancer immunity. As a consequence, investigations have interrogated strategies to improve the efficacy of cancer immunotherapies by enhancing T cell infiltration into tumor tissues. In this review, we summarize mechanisms of how tumor tissue shapes immune suppressive microenvironment to prevent T cell access to the tumor site. We focus on current strategies to improve cancer immunotherapies through enhancing T cell infiltration.
Collapse
Affiliation(s)
- Jin Zhang
- Center of Integrated Protein Science Munich (CIPS-M) & Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337 Munich, Germany, Member of the German Center of Lung Research
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) & Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337 Munich, Germany, Member of the German Center of Lung Research
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) & Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337 Munich, Germany, Member of the German Center of Lung Research
| |
Collapse
|
8
|
Mass cytometry dissects T cell heterogeneity in the immune tumor microenvironment of common dysproteinemias at diagnosis and after first line therapies. Blood Cancer J 2019; 9:72. [PMID: 31462637 PMCID: PMC6713712 DOI: 10.1038/s41408-019-0234-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Dysproteinemias progress through a series of clonal evolution events in the tumor cell along with the development of a progressively more “permissive” immune tumor microenvironment (iTME). Novel multiparametric cytometry approaches, such as cytometry by time-of-flight (CyTOF) combined with novel gating algorithms can rapidly characterize previously unknown phenotypes in the iTME of tumors and better capture its heterogeneity. Here, we used a 33-marker CyTOF panel to characterize the iTME of dysproteinemia patients (MGUS, multiple myeloma—MM, smoldering MM, and AL amyloidosis) at diagnosis and after standard of care first line therapies (triplet induction chemotherapy and autologous stem cell transplant—ASCT). We identify novel subsets, some of which are unique to the iTME and absent from matched peripheral blood samples, with potential roles in tumor immunosurveillance as well as tumor immune escape. We find that AL amyloidosis has a distinct iTME compared to other dysproteinemias with higher myeloid and “innate-like” T cell subset infiltration. We show that T cell immune senescence might be implicated in disease pathogenesis in patients with trisomies. Finally, we demonstrate that the early post-ASCT period is associated with an increase of senescent and exhausted subsets, which might have implications for the rational selection of post-ASCT therapies.
Collapse
|
9
|
Suarez-Carmona M, Chaorentong P, Kather JN, Rothenheber R, Ahmed A, Berthel A, Heinzelmann A, Moraleda R, Valous NA, Kosaloglu Z, Eurich R, Wolf J, Grauling-Halama S, Hundemer M, Lasitschka F, Klupp F, Kahlert C, Ulrich A, Schneider M, Falk C, Jäger D, Zoernig I, Halama N. CCR5 status and metastatic progression in colorectal cancer. Oncoimmunology 2019; 8:e1626193. [PMID: 31428524 PMCID: PMC6685512 DOI: 10.1080/2162402x.2019.1626193] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple reports have highlighted the importance of the local immunological cellular composition (i.e. the density of effector T cells and macrophage polarization state) in predicting clinical outcome in advanced metastatic stage of colorectal cancer. However, in spite of the general association between a high effector T cell density and improved outcome, our recent work has revealed a specific lymphocyte-driven cancer cell-supporting signal. Indeed, lymphocyte-derived CCL5 supports CCR5-positive tumor cell proliferation and thereby fosters tumor growth in metastatic liver lesions. Upon systematic analysis of CCR5 expression by tumor cells using immunohistochemistry, we observed that the intensity of CCR5 increases with primary tumor size and peaks in T4 tumors. In liver metastases however, though CCR5 expression intensity is globally heightened compared to primary tumors, alterations in the expression patterns appear, leading to “patchiness” of the stain. CCR5 patchiness is, therefore, a signature of liver metastases in our cohort (n = 97 specimens) and relates to globally decreased expression intensity, but does not influence the extent of the response to CCR5 inhibitor Maraviroc in patients. Moreover, CCR5 patchiness relates to a poor immune landscape characterized by a low cytotoxic-to-regulatory T cell ratio at the invasive margin and enriched cellular and molecular markers of macrophage M2 polarization. Finally, because higher numbers of PD-1- and CTLA-4-positive cells surround tumors with patchy CCR5 expression, one can speculate that these tumors potentially respond to immune checkpoint blockade. This hypothesis is corroborated by the prolonged disease-free survival and disease-specific survival observed in patients with low gene expression of CCR5 in metastases from two publically available cohorts. These observations highlight the complex role of the CCL5-CCR5 axis in CRC metastatic progression and warrant further investigations.
Collapse
Affiliation(s)
- Meggy Suarez-Carmona
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HITRON), Mainz, Germany
| | - Pornpimol Chaorentong
- Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Jakob Nikolas Kather
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Rebecca Rothenheber
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Azaz Ahmed
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Berthel
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Anita Heinzelmann
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Rodrigo Moraleda
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Nektarios A Valous
- Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Zeynep Kosaloglu
- Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Rosa Eurich
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Jana Wolf
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Silke Grauling-Halama
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HITRON), Mainz, Germany
| | - Michael Hundemer
- Department of Hematology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Lasitschka
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fee Klupp
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Kahlert
- Department of Surgery, University Hospital Dresden, Dresden, Germany
| | - Alexis Ulrich
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School Hannover, Hanover, Germany
| | - Dirk Jäger
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HITRON), Mainz, Germany.,Department of Internal Medicine VI, University Hospital Heidelberg, Heidelberg, Germany
| | - Inka Zoernig
- Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Department of Internal Medicine VI, University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HITRON), Mainz, Germany.,Clinical Cooperation Unit Applied Tumor Immunity, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Department of Internal Medicine VI, University Hospital Heidelberg, Heidelberg, Germany.,Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Nishikawa G, Kawada K, Nakagawa J, Toda K, Ogawa R, Inamoto S, Mizuno R, Itatani Y, Sakai Y. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression via CCR5. Cell Death Dis 2019; 10:264. [PMID: 30890699 PMCID: PMC6424976 DOI: 10.1038/s41419-019-1508-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are recruited from BM to the stroma of developing tumors, where they serve as critical components of the tumor microenvironment by secreting growth factors, cytokines, and chemokines. The role of MSCs in colorectal cancer (CRC) progression was controversial. In this study, we found that C-C chemokine receptor type 5 (CCR5) ligands (i.e., C-C motif chemokine ligand 3 (CCL3), CCL4, and CCL5) were highly produced from MSCs using a chemokine array screening with conditioned media from the cultured human MSCs. A relatively strong CCR5 expression could be detected within the cytoplasm of several CRC cell lines. Regarding the effect of MSC, we found that the xenografts in which CCR5-overexpressing HCT116 cells were inoculated into immunocompromised mice were highly promoted in vivo by a mixture with MSCs. Notably, the CCR5 inhibitor, maraviroc, significantly abolished the MSC-induced tumor growth in vivo. In human clinical specimens (n = 89), 20 cases (29%) were high for CCR5, whereas 69 cases (71%) were low. Statistical analyses indicated that CCR5 expression in primary CRC was associated with CRC patients’ prognosis. Especially, stage III/IV patients with CCR5-high CRCs exhibited a significantly poorer prognosis than those with CCR5-low CRCs. Furthermore, we investigated the effects of preoperative serum CCR5 ligands on patients’ prognosis (n = 114), and found that CRC patients with high serum levels of CCL3 and CCL4 exhibited a poorer prognosis compared to those with low levels of CCL3 and CCL4, while there was no association between CCL5 and prognosis. These results suggest that the inhibition of MSC–CRC interaction by a CCR5 inhibitor could provide the possibility of a novel therapeutic strategy for CRC, and that serum levels of CCL3 and CCL4 could be predictive biomarkers for the prognosis of CRC patients.
Collapse
Affiliation(s)
- Gen Nishikawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jun Nakagawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Toda
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryotaro Ogawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Inamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rei Mizuno
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
CCR5 gene editing – Revisiting pros and cons of CCR5 absence. INFECTION GENETICS AND EVOLUTION 2019; 68:218-220. [DOI: 10.1016/j.meegid.2018.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 01/08/2023]
|
12
|
Butrym A, Kryczek I, Dlubek D, Jaskula E, Lange A, Jurczyszyn A, Mazur G. High expression of CC chemokine receptor 5 (CCR5) promotes disease progression in patients with B-cell non-Hodgkin lymphomas. Curr Probl Cancer 2018; 42:268-275. [PMID: 29456131 DOI: 10.1016/j.currproblcancer.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/07/2018] [Indexed: 01/19/2023]
Abstract
Chemokines are small proteins, that regulate cell migration in many physiological and pathologic processes in human body. They are also responsible for cancer progression. CC chemokine receptor 5 (CCR5) is responsible for cell recruitment in inflammation and may be involved in antitumor immune response controlling. Aberrant CCR5 can be found in different kind of cancers, not only hematological, but also solid tumors. Non-Hodgkin lymphomas consist of many lymphoma subtypes. They predominantly derive from B cells and can have very heterogenous clinical course. That is why new prognostic factors are still needed to predict and select high-risk patients. We evaluated CCR5 expression in lymph nodes derived from B-cell lymphomas in comparison to reactive lymphatic tissue (reactive lymph nodes): samples of lymphoma lymph nodes, peripheral blood, and bone marrow aspirates of patients with B-cell non-Hodgkin lymphoma were taken at diagnosis and after completed chemotherapy. Gene expression was determined by the reverse transcription-polymerase chain reaction method. Expression was estimated from 0AU (no amplificate signal) to 3AU (maximal amplificate signal). We found low CCR5 expression in lymphomas and reactive lymph nodes. Higher CCR5 gene expression in lymphoma patients was correlated with advanced stage of the disease, high proliferation index (Ki-67), and international prognostic index. Patients with higher CCR5 expression had shorter survival. CCR5 high expression may have a role in non-Hodgkin's lymphomas progression and can influence patients' survival. CCR5 also can become an immunotherapeutic target for novel treatment options in the future as well as new prognostic factor.
Collapse
Affiliation(s)
- Aleksandra Butrym
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland.
| | - Ilona Kryczek
- Department of Clinical Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Dlubek
- Department of Clinical Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Emilia Jaskula
- Department of Clinical Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrzej Lange
- Department of Clinical Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | - Grzegorz Mazur
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
13
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
14
|
Increased MALAT1 expression predicts poor prognosis in esophageal cancer patients. Biomed Pharmacother 2016; 83:8-13. [DOI: 10.1016/j.biopha.2016.05.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/06/2023] Open
|
15
|
Liu L, Zhao G, Wu W, Rong Y, Jin D, Wang D, Lou W, Qin X. Low intratumoral regulatory T cells and high peritumoral CD8(+) T cells relate to long-term survival in patients with pancreatic ductal adenocarcinoma after pancreatectomy. Cancer Immunol Immunother 2016; 65:73-82. [PMID: 26646849 PMCID: PMC11029368 DOI: 10.1007/s00262-015-1775-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
The prognosis for pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. Recent studies have focused on the role of lymphocytes in the PDAC microenvironment. Using immunohistochemistry, our study explored the clinical significance of intratumoral or peritumoral CD4(+)Foxp3(+) regulatory T cells (Tregs) and CD8(+) T cells in the tumor microenvironment and analyzed their relation to the prognosis of PDAC in a consecutive series of 92 patients after resection. CD8(+) T cells were more frequently seen within peritumoral sites, while CD4(+)Foxp3(+) Tregs were more frequent within intratumoral areas. Neither exhibited any relationship with other clinicopathologic factors. Patients with low levels of intratumoral Tregs had longer disease-free survival than those with higher levels (DFS 22.2 vs. 11.2 months, p < 0.001), and patients with higher levels of peritumoral CD8(+) T cells had longer overall survival than those with lower levels (OS 31.0 vs. 14.2 months, p < 0.001). Multivariate analysis demonstrated that intratumoral Tregs (hazard ratio, HR 3.39, p = 0.010) and peritumoral CD8(+) T cells (HR 0.10, p < 0.001) are related to DFS and OS, respectively. These results indicate that intratumoral Tregs are a negative predictor of DFS, while peritumoral CD8(+) T cells are a positive predictor of OS for PDAC patients with pancreatectomy.
Collapse
Affiliation(s)
- Li Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Yefei Rong
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wenhui Lou
- Institute of General Surgery, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| |
Collapse
|
16
|
Zumwalt TJ, Arnold M, Goel A, Boland CR. Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with GranzymeB+ CD8+ T-cell infiltration. Oncotarget 2015; 6:2981-91. [PMID: 25671296 PMCID: PMC4413778 DOI: 10.18632/oncotarget.3205] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 12/10/2014] [Indexed: 12/14/2022] Open
Abstract
Transcriptional expression of CXCR3 and CCR5 cognate chemokines correlate with
CD8+ T-cell infiltration and prolonged survival in
colorectal cancer (CRC). These findings were derived mainly from paraffin
embedded tissues; thus little is known about the secretion pattern of
CD8+ T-cell targeting chemokines from CRCs. Therefore, we
developed and introduced a novel platform that assesses the immune mediators
that are secreted from live excised tissues. Transcriptional profiling and
unsupervised hierarchical clustering of 43 CRCs based on expression of genes
that represent the adaptive immune response were used to predict tumors that are
strong secretors of T-cell targeting chemokines. Secretion of these mediators
were corroborated using flow cytometric analysis of T-cell lineage markers: CD4,
CD8, IFN-γ, and GzmB. We demonstrate that stronger secretion of CXCL10
(CXCR3 ligand) and CCL5 (CCR5 ligand) and infiltration of
GzmB+CD8+ cytotoxic T-lymphocytes (CTLs)
and IFN-γ+CD4+ helper T-cells can be
predicted by transcriptional profiling, and that CRCs with stronger T-cell
immunity were proportionally skewed towards early TNM stages and lacked distant
organ metastasis. Our study represents the first functional analysis of secreted
immune mediators from CRCs beyond immunohistochemistry and real-time PCR, and
observed active physiological interactions between the tumor cells and the
immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Timothy J Zumwalt
- Gastrointestinal Cancer Research Laboratory, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA.,Institute of Biomedical Studies, Baylor University, Waco, Texas, USA.,Baylor Institute for Immunology Research, Dallas, Texas, USA
| | - Mildred Arnold
- Gastrointestinal Cancer Research Laboratory, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - C Richard Boland
- Gastrointestinal Cancer Research Laboratory, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Yoo KH, Lee DG, Won KY, Lim SJ, Park YK, Chang SG. Expression of CC chemokine receptor 5 in clear cell renal cell carcinoma and its clinical significance. Oncol Lett 2015; 9:2085-2089. [PMID: 26137017 DOI: 10.3892/ol.2015.3048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
DNA hypomethylation was the initial epigenetic abnormality recognized in human malignancy. In the present study, the GoldenGate high-throughput genotyping assay was adapted to determine the methylation state of 1,505 specific CpG sites in 807 cancer-related genes. The methylation results revealed that CC chemokine receptor 5 (CCR5) was hypomethylated (mean β-value difference, -0.21) in clear cell renal cell carcinoma (CCRCC) tissue. Tissue samples from 61 CCRCC cases were used for immunohistochemical staining, and patients with low CCR5 expression (n=44) were compared with those with high CCR5 expression (n=17). Tumor (T) stage was significantly lower in the low expression group compared with the high expression group (P=0.047). The Fuhrman grade of patients in the low expression group was significantly lower than that of patients in the high expression group (P=0.044). Whilst the node (N) and metastasis (M) stages of the CCR5 low expression group appeared to be lower compared with those of the CCR5 high expression group; this difference was not statistically significant (N stage, P=0.632; M stage, P=0.896). Additionally, patients in the low expression group had lower risks of postoperative tumor recurrence (P=0.110) and mortality from CCRCC (P=0.159) compared with those in the high expression group, however, this was also without statistical significance. The results indicate that CCR5 hypomethylation is associated with cancer tissue to a greater extent than normal tissue. Although the biological function of CCR5 in CCRCC remains to be established, low CCR5 expression is associated with low T stage and low Fuhrman grade in these patients.
Collapse
Affiliation(s)
- Koo Han Yoo
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Dong-Gi Lee
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Kyu Yeoun Won
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Sung-Jig Lim
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Yong-Koo Park
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Sung-Goo Chang
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| |
Collapse
|
18
|
Zumwalt TJ, Goel A. Immunotherapy of Metastatic Colorectal Cancer: Prevailing Challenges and New Perspectives. CURRENT COLORECTAL CANCER REPORTS 2015; 11:125-140. [PMID: 26441489 PMCID: PMC4591512 DOI: 10.1007/s11888-015-0269-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patients with recurring or metastatic colorectal cancer (mCRC) have strikingly low long-term survival, while conventional treatments such as chemotherapeutic intervention and radiation therapy marginally improve longevity. Although, many factors involving immunosurveillance and immunosuppression were recently validated as important for patient prognosis and care, a multitude of experimental immunotherapies designed to combat unresectable mCRC have, in few cases, successfully mobilized antitumor immune cells against malignancies, nor conclusively or consistently granted protection, complete remission, and/or stable disease from immunotherapy - of which benefit less than 10% of those receiving therapy. After decades of progress, however, new insights into the mechanisms of immunosuppression, tolerance, and mutation profiling established novel therapies that circumvent these immunological barriers. This review underlines the most exciting methods to date that manipulate immune cells to curb mCRC, including adoptive cell therapy, dendritic cell vaccines, and checkpoint inhibitor antibodies - of which hint at effective and enduring protection against disease progression and undetected micrometastases.
Collapse
Affiliation(s)
- Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Pervaiz A, Ansari S, Berger MR, Adwan H. CCR5 blockage by maraviroc induces cytotoxic and apoptotic effects in colorectal cancer cells. Med Oncol 2015; 32:158. [PMID: 25840792 DOI: 10.1007/s12032-015-0607-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022]
Abstract
Alterations in the expression of C-C chemokine receptor type 5 (CCR5 or CD195) have been correlated with disease progression in different cancers. Recently, a few investigations have reported the blockage of this receptor by an antagonist (maraviroc) and its antineoplastic effects on tumor cell growth. However, little is known about the mechanistic reasons behind these antineoplastic effects of CCR5 blockage by maraviroc. In this study, we blocked the CCR5 receptor by maraviroc in SW480 and SW620 colorectal cancer cells to study the resulting changes in biological properties and related pathways. This blockage induced significantly reduced proliferation and a profound arrest in G1 phase of the cell cycle. Concomitantly, maraviroc caused significant signs of apoptosis at morphological level. Significant modulation of multiple apoptosis-relevant genes was also noticed at mRNA levels. In addition, we found remarkable increases in cleaved caspases at protein level. These modulations led us to propose a signaling pathway for the observed apoptotic effects. In conclusion, blocking the CCR5 by maraviroc induces significant cytotoxic and apoptotic effects in colorectal cancer cells. Thus, maraviroc can be considered a model compound, which may foster the development of further CCR5 antagonists to be used for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Asim Pervaiz
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
20
|
Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G, de Montpréville V, Validire P, Besse B, Mami-Chouaib F. CD8+CD103+ Tumor–Infiltrating Lymphocytes Are Tumor-Specific Tissue-Resident Memory T Cells and a Prognostic Factor for Survival in Lung Cancer Patients. THE JOURNAL OF IMMUNOLOGY 2015; 194:3475-86. [PMID: 25725111 DOI: 10.4049/jimmunol.1402711] [Citation(s) in RCA: 468] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fayçal Djenidi
- INSERM Unité 1186, 94805 Villejuif, France; Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France
| | - Julien Adam
- Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France; INSERM Unité 981, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Aïcha Goubar
- Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France; INSERM Unité 981, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Aurélie Durgeau
- INSERM Unité 1186, 94805 Villejuif, France; Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France
| | - Guillaume Meurice
- Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France; Institut de Cancérologie Gustave Roussy, Plateforme de Bioinformatique, 94805 Villejuif, France
| | - Vincent de Montpréville
- INSERM Unité 1186, 94805 Villejuif, France; Centre Chirurgical Marie-Lannelongue, Service d'Anatomie Pathologique, 92350 Le-Plessis-Robinson, France
| | - Pierre Validire
- Institut Mutualiste Montsouris, Service d'Anatomie Pathologique, 75014 Paris, France; and
| | - Benjamin Besse
- Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France; Département de Médecine, Institut de Cancérologie Gustave Roussy, 95805 Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM Unité 1186, 94805 Villejuif, France; Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France;
| |
Collapse
|
21
|
CC chemokine receptor 5: the interface of host immunity and cancer. DISEASE MARKERS 2014; 2014:126954. [PMID: 24591756 PMCID: PMC3925608 DOI: 10.1155/2014/126954] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/30/2013] [Indexed: 01/17/2023]
Abstract
Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy.
Collapse
|
22
|
Barmania F, Pepper MS. C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Appl Transl Genom 2013; 2:3-16. [PMID: 27942440 PMCID: PMC5133339 DOI: 10.1016/j.atg.2013.05.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 12/25/2022]
Abstract
When HIV was initially discovered as the causative agent of AIDS, many expected to find a vaccine within a few years. This has however proven to be elusive; it has been approximately 30 years since HIV was first discovered, and a suitable vaccine is still not in effect. In 2009, a paper published by Hutter et al. reported on a bone marrow transplant performed on an HIV positive individual using stem cells that were derived from a donor who was homozygous for a mutation in the CCR5 gene known as CCR5 delta-32 (Δ32) (Hütter et al., 2009). The HIV positive individual became HIV negative and remained free of viral detection after transplantation despite having halted anti-retroviral (ARV) treatment. This review will focus on CCR5 as a key component in HIV immunity and will discuss the role of CCR5 in the control of HIV infection.
Collapse
Affiliation(s)
| | - Michael S. Pepper
- Corresponding author at: Dept. of Immunology, Faculty of Health Sciences, University of Pretoria, P.O. Box 2034, Pretoria 0001, South Africa. Tel.: + 27 12 319 2190; fax: + 27 12 319 2946.
| |
Collapse
|
23
|
Schimanski CC, Moehler M, Gockel I, Zimmermann T, Lang H, Galle PR, Berger MR. Expression of chemokine receptor CCR5 correlates with the presence of hepatic molecular metastases in K-ras positive human colorectal cancer. J Cancer Res Clin Oncol 2011; 137:1139-45. [PMID: 21468700 DOI: 10.1007/s00432-011-0980-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 03/22/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND Molecular metastases are precursors of postoperative recurrence, detected by molecular-biological tools. Chemokines and their receptors contribute to dissemination and local immune recognition. A strong expression of the chemokine receptor CCR5 is associated with non-metastatic colorectal cancer and increased CD8+ T-cell infiltration. The aim of this study was to analyze whether CCR5 expression correlates with the presence of hepatic molecular metastases (MM). METHODS Ninety-three patients undergoing elective surgery for colorectal cancer were assessed. The K-ras mutation status was defined by PCR-RFLP, and the CCR5 expression status was analyzed by CCR5-specific reverse transcription (RT-PCR) analysis. Liver biopsy samples had been intra-operatively taken to screen for MM. MM were detected by K-ras-specific PCR-RFLP and nested CK20/GCC RT-PCR. Prevalence of MM was correlated with CCR5 expression status. RESULTS Human colorectal cancer harboured K-ras mutations in 53% (codon 12: 47%; codon 13: 6%) of cases. Among K-ras mutants, MM were detected in 27-53% of patients, dependent on the technique applied (K-ras-specific PCR-RFLP assay vs. nested CK20/GCC RT-PCR approach (P = 0.004)). CCR5 expression of K-ras mutants ranged from absent (23/49: 47%), weak (17/49: 35%), intermediate (4/49: 8%) to strong (5/49: 10%). MM were found in 30% of CCR5 negative and in 23% of CCR5 positive cancer patients by the K-ras-specific PCR-RFLP assay. The nested CK20/GCC RT-PCR assay detected MM in 87% of CCR5 negative and in 27% of CCR5 positive colorectal cancer patients (P = 0.00002). CONCLUSION Thus, CCR5 expression of the primary cancer might be a valuable biomarker indicating the absence of hepatic molecular metastases.
Collapse
Affiliation(s)
- Carl C Schimanski
- Department of Internal Medicine, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Molecular profiles and clinical outcome of stage UICC II colon cancer patients. Int J Colorectal Dis 2011; 26:847-58. [PMID: 21465190 DOI: 10.1007/s00384-011-1176-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE Published multigene classifiers suggesting outcome prediction for patients with stage UICC II colon cancer have not been translated into a clinical application so far. Therefore, we aimed at validating own and published gene expression signatures employing methods which enable their reconstruction in routine diagnostic specimens. METHODS Immunohistochemistry was applied to 68 stage UICC II colon cancers to determine the protein expression of previously published prognostic classifier genes (CDH17, LAT, CA2, EMR3, and TNFRSF11A). RNA from macrodissected tumor samples from 53 of these 68 patients was profiled on Affymetrix GeneChips (HG-U133 Plus 2.0). Prognostic signatures were generated by "nearest shrunken centroids" with cross-validation. Previously published gene signatures were applied to our data set using "global tests" and leave-one-out cross-validation RESULTS Correlation of protein expression with clinical outcome failed to separate patients with disease-free follow-up (group DF) and relapse (group R). Although gene expression profiling allowed the identification of differentially expressed genes ("DF" vs. "R"), a stable classification/prognosis signature was not discernable. Furthermore, the application of previously published gene signatures to our data was unable to predict clinical outcome (prediction rate 75.5% and 64.2%; n.s.). T-stage was the only independent prognostic factor for relapse with established clinical and pathological parameters including microsatellite status (multivariate analysis). CONCLUSIONS Our protein and gene expression analyses do not support application of molecular classifiers for prediction of clinical outcome in current routine diagnostic as a basis for patient-orientated therapy in stage UICC II colon cancer. Further studies are needed to develop prognosis signatures applicable in patient care.
Collapse
|
25
|
González-Martín A, Gómez L, Lustgarten J, Mira E, Mañes S. Maximal T cell-mediated antitumor responses rely upon CCR5 expression in both CD4(+) and CD8(+) T cells. Cancer Res 2011; 71:5455-66. [PMID: 21715565 DOI: 10.1158/0008-5472.can-11-1687] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune responses against cancer rely upon leukocyte trafficking patterns that are coordinated by chemokines. CCR5, the receptor for chemotactic chemokines MIP1alpha, MIP1beta, and RANTES (CCL3, CCL4, CCL5), exerts major regulatory effects on CD4(+)- and CD8(+) T cell-mediated immunity. Although CCR5 and its ligands participate in the response to various pathogens, its relevance to tumoral immune control has been debated. Here, we report that CCR5 has a specific, ligand-dependent role in optimizing antitumor responses. In adoptive transfer studies, efficient tumor rejection required CCR5 expression by both CD4(+) and CD8(+) T cells. CCR5 activation in CD4(+) cells resulted in CD40L upregulation, leading to full maturation of antigen-presenting cells and enhanced CD8(+) T-cell crosspriming and tumor infiltration. CCR5 reduced chemical-induced fibrosarcoma incidence and growth, but did not affect the onset or progression of spontaneous breast cancers in tolerogenic Tg(MMTV-neu) mice. However, CCR5 was required for TLR9-mediated reactivation of antineu responses in these mice. Our results indicate that CCR5 boosts T-cell responses to tumors by modulating helper-dependent CD8(+) T-cell activation.
Collapse
Affiliation(s)
- Alicia González-Martín
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Deschoolmeester V, Baay M, Lardon F, Pauwels P, Peeters M. Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI. CANCER MICROENVIRONMENT 2011; 4:377-92. [PMID: 21618031 DOI: 10.1007/s12307-011-0068-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/19/2011] [Indexed: 12/14/2022]
Abstract
There is growing evidence that both local and systemic inflammatory responses play an important role in the progression of a variety of solid tumors. Colorectal cancer (CRC) results from the cumulative effect of sequential genetic alterations, leading to the expression of tumor-associated antigens possibly inducing a cellular anti-tumor immune response. It is well recognized that cytotoxic lymphocytes (CTLs) constitute one of the most important effector mechanisms of anti-tumor-immunity. However, their potential prognostic influence in CRC remains controversial. In addition, other key players like natural killer cells, tumor associated macrophages and regulatory T cells play an important role in the immune attack against CRC and need further investigation. This review will mainly focus on the role of the adaptive immune system in CRC and particularly in regard to microsatellite instability.
Collapse
Affiliation(s)
- Vanessa Deschoolmeester
- Laboratory of Cancer Research and Clinical Oncology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium,
| | | | | | | | | |
Collapse
|
27
|
Belov L, Zhou J, Christopherson RI. Cell surface markers in colorectal cancer prognosis. Int J Mol Sci 2010; 12:78-113. [PMID: 21339979 PMCID: PMC3039945 DOI: 10.3390/ijms12010078] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 12/14/2022] Open
Abstract
The classification of colorectal cancers (CRC) is currently based largely on histologically determined tumour characteristics, such as differentiation status and tumour stage, i.e., depth of tumour invasion, involvement of regional lymph nodes and the occurrence of metastatic spread to other organs. These are the conventional prognostic factors for patient survival and often determine the requirement for adjuvant therapy after surgical resection of the primary tumour. However, patients with the same CRC stage can have very different disease-related outcomes. For some, surgical removal of early-stage tumours leads to full recovery, while for others, disease recurrence and metastasis may occur regardless of adjuvant therapy. It is therefore important to understand the molecular processes that lead to disease progression and metastasis and to find more reliable prognostic markers and novel targets for therapy. This review focuses on cell surface proteins that correlate with tumour progression, metastasis and patient outcome, and discusses some of the challenges in finding prognostic protein markers in CRC.
Collapse
Affiliation(s)
- Larissa Belov
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia; E-Mails: (J.Z.); (R.I.C.)
| | | | | |
Collapse
|
28
|
Compérat E, Rouprêt M, Drouin SJ, Camparo P, Bitker MO, Houlgatte A, Cancel-Tassin G, Cussenot O. Tissue expression of IL16 in prostate cancer and its association with recurrence after radical prostatectomy. Prostate 2010; 70:1622-7. [PMID: 20687232 DOI: 10.1002/pros.21197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Genetic polymorphism located within the IL16 gene has been reported to be associated with aggressive prostate cancer (PCa). Our aim was to establish whether the tissue expression of IL16 is a prognostic factor of survival in PCa. METHODS The files of patients who underwent radical prostatectomy (RP) between 1995 and 2001 were reviewed. The cases were selected and classified according to the D'Amico classification for risk of recurrence (intermediate or high). The value of IL16 and its receptor CCR5 (chemokine (C-C motif) receptor 5) expression levels were determined as witness of aggressiveness patterns and markers of biological relapse in patients with PCa treated by RP. A tissue microarray of 304 cases was constructed. IL16 and CCR5 expression levels were characterized by immunohistochemistry. RESULTS IL16 expression was correlated with high Gleason score (i.e., >7) (P < 0.01). It was not significant for CCR5. IL16 and CCR5 were not associated with prostate-specific antigen (PSA) or capsular extension of the disease. The accurate prediction of disease outcome, using stratification of cases, according to negative margins and D'Amico classification was significantly enhanced by status of IL16 expression (P ≤ 0.01). In univariate analyses, Gleason score, PSA level, stage and loss of IL16 expression were related to better biological-free survival (P < 0.05) but not CCR5. In a multivariate analysis, IL16 expression, Gleason score, and tumor stage were independent factors for biochemical-free survival (P = 0.001). CONCLUSIONS IL16 appears to be a useful prognostic factor in PCa. Its expression in PCa tissue was correlated to tumor aggressiveness and biochemical relapse of the disease.
Collapse
Affiliation(s)
- Eva Compérat
- ER2, University PMC Paris VI, CeRePP, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|