1
|
Kohlruss M, Chakraborty S, Hapfelmeier A, Jesinghaus M, Slotta-Huspenina J, Novotny A, Sisic L, Gaida MM, Ott K, Weichert W, Pfarr N, Keller G. Low microsatellite instability: A distinct instability type in gastric cancer? J Cancer Res Clin Oncol 2023; 149:17727-17737. [PMID: 37819581 PMCID: PMC10725348 DOI: 10.1007/s00432-023-05430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE We recently showed that low microsatellite instability (MSI-L) is associated with a good response to platinum/5-fluorouracil (5-FU) neoadjuvant chemotherapy (CTx) in gastric cancer. The purpose of this study was to characterize the instability pattern and to investigate an association of MSI-L tumors with mutations in genes of DNA repair pathways and with total tumor mutation burden (TMB). METHODS MSI patterns were compared between 67 MSI high (-H) and 35 MSI-L tumors. Whole-exome sequencing was performed in 34 microsatellite stable (MSS) and 20 MSI-L tumors after or without neoadjuvant CTx. RESULTS Of the 35 MSI-L tumors, 33 tumors had instability at a dinucleotide repeat marker. In the homologous recombination (HR) pathway, 10 of the 34 (29%) MSS and 10 of the 20 (50%) MSI-L tumors showed variants (p = 0.154). In the DNA damage tolerance pathway, 6 of the 34 (18%) MSS and 7 of the 20 (35%) MSI-L tumors had variants (p = 0.194). The HR deficiency score was similar in both tumor groups. TMB was significantly higher in MSI-L compared to MSS tumors after CTx (p = 0.046). In the MSS and MSI-L tumors without CTx no difference was observed (p = 1.00). CONCLUSION MSI-L due to instability at dinucleotide repeat markers was associated with increased TMB after neoadjuvant CTx treatment, indicating sensitivity to platinum/5-FU CTx. If confirmed in further studies, this could contribute to refined chemotherapeutic options including immune-based strategies for GC patients with MSI-L tumors.
Collapse
Affiliation(s)
- Meike Kohlruss
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany
| | - Shounak Chakraborty
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany
| | - Alexander Hapfelmeier
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Moritz Jesinghaus
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany
- Institue of Pathology, University of Marburg, Marburg, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany
| | - Alexander Novotny
- Department of Surgery, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Leila Sisic
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- TRON-Translational Oncology at The University Medical Center of The Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Katja Ott
- Department of Surgery, Klinikum Rosenheim, Rosenheim, Germany
| | - Wilko Weichert
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany
- Institute of Pathology, German Cancer Consortium [DKTK], Partner Site Munich, Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany
| | - Gisela Keller
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany.
| |
Collapse
|
2
|
Laycock A, Kang A, Ang S, Texler M, Bentel J. Lack of correlation between MSH3 immunohistochemistry and microsatellite analysis for the detection of elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) in colorectal cancers. Hum Pathol 2021; 118:9-17. [PMID: 34537247 DOI: 10.1016/j.humpath.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
Immunohistochemical evaluation of mismatch repair protein (MMR) expression is an important screening tool in diagnostic pathology, where it is routinely used to identify subsets of colorectal cancers (CRCs) with either inherited or sporadic forms of microsatellite instability (MSI). MSH3 is not included in current MMR panels, although aberrant MSH3 expression is reported to occur in 40-60% of CRCs and is associated with elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and a worse prognosis. In this study, we applied MSH3 immunohistochemistry and tetranucleotide MSI analysis to a cohort of 250 unselected CRCs to evaluate the potential use of the methods in routine practice. Partial, complete, and focal loss of nuclear MSH3 and its cytoplasmic mislocalization were evident in 67% of tumors, whereas MSI was evident in two to six of a panel of six tetranucleotide repeats in 46% of cases. However, concordance between MSH3 immunohistochemistry and tetranucleotide MSI results was only 61%, indicating the unsuitability of this combination of tests in routine pathology practice. MSH3 immunostaining was compromised in areas of tissue crush and autolysis, which are common in biopsy and surgical samples, potentially mitigating against its routine use. Although tetranucleotide MSI is clearly evident in a subset of CRCs, further development of validated sets of tetranucleotide repeats and either MSH3 or other immunohistochemical markers will be required to include EMAST testing in the routine evaluation of CRCs in clinical practice.
Collapse
Affiliation(s)
- Andrew Laycock
- PathWest Anatomical Pathology, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia; University of Notre Dame, Fremantle, 6160 Western Australia, Australia; Curtin University, Perth, 6102 Western Australia, Australia.
| | - Alexandra Kang
- PathWest Anatomical Pathology, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia
| | - Sophia Ang
- Clinical Services, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia
| | - Michael Texler
- PathWest Anatomical Pathology, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia
| | - Jacqueline Bentel
- PathWest Anatomical Pathology, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia
| |
Collapse
|
3
|
Meessen S, Currey N, Jahan Z, Parker HW, Jenkins MA, Buchanan DD, Hopper JL, Segelov E, Dahlstrom JE, Kohonen-Corish MRJ. Tetranucleotide and Low Microsatellite Instability Are Inversely Associated with the CpG Island Methylator Phenotype in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13143529. [PMID: 34298744 PMCID: PMC8308094 DOI: 10.3390/cancers13143529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary A type of DNA mismatch repair defect known as “elevated microsatellite alterations at selected tetranucleotide repeats” (EMAST) is found across many different cancers. Tetranucleotide microsatellite instability, which is caused by MSH3 mismatch repair gene/protein loss-of-function, shares a molecular basis with “low microsatellite instability” (MSI-L) in colorectal cancer. Tetranucleotide microsatellite instability is also a byproduct of “high microsatellite instability” (MSI-H) that arises from deficiency of mismatch repair due to MSH2, MSH6, MLH1 or PMS2 gene alterations. MSH3-related EMAST is emerging as a biomarker of poor prognosis in colorectal cancer and needs to be clearly differentiated from MSI-H. Here, we show that tumours with non-MSI-H-related EMAST or MSI-L rarely show concordant promoter methylation of multiple marker genes. Colorectal tumours that are positive for a single (1/5) tetranucleotide repeat marker are an important subset of the EMAST spectrum. Abstract MSH3 gene or protein deficiency or loss-of-function in colorectal cancer can cause a DNA mismatch repair defect known as “elevated microsatellite alterations at selected tetranucleotide repeats” (EMAST). A high percentage of MSI-H tumors exhibit EMAST, while MSI-L is also linked with EMAST. However, the distribution of CpG island methylator phenotype (CIMP) within the EMAST spectrum is not known. Five tetranucleotide repeat and five MSI markers were used to classify 100 sporadic colorectal tumours for EMAST, MSI-H and MSI-L according to the number of unstable markers detected. Promoter methylation was determined using methylation-specific PCR for MSH3, MCC, CDKN2A (p16) and five CIMP marker genes. EMAST was found in 55% of sporadic colorectal carcinomas. Carcinomas with only one positive marker (EMAST-1/5, 26%) were associated with advanced tumour stage, increased lymph node metastasis, MSI-L and lack of CIMP-H. EMAST-2/5 (16%) carcinomas displayed some methylation but MSI was rare. Carcinomas with ≥3 positive EMAST markers (13%) were more likely to have a proximal colon location and be MSI-H and CIMP-H. Our study suggests that EMAST/MSI-L is a valuable prognostic and predictive marker for colorectal carcinomas that do not display the high methylation phenotype CIMP-H.
Collapse
Affiliation(s)
- Sabine Meessen
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (S.M.); (N.C.)
| | - Nicola Currey
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (S.M.); (N.C.)
| | - Zeenat Jahan
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (Z.J.); (H.W.P.)
| | - Hannah W. Parker
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (Z.J.); (H.W.P.)
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3000, Australia; (M.A.J.); (J.L.H.)
| | - Daniel D. Buchanan
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia;
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3010, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, VIC 3010, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3000, Australia; (M.A.J.); (J.L.H.)
| | - Eva Segelov
- Department of Oncology, Monash University and Monash Health, Melbourne, VIC 3168, Australia;
| | - Jane E. Dahlstrom
- ACT Pathology, The Canberra Hospital and Australian National University Medical School, Canberra, ACT 2605, Australia;
| | - Maija R. J. Kohonen-Corish
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (S.M.); (N.C.)
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (Z.J.); (H.W.P.)
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Microbiome Research Centre, St George & Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2217, Australia
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
- Correspondence:
| |
Collapse
|
4
|
Comprehensive Genomic Characterization of Fifteen Early-Onset Lynch-Like Syndrome Colorectal Cancers. Cancers (Basel) 2021; 13:cancers13061259. [PMID: 33809179 PMCID: PMC7999079 DOI: 10.3390/cancers13061259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The most prevalent type of hereditary colorectal cancer is called Lynch syndrome and it is characterized by a tumor phenotype called microsatellite instability (MSI). This disease is a consequence of germline (inheritable) variants in any of the four mismatch repair (MMR) DNA genes, being their identification essential to ensure their appropriate diagnosis and implementation of preventive measurements. Nevertheless, only 50% of patients with MSI and suspected Lynch syndrome actually carry a germline pathogenic variant in an MMR gene that explains the clinical entity. The remaining 50% are termed Lynch-like syndrome, and their causes remain unknown. In this work, we tried to elucidate the molecular mechanisms that underlie this rare entity in a group of early-onset Lynch-like syndrome colorectal cancer, through whole-exome sequencing of germline and tumor samples. We observed that one-third of these patients have somatic alterations in genes associated with the MMR system and that these could be the mechanism causing their unexplained MSI. Furthermore, we found that patients who showed biallelic somatic alterations also carried germline variants in new candidate genes associated with DNA repair functions and that this could be, partly, the cause of the early onset in this cohort. Abstract Lynch-like syndrome (LLS) is an increasingly common clinical challenge with an underlying molecular basis mostly unknown. To shed light onto it, we focused on a very young LLS early-onset colorectal cancer (CRC) cohort (diagnosis ≤ 40 y.o.), performing germline and tumor whole-exome sequencing (WES) of 15 patients, and additionally analyzing their corresponding tumor mutational burden (TMB) and mutational signatures. We identified four cases (27%) with double somatic putative variants in mismatch repair (MMR) core genes, as well as three additional cases (20%) with double MSH3 somatic alterations in tumors with unexplained MSH2/MSH6 loss of expression, and two cases (13%) with POLD1 potential biallelic alterations. Average TMB was significantly higher for LLS cases with double somatic alterations. Lastly, nine predicted deleterious variants in genes involved in the DNA repair functions and/or previously associated with CRC were found in nine probands, four of which also showed MMR biallelic somatic inactivation. In conclusion, we contribute new insights into LLS CRC, postulating MSH3 and POLD1 double somatic alterations as an underlying cause of a microsatellite instability (MSI) phenotype, proposing intrinsic biological differences between LLS with and without somatic alterations, and suggesting new predisposing candidate genes in this scenario.
Collapse
|
5
|
Abstract
Lynch Syndrome (LS) is the most common dominantly inherited colorectal cancer (CRC) predisposition and is caused by a heterozygous germline defect in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2. High microsatellite instability (MSI-H) and loss of MMR protein expression in tumours reflecting a defective MMR are indicators for LS, as well as a positive family history of early onset CRC. MSH2 and MSH6 form a major functional heterodimer, and MSH3 is an alternative binding partner for MSH2. So far, the role of germline MSH3 variants remains unclear, as to our knowledge heterozygous truncating variants are not regarded causative for LS, but were detected in patients with CRC, and recently biallelic MSH3 defects have been identified in two patients with adenomatous polyposis. By gene screening we investigated the role of MSH3 in 11 LS patients with truncating MSH6 germline variants and an unexplained MSH2 protein loss in their corresponding MSI-H tumours. We report the first two LS patients harbouring heterozygous germline variants c.1035del and c.2732T>G in MSH3 coincidentally with truncating variants in MSH6. In the patient with truncating germline variants in MSH3 and MSH6, two additional somatic second hits in both genes abrogate all binding partners for the MSH2 protein which might subsequently be degraded. The clinical relevance of MSH3 germline variants is currently under re-evaluation, and heterozygous MSH3 defects alone do not seem to induce a LS phenotype, but might aggravate the MSH6 phenotype in affected family members.
Collapse
|
6
|
Ashktorab H, Mokarram P, Azimi H, Olumi H, Varma S, Nickerson ML, Brim H. Targeted exome sequencing reveals distinct pathogenic variants in Iranians with colorectal cancer. Oncotarget 2018; 8:7852-7866. [PMID: 28002797 PMCID: PMC5341754 DOI: 10.18632/oncotarget.13977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Next Generation Sequencing (NGS) is currently used to establish mutational profiles in many multigene diseases such as colorectal cancer (CRC), which is on the rise in many parts of the developing World including, Iran. Little is known about its genetic hallmarks in these populations. AIM To identify variants in 15 CRC-associated genes in patients of Iranian descent. RESULTS There were 51 validated variants distributed on 12 genes: 22% MSH3 (n = 11/51), 10% MSH6 (n = 5/51), 8% AMER1 (n = 4/51), 20% APC (n = 10/51), 2% BRAF (n = 1/51), 2% KRAS (n = 1/51), 12% PIK3CA (n = 6/51), 8% TGFβR2A (n = 4/51), 2% SMAD4 (n = 1/51), 4% SOX9 (n = 2/51), 6% TCF7L2 (n = 3/51), and 6% TP53 (n = 3/51). Most known and distinct variants were in mismatch repair genes (MMR, 32%) and APC (20%). Among oncogenes, PIK3CA was the top target (12%). MATERIALS AND METHODS CRC specimens from 63 Shirazi patients were used to establish the variant' profile on an Ion Torrent platform by targeted exome sequencing. To rule-out technical artifacts, the variants were validated in 13 of these samples using an Illumina NGS platform. Validated variants were annotated and compared to variants from publically available databases. An in-silico functional analysis was performed. MSI status of the analyzed samples was established. CONCLUSION These results illustrate for the first time CRC mutational profile in Iranian patients. MSH3, MSH6, APC and PIK3CA genes seem to play a bigger role in the path to cancer in this population. These findings will potentially lead to informed genetic diagnosis protocol and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Pooneh Mokarram
- Current address: Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Azimi
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Hasti Olumi
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | | | - Michael L Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
7
|
Ni H, Jiang B, Zhou Z, Yuan X, Cao X, Huang G, Li Y. Inactivation of MSH3 by promoter methylation correlates with primary tumor stage in nasopharyngeal carcinoma. Int J Mol Med 2017; 40:673-678. [PMID: 28656302 PMCID: PMC5547962 DOI: 10.3892/ijmm.2017.3044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the inactivation of the MutS homolog human 3 (MSH3) gene by promoter methylation in nasopharyngeal carcinoma (NPC). Methylation-specific PCR, semi-quantitative reverse transcription PCR and immunohistochemical analysis were used to detect methylation and the mRNA and protein expression levels of MSH3 in 54 cases of NPC tissues and 16 cases of normal nasopharyngeal epithelial (NNE) tissues. The association between promoter methylation and mRNA expression, and the mRNA and protein expression of the gene and clinical factors was analyzed. The promoter methylation of MSH3 was detected in 50% (27/54) of the primary tumors, but not in the 16 NNE tissues. The mRNA and protein expression levels were significantly decreased in the 54 cases of human NPC as compared to the 16 NNE tissues (P<0.05). The MSH3-methylated cases exhibited significantly lower mRNA and protein expression levels than the unmethylated cases (P<0.05). The MSH3 mRNA and protein expression levels were significantly associated with the variable T stage (P<0.05); however, they did not correlate with the age and sex of the patients, or with the N stage, TNM classification or histopathological subtype (P>0.05). On the whole, MSH3 was frequently inactivated by promoter methylation and its mRNA and protein expression correlated with the primary tumor stage in NPC.
Collapse
Affiliation(s)
- Haifeng Ni
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Bo Jiang
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhen Zhou
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaoyang Yuan
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaolin Cao
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Guangwu Huang
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yong Li
- Department of Otolaryngology, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
8
|
Expression Pattern and Clinicopathological Relevance of the Indoleamine 2,3-Dioxygenase 1/Tryptophan 2,3-Dioxygenase Protein in Colorectal Cancer. DISEASE MARKERS 2016; 2016:8169724. [PMID: 27578919 PMCID: PMC4992785 DOI: 10.1155/2016/8169724] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023]
Abstract
Aims. Cancer cells use the indoleamine 2,3-dioxygenase 1 (IDO1) pathway to suppress the host's immune response in order to facilitate survival, growth, invasion, and metastasis of malignant cells. Higher IDO1 expression was shown to be involved in colorectal cancer (CRC) progression and to be correlated with impaired clinical outcome. However, the potential correlation between the expression of IDO1 in a CRC population with a low mutation rate of the APC gene remains unknown. Material and Methods. Tissues and blood samples were collected from 192 CRC patients. The expressions of IDO1, tryptophan 2,3-dioxygenase (TDO2), and beta-catenin proteins were analyzed by immunohistochemistry. Microsatellite instability (MSI) was determined by PCR amplification of microsatellite loci. Results. The results showed that high IDO1 or TDO2 protein expression was associated with characteristics of more aggressive phenotypes of CRC. For the first time, they also revealed a positive correlation between the abnormal expression of beta-catenin and IDO1 or TDO2 proteins in a CRC population with a low mutation rate of APC. Conclusion. We concluded that an IDO1-regulated molecular pathway led to abnormal expression of beta-catenin in the nucleus/cytoplasm of CRC patients with low mutation rate of APC, making IDO1 an interesting target for immunotherapy in CRC.
Collapse
|
9
|
Adam R, Spier I, Zhao B, Kloth M, Marquez J, Hinrichsen I, Kirfel J, Tafazzoli A, Horpaopan S, Uhlhaas S, Stienen D, Friedrichs N, Altmüller J, Laner A, Holzapfel S, Peters S, Kayser K, Thiele H, Holinski-Feder E, Marra G, Kristiansen G, Nöthen MM, Büttner R, Möslein G, Betz RC, Brieger A, Lifton RP, Aretz S. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. Am J Hum Genet 2016; 99:337-51. [PMID: 27476653 DOI: 10.1016/j.ajhg.2016.06.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
In ∼30% of families affected by colorectal adenomatous polyposis, no germline mutations have been identified in the previously implicated genes APC, MUTYH, POLE, POLD1, and NTHL1, although a hereditary etiology is likely. To uncover further genes with high-penetrance causative mutations, we performed exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis. We identified two unrelated individuals with differing compound-heterozygous loss-of-function (LoF) germline mutations in the mismatch-repair gene MSH3. The impact of the MSH3 mutations (c.1148delA, c.2319-1G>A, c.2760delC, and c.3001-2A>C) was indicated at the RNA and protein levels. Analysis of the diseased individuals' tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST), and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue, confirming the LoF effect and causal relevance of the mutations. The pedigrees, genotypes, and frequency of MSH3 mutations in the general population are consistent with an autosomal-recessive mode of inheritance. Both index persons have an affected sibling carrying the same mutations. The tumor spectrum in these four persons comprised colorectal and duodenal adenomas, colorectal cancer, gastric cancer, and an early-onset astrocytoma. Additionally, we detected one unrelated individual with biallelic PMS2 germline mutations, representing constitutional mismatch-repair deficiency. Potentially causative variants in 14 more candidate genes identified in 26 other individuals require further workup. In the present study, we identified biallelic germline MSH3 mutations in individuals with a suspected hereditary tumor syndrome. Our data suggest that MSH3 mutations represent an additional recessive subtype of colorectal adenomatous polyposis.
Collapse
Affiliation(s)
- Ronja Adam
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Center for Hereditary Tumor Syndromes, University of Bonn, 53127 Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Center for Hereditary Tumor Syndromes, University of Bonn, 53127 Bonn, Germany
| | - Bixiao Zhao
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Michael Kloth
- Institute of Pathology, University of Cologne, 50937 Cologne, Germany
| | - Jonathan Marquez
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Inga Hinrichsen
- Medical Clinic 1, Biomedical Research Laboratory, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Jutta Kirfel
- Institute of Pathology, University of Bonn, 53127 Bonn, Germany
| | - Aylar Tafazzoli
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Sukanya Horpaopan
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Chiang Mai 50200, Thailand
| | - Siegfried Uhlhaas
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Dietlinde Stienen
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | | | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50937 Cologne, Germany; Institute of Human Genetics, University of Cologne, 50937 Cologne, Germany
| | - Andreas Laner
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, 80336 Munich, Germany; Medical Genetics Center, 80335 Munich, Germany
| | - Stefanie Holzapfel
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Center for Hereditary Tumor Syndromes, University of Bonn, 53127 Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Katrin Kayser
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, 50937 Cologne, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, 80336 Munich, Germany; Medical Genetics Center, 80335 Munich, Germany
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Reinhard Büttner
- Institute of Pathology, University of Cologne, 50937 Cologne, Germany
| | - Gabriela Möslein
- HELIOS Klinikum Wuppertal, University of Witten/Herdecke, 42283 Wuppertal, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Angela Brieger
- Medical Clinic 1, Biomedical Research Laboratory, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Richard P Lifton
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Stefan Aretz
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Center for Hereditary Tumor Syndromes, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
10
|
Silva P, Albuquerque C, Lage P, Fontes V, Fonseca R, Vitoriano I, Filipe B, Rodrigues P, Moita S, Ferreira S, Sousa R, Claro I, Nobre Leitão C, Chaves P, Dias Pereira A. Serrated polyposis associated with a family history of colorectal cancer and/or polyps: The preferential location of polyps in the colon and rectum defines two molecular entities. Int J Mol Med 2016; 38:687-702. [PMID: 27430658 PMCID: PMC4990292 DOI: 10.3892/ijmm.2016.2666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/11/2016] [Indexed: 12/25/2022] Open
Abstract
Serrated polyposis (SPP) is characterized by the development of multiple serrated polyps and an increased predisposition to colorectal cancer (CRC). In the present study, we aimed to characterize, at a clinical and molecular level, a cohort of SPP patients with or without a family history of SPP and/or polyps/CRC (SPP-FHP/CRC). Sixty-two lesions from 12 patients with SPP-FHP/CRC and 6 patients with sporadic SPP were included. The patients with SPP-FHP/CRC presented with an older mean age at diagnosis (p=0.027) and a more heterogeneous histological pattern of lesions (p=0.032) than the patients with sporadic SPP. We identified two molecular forms of SPP-FHP/CRC, according to the preferential location of the lesions: proximal/whole-colon or distal colon. Mismatch repair (MMR) gene methylation [mutS homolog 6 (MSH6)/mutS homolog 3 (MSH3)] or loss of heterozygosity (LOH) of D2S123 (flanking MSH6) were detected exclusively in the former (p=3.0×10−7), in most early lesions. Proximal/whole-colon SPP-FHP/CRC presented a higher frequency of O-6-methylguanine-DNA methyltransferase (MGMT) methylation/LOH, microsatel-lite instability (MSI) and Wnt mutations (19/29 vs. 7/17; 16/23 vs. 1/14, p=2.2×10−4; 15/26 vs. 2/15, p=0.006; 14/26 vs. 4/20, p=0.02) but a lower frequency of B-raf proto-oncogene, serine/threonine kinase (BRAF) mutations (7/30 vs. 12/20, p=0.0089) than the distal form. CRC was more frequent in cases of Kirsten rat sarcoma viral oncogene homolog (KRAS)-associated proximal/whole-colon SPP-FHP/CRC than in the remaining cases (4/4 vs. 1/8, p=0.01). Thus, SPP-FHP/CRC appears to be a specific entity, presenting two forms, proximal/whole-colon and distal, which differ in the underlying tumor initiation pathways. Early MGMT and MMR gene deficiency in the former may underlie an inherited susceptibility to genotoxic stress.
Collapse
Affiliation(s)
- Patrícia Silva
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Cristina Albuquerque
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Pedro Lage
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Vanessa Fontes
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Ricardo Fonseca
- Pathology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Inês Vitoriano
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Bruno Filipe
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Paula Rodrigues
- Familial Cancer Risk Clinic, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Susana Moita
- Molecular Pathobiology Research Unit (UIPM), Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Sara Ferreira
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Rita Sousa
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Isabel Claro
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Carlos Nobre Leitão
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - Paula Chaves
- Pathology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| | - António Dias Pereira
- Gastroenterology Service, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E. (IPOLFG, EPE), Lisbon, Portugal
| |
Collapse
|
11
|
Germini DE, Mader AMAA, Gomes LGL, Teodoro TR, Franco MIF, Waisberg J. Detection of DNA repair protein in colorectal cancer of patients up to 50 years old can increase the identification of Lynch syndrome? Tumour Biol 2015; 37:2757-64. [PMID: 26408182 DOI: 10.1007/s13277-015-4108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/20/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to compare the results of protein level of the DNA mismatch repair genes with the clinical diagnosis of Lynch syndrome according to the Amsterdam II criteria in patients 50 years and younger who underwent surgery for colorectal cancer. The subjects of analysis were 48 patients 50 years old and younger. Immunohistochemistry assays were performed to detect proteins from the DNA mismatch repair genes. Clinicopathological data and Amsterdam II criteria for the diagnosis of hereditary nonpolyposis colorectal cancer were obtained by analyzing medical records. Two (4 %) patients satisfied the Amsterdam II criteria for Lynch syndrome, and both presented levels of all of the studied mismatch repair proteins. A total of 13 (27 %) patients exhibited the absence of protein levels of the studied mismatch repair genes. None of these patients were considered suspicious for Lynch syndrome according to the Amsterdam II criteria. Screening for the level of proteins of the mismatch repair system in all colorectal cancer patients 50 years and younger can increase the identification of patients with suspicion of Lynch syndrome.
Collapse
Affiliation(s)
- Demétrius Eduardo Germini
- Department of Surgery, São Paulo State Civil Servant Hospital, Rua Augusto de Miranda, 1303 ap. 22 Pompéia, São Paulo, SP, 05026-001, Brazil.
| | | | - Luiz Guilherme Lisboa Gomes
- Department of Surgery, ABC Medical School, Avenida Príncipe de Gales, 821, Santo André, SP, 09080-650, Brazil
| | - Thérèse Rachel Teodoro
- Department of Morphology, ABC Medical School, Avenida Príncipe de Gales, 821, 09080650, Santo André, SP, Brazil
| | - Maria Isete Fares Franco
- Department of Pathology, São Paulo State Civil Servant Hospital, Avenida Ibirapuera, 981, São Paulo, SP, 04029-000, Brazil
| | - Jaques Waisberg
- Department of Surgery, ABC Medical School, Avenida Príncipe de Gales, 821, Santo André, SP, 09080-650, Brazil
| |
Collapse
|
12
|
Vogelsang M, Paccez JD, Schäfer G, Dzobo K, Zerbini LF, Parker MI. Aberrant methylation of the MSH3 promoter and distal enhancer in esophageal cancer patients exposed to first-hand tobacco smoke. J Cancer Res Clin Oncol 2014; 140:1825-33. [PMID: 24934723 DOI: 10.1007/s00432-014-1736-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/04/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE Polymorphisms in MSH3 gene confer risk of esophageal cancer when in combination with tobacco smoke exposure. The purpose of this study was to investigate the methylation status of MSH3 gene in esophageal cancer patients in order to further elucidate possible role of MSH3 in esophageal tumorigenesis. METHODS We applied nested methylation-specific polymerase chain reaction to investigate the methylation status of the MSH3 promoter in tumors and matching adjacent normal-looking tissues of 84 esophageal cancer patients from a high-risk South African population. The Cancer Genome Atlas data were used to examine DNA methylation profiles at 17 CpG sites located in the MSH3 locus. RESULTS Overall, promoter methylation was detected in 91.9 % of tumors, which was significantly higher compared to 76.0 % in adjacent normal-looking esophageal tissues (P = 0.008). When samples were grouped according to different demographics (including age, gender and ethnicity) and smoking status of patients, methylation frequencies were found to be significantly higher in tumor tissues of Black subjects (P = 0.024), patients of 55-65 years of age (P = 0.032), males (P = 0.037) and tobacco smokers (P = 0.015). Furthermore, methylation of the MSH3 promoter was significantly more frequent in tumor samples from smokers compared to tumor samples from non-smokers [odds ratio (OR) = 31.9, P = 0.031]. The TCGA data confirmed significantly higher DNA methylation level at the MSH3 promoter region in tumors (P = 0.0024). In addition, we found evidence of an aberrantly methylated putative MSH3-associated distal enhancer element. CONCLUSION Our results suggest that methylation of MSH3 together with exposure to tobacco smoke is involved in esophageal carcinogenesis. Due to the active role of the MSH3 protein in modulating chemosensitivity of cells, methylation of MSH3 should further be examined in association with the outcome of esophageal cancer treatment using anticancer drugs.
Collapse
Affiliation(s)
- Matjaz Vogelsang
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, UCT Medical Campus, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | | | | | | | | | | |
Collapse
|
13
|
Buchanan DD, Rosty C, Clendenning M, Spurdle AB, Win AK. Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome). APPLICATION OF CLINICAL GENETICS 2014; 7:183-93. [PMID: 25328415 PMCID: PMC4199650 DOI: 10.2147/tacg.s48625] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carriers of a germline mutation in one of the DNA mismatch repair (MMR) genes have a high risk of developing numerous different cancers, predominantly colorectal cancer and endometrial cancer (known as Lynch syndrome). MMR gene mutation carriers develop tumors with MMR deficiency identified by tumor microsatellite instability or immunohistochemical loss of MMR protein expression. Tumor MMR deficiency is used to identify individuals most likely to carry an MMR gene mutation. However, MMR deficiency can also result from somatic inactivation, most commonly methylation of the MLH1 gene promoter. As tumor MMR testing of all incident colorectal and endometrial cancers (universal screening) is becoming increasingly adopted, a growing clinical problem is emerging for individuals who have tumors that show MMR deficiency who are subsequently found not to carry an MMR gene mutation after genetic testing using the current diagnostic approaches (Sanger sequencing and multiplex ligation-dependent probe amplification) and who also show no evidence of MLH1 methylation. The inability to determine the underlying cause of tumor MMR deficiency in these “Lynch-like” or “suspected Lynch syndrome” cases has significant implications on the clinical management of these individuals and their relatives. When the data from published studies are combined, 59% (95% confidence interval [CI]: 55% to 64%) of colorectal cancers and 52% (95% CI: 41% to 62%) of endometrial cancers with MMR deficiency were identified as suspected Lynch syndrome. Recent studies estimated that colorectal cancer risk for relatives of suspected Lynch syndrome cases is lower than for relatives of those with MMR gene mutations, but higher than for relatives of those with tumor MMR deficiency resulting from methylation of the MLH1 gene promoter. The cause of tumor MMR deficiency in suspected Lynch syndrome cases is likely due to either unidentified germline MMR gene mutations, somatic cell mosaicism, or biallelic somatic inactivation. Determining the underlying cause of tumor MMR deficiency in suspected Lynch syndrome cases is likely to reshape the current triaging schemes used to identify germline MMR gene mutations in cancer-affected individuals and their relatives.
Collapse
Affiliation(s)
- Daniel D Buchanan
- Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia ; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christophe Rosty
- Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia ; Envoi Specialist Pathologists, Herston, QLD, Australia ; School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Mark Clendenning
- Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Amanda B Spurdle
- Molecular Cancer Epidemiology Laboratory, Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Zhao Y, Zheng ZC, Luo YH, Piao HZ, Zheng GL, Shi JY, Zhang T, Zhang JJ. Low-Frequency Microsatellite Instability in Genomic Di-Nucleotide Sequences Correlates with Lymphatic Invasion and Poor Prognosis in Gastric Cancer. Cell Biochem Biophys 2014; 71:235-41. [DOI: 10.1007/s12013-014-0189-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 2014; 155:858-68. [PMID: 24209623 DOI: 10.1016/j.cell.2013.10.015] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/11/2013] [Accepted: 10/02/2013] [Indexed: 12/30/2022]
Abstract
Microsatellites-simple tandem repeats present at millions of sites in the human genome-can shorten or lengthen due to a defect in DNA mismatch repair. We present here a comprehensive genome-wide analysis of the prevalence, mutational spectrum, and functional consequences of microsatellite instability (MSI) in cancer genomes. We analyzed MSI in 277 colorectal and endometrial cancer genomes (including 57 microsatellite-unstable ones) using exome and whole-genome sequencing data. Recurrent MSI events in coding sequences showed tumor type specificity, elevated frameshift-to-inframe ratios, and lower transcript levels than wild-type alleles. Moreover, genome-wide analysis revealed differences in the distribution of MSI versus point mutations, including overrepresentation of MSI in euchromatic and intronic regions compared to heterochromatic and intergenic regions, respectively, and depletion of MSI at nucleosome-occupied sequences. Our results provide a panoramic view of MSI in cancer genomes, highlighting their tumor type specificity, impact on gene expression, and the role of chromatin organization.
Collapse
Affiliation(s)
- Tae-Min Kim
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | |
Collapse
|
16
|
Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLoS Genet 2013; 9:e1003930. [PMID: 24204323 PMCID: PMC3814320 DOI: 10.1371/journal.pgen.1003930] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/15/2013] [Indexed: 11/19/2022] Open
Abstract
The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease HdhQ111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.HdhQ111) than on a 129 background (129.HdhQ111). Linkage mapping in (B6x129).HdhQ111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.HdhQ111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. HdhQ111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1–MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2–MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein levels play an important role in driving of the efficiency of somatic expansions. The expansion of a CAG repeat underlies Huntington's disease (HD), with longer CAG tracts giving rise to earlier onset and more severe disease. In individuals harboring a CAG expansion the repeat undergoes further somatic expansion over time, particularly in brain cells most susceptible to disease pathogenesis. Preventing this repeat lengthening may delay disease onset and/or slow progression. We are using mouse models of HD to identify the factors that modify the somatic expansion of the HD CAG repeat, as these may provide novel targets for therapeutic intervention. To identify genetic modifiers of somatic expansion in HD mouse models we have used both an unbiased genetic mapping approach in inbred mouse strains that exhibit different levels of somatic expansion, as well as targeted gene knockout approaches. Our results demonstrate that: 1) Mlh1 and Mlh3 genes, encoding components of the DNA mismatch repair pathway, are critical for somatic CAG expansion; 2) in the absence of somatic expansion the pathogenic process in the mouse is slowed; 3) MLH1 protein levels are likely to be a driver of the efficiency of somatic expansion. Together, our data provide new insight into the factors underlying the process of somatic expansion of the HD CAG repeat.
Collapse
|
17
|
van Oers JMM, Edwards Y, Chahwan R, Zhang W, Smith C, Pechuan X, Schaetzlein S, Jin B, Wang Y, Bergman A, Scharff MD, Edelmann W. The MutSβ complex is a modulator of p53-driven tumorigenesis through its functions in both DNA double-strand break repair and mismatch repair. Oncogene 2013; 33:3939-46. [PMID: 24013230 DOI: 10.1038/onc.2013.365] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 01/10/2023]
Abstract
Loss of the DNA mismatch repair (MMR) protein MSH3 leads to the development of a variety of tumors in mice without significantly affecting survival rates, suggesting a modulating role for the MutSβ (MSH2-MSH3) complex in late-onset tumorigenesis. To better study the role of MSH3 in tumor progression, we crossed Msh3(-/-) mice onto a tumor predisposing p53-deficient background. Survival of Msh3/p53 mice was not reduced compared with p53 single mutant mice; however, the tumor spectrum changed significantly from lymphoma to sarcoma, indicating MSH3 as a potent modulator of p53-driven tumorigenesis. Interestingly, Msh3(-/-) mouse embryonic fibroblasts displayed increased chromatid breaks and persistence of γH2AX foci following ionizing radiation, indicating a defect in DNA double-strand break repair (DSBR). Msh3/p53 tumors showed increased loss of heterozygosity, elevated genome-wide copy-number variation and a moderate microsatellite instability phenotype compared with Msh2/p53 tumors, revealing that MSH2-MSH3 suppresses tumorigenesis by maintaining chromosomal stability. Our results show that the MSH2-MSH3 complex is important for the suppression of late-onset tumors due to its roles in DNA DSBR as well as in DNA MMR. Further, they demonstrate that MSH2-MSH3 suppresses chromosomal instability and modulates the tumor spectrum in p53-deficient tumorigenesis and possibly has a role in other chromosomally unstable tumors as well.
Collapse
Affiliation(s)
- J M M van Oers
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Y Edwards
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R Chahwan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Zhang
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - C Smith
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - X Pechuan
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S Schaetzlein
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - B Jin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Y Wang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
18
|
Tentori L, Muzi A, Dorio AS, Dolci S, Campolo F, Vernole P, Lacal PM, Praz F, Graziani G. MSH3 expression does not influence the sensitivity of colon cancer HCT116 cell line to oxaliplatin and poly(ADP-ribose) polymerase (PARP) inhibitor as monotherapy or in combination. Cancer Chemother Pharmacol 2013; 72:117-25. [PMID: 23636450 DOI: 10.1007/s00280-013-2175-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/19/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE Defective expression of the mismatch repair protein MSH3 is frequently detected in colon cancer, and down-regulation of its expression was found to decrease sensitivity to platinum compounds or poly(ADP-ribose) polymerase inhibitors (PARPi) monotherapy. We have investigated whether MSH3 transfection in MSH3-deficient colon cancer cells confers resistance to oxaliplatin or PARPi and whether their combination restores chemosensitivity. METHODS MSH3-deficient/MLH1-proficient colon cancer HCT116(MLH1) cells were transfected with the MSH3 cDNA cloned into the pcDNA3.1(-) vector. MSH3/MLH1-deficient HCT116, carrying MLH1 and MSH3 mutations on chromosome 3 and 5, respectively, and HCT116 in which wild-type MLH1 (HCT116+3), MSH3 (HCT116+5) or both genes (HCT116+3+5) were introduced by chromosome transfer were also tested. Sensitivity to oxaliplatin and to PARPi was evaluated by analysis of clonogenic survival, cell proliferation, apoptosis and cell cycle. RESULTS MSH3 transfection in HCT116 cells did not confer resistance to oxaliplatin or PARPi monotherapy. MSH3-proficient HCT116+5 or HCT116+3+5 cells, which were more resistant to oxaliplatin and PARPi in comparison with their MSH3-deficient counterparts, expressed higher levels of the nucleotide excision repair ERCC1 and XPF proteins, involved in the resistance to platinum compounds, and lower PARP-1 levels. In all cases, PARPi increased sensitivity to oxaliplatin. CONCLUSIONS Restoring of MSH3 expression by cDNA transfection, rather than by chromosome transfer, did not affect colon cancer sensitivity to oxaliplatin or PARPi monotherapy; PARP-1 levels seemed to be more crucial for the outcome of PARPi monotherapy.
Collapse
Affiliation(s)
- Lucio Tentori
- Department of System Medicine, University of Rome, Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hile SE, Shabashev S, Eckert KA. Tumor-specific microsatellite instability: do distinct mechanisms underlie the MSI-L and EMAST phenotypes? Mutat Res 2012. [PMID: 23206442 DOI: 10.1016/j.mrfmmm.2012.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microsatellite DNA sequences display allele length alterations or microsatellite instability (MSI) in tumor tissues, and MSI is used diagnostically for tumor detection and classification. We discuss the known types of tumor-specific MSI patterns and the relevant mechanisms underlying each pattern. Mutation rates of individual microsatellites vary greatly, and the intrinsic DNA features of motif size, sequence, and length contribute to this variation. MSI is used for detecting mismatch repair (MMR)-deficient tumors, which display an MSI-high phenotype due to genome-wide microsatellite destabilization. Because several pathways maintain microsatellite stability, tumors that have undergone other events associated with moderate genome instability may display diagnostic MSI only at specific di- or tetranucleotide markers. We summarize evidence for such alternative MSI forms (A-MSI) in sporadic cancers, also referred to as MSI-low and EMAST. While the existence of A-MSI is not disputed, there is disagreement about the origin and pathologic significance of this phenomenon. Although ambiguities due to PCR methods may be a source, evidence exists for other mechanisms to explain tumor-specific A-MSI. Some portion of A-MSI tumors may result from random mutational events arising during neoplastic cell evolution. However, this mechanism fails to explain the specificity of A-MSI for di- and tetranucleotide instability. We present evidence supporting the alternative argument that some A-MSI tumors arise by a distinct genetic pathway, and give examples of DNA metabolic pathways that, when altered, may be responsible for instability at specific microsatellite motifs. Finally, we suggest that A-MSI in tumors could be molecular signatures of environmental influences and DNA damage. Importantly, A-MSI occurs in several pre-neoplastic inflammatory states, including inflammatory bowel diseases, consistent with a role of oxidative stress in A-MSI. Understanding the biochemical basis of A-MSI tumor phenotypes will advance the development of new diagnostic tools and positively impact the clinical management of individual cancers.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Samion Shabashev
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kristin A Eckert
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
20
|
Greystoke A, Mullamitha SA. How many diseases are colorectal cancer? Gastroenterol Res Pract 2012; 2012:564741. [PMID: 22991509 PMCID: PMC3444041 DOI: 10.1155/2012/564741] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/31/2012] [Indexed: 12/11/2022] Open
Abstract
The development of personalised therapy and mechanism-targeted agents in oncology mandates the identification of the patient populations most likely to benefit from therapy. This paper discusses the increasing evidence as to the heterogeneity of the group of diseases called colorectal cancer. Differences in the aetiology and epidemiology of proximal and distal cancers are reflected in different clinical behaviour, histopathology, and molecular characteristics of these tumours. This may impact response both to standard cytotoxic therapies and mechanism-targeted agents. This disease heterogeneity leads to challenges in the design of clinical trials to assess novel therapies in the treatment of "colorectal cancer."
Collapse
Affiliation(s)
- A. Greystoke
- Department of Medical Oncology, Christie NHS Foundation Trust, Manchester M20 4BX, UK
- School of Cancer and Imaging Sciences, University of Manchester, Manchester M13 9PL, UK
| | - S. A. Mullamitha
- Department of Medical Oncology, Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|