1
|
Miraldi E, Baini G, Biagi M, Cappellucci G, Giordano A, Vaccaro F, Bertelli AAE. Wine, Polyphenols, and the Matrix Effect: Is Alcohol Always the Same? Int J Mol Sci 2024; 25:9796. [PMID: 39337284 PMCID: PMC11432751 DOI: 10.3390/ijms25189796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
While the number of publications on wine and health is steadily increasing, ranging from a molecular level to epidemiological studies, often with contradictory results, little attention has been given to a holistic approach to research, starting from the molecular level to arrive at pharmacological and medical conclusions. In this review, some unusual concepts are considered, such as the phytocomplex, the vehicle, and the Matrix effect. The concept of the phytocomplex is discussed, specifically the biological activities of Tyrosol, Hydroxytyrosol, and Resveratrol; indeed, the interactions among different molecules in herbal matrices provide a specific response. This is often markedly different from the response evoked by single constituents in the modulation of microbial populations in the gut, in intestinal stability and bioaccessibility, and, obviously, in inducing biological responses. Among the many alcoholic beverages which contain these molecules, wine has the most peculiar Matrix effect, which can heavily influence the bioavailability of the phytocomplex obtained by the fermentation processes that produce this beverage. Wine's Matrix effect plays an instrumental role in improving the beneficial compounds' bioavailability and/or in inhibiting alcohol metabolites' carcinogenicity. Underestimation of the wine Matrix effect could lead to deceiving results, as in the case of dealcoholized wine or wine-compound-based nutritional supplements; alternatively, this can occur in the emphasis of a single component's toxic activity, in this case, alcohol, ignoring the specific molecular-level protective action of other compounds (polyphenols) that are present in the same matrix. The dark side of the Matrix effect is also discussed. This review confirms the research recommendations made by the WHO Scientific Group, which suggests it is important "to investigate the possible protective effects of ingredients other than alcohol in alcoholic beverages", considering that most recent studies seem not only relevant but also capable of directing future research towards innovative points of view that have so far been too neglected.
Collapse
Affiliation(s)
- Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Marco Biagi
- Department of Food and Drug, University of Parma, 43121 Parma, Italy
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alessandro Giordano
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alberto A E Bertelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Wang P, Liu XL, Jiang ZZ, Long Y, Gao CL, Huang W, Tan XZ, Ma XM, Xu Y. Effect of proanthocyanidins on blood lipids: A systematic review and meta-analysis. Phytother Res 2024; 38:2154-2164. [PMID: 38391003 DOI: 10.1002/ptr.8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/07/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Proanthocyanidins (PCs) are natural antioxidant polyphenols and their effect on the regulation of blood lipids is still controversial. This study was conducted to evaluate the effect of PCs on lipid metabolism. We searched PubMed, Embase, Web of Science, Chinese biomedical literature service system, China National Knowledge Internet, and Wanfang Data with no time restriction until March 18, 2022, using various forms of "proanthocyanidins" and "blood lipid" search terms. Randomized controlled trials investigating the relationship between PCs and lipid metabolism were included. The standard system of Cochrane Collaboration was used to assess the quality of studies. We standardized mean differences (SMDs) with 95% confidence interval (CI) using the random-effects model, Cohen approach. Seventeen studies (17 trials, N = 1138) fulfilled the eligibility criteria. PCs significantly reduced triglyceride, and increased recombinant apolipoprotein A1. Subgroup analysis showed a significant reduction in triglycerides in older adults (≥60 years) and total cholesterol for participants who were not overweight or obese (body mass index <24). An intervention duration of greater than 8 weeks reduced triglyceride and low-density lipoprotein cholesterol levels but increased high-density lipoprotein cholesterol. Different doses of PCs could regulate triglycerides, high-density lipoprotein cholesterol and total cholesterol. PCs have beneficial effects on circulating lipids and may represent a new approach for treating or preventing lipid metabolism disorders. However, more high-quality studies are needed to confirm these results.
Collapse
Affiliation(s)
- Peng Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
| | - Xue Lian Liu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
- Sichuan College of Traditional Chinese Medicine, Mianyang, PR China
| | - Zong Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Chen Lin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Xiao Zhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Xiu Mei Ma
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
| |
Collapse
|
3
|
Fenech MF, Bull CF, Van Klinken BJW. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Adv Nutr 2023; 14:1337-1358. [PMID: 37573943 PMCID: PMC10721466 DOI: 10.1016/j.advnut.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor β-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Collapse
Affiliation(s)
- Michael F Fenech
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia.
| | - Caroline F Bull
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - B Jan-Willem Van Klinken
- GSK Consumer Healthcare (now named Haleon), Warren, New Jersey, USA; Brightseed, San Francisco, CA, United States.
| |
Collapse
|
4
|
Mišík M, Staudinger M, Kundi M, Worel N, Nersesyan A, Ferk F, Dusinska M, Azqueta A, Møller P, Knasmueller S. Use of the Single Cell Gel Electrophoresis Assay for the Detection of DNA-protective Dietary Factors: Results of Human Intervention Studies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108458. [PMID: 37031732 DOI: 10.1016/j.mrrev.2023.108458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The single cell gel electrophoresis technique is based on the measurement of DNA migration in an electric field and enables to investigate via determination of DNA-damage the impact of foods and their constituents on the genetic stability. DNA-damage leads to adverse effects including cancer, neurodegenerative disorders and infertility. In the last 25 years approximately 90 human intervention trials have been published in which DNA-damage, formation of oxidized bases, alterations of the sensitivity towards reactive oxygen species and chemicals and of repair functions were investigated with this technique. In approximately 50% of the studies protective effects were observed. Pronounced protection was found with certain plant foods (spinach, kiwi fruits, onions), coffee, green tea, honey and olive oil. Also diets with increased contents of vegetables caused positive effects. Small amounts of certain phenolics (gallic acid, xanthohumol) prevented oxidative damage of DNA; with antioxidant vitamins and cholecalciferol protective effects were only detected after intake of doses that exceed the recommended daily uptake values. The evaluation of the quality of the studies showed that many have methodological shortcomings (lack of controls, no calibration of repair enzymes, inadequate control of the compliance and statistical analyses) which should be avoided in future investigations.
Collapse
Affiliation(s)
- Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Marlen Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Nadine Worel
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Armen Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Franziska Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Denmark
| | - Siegfried Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria.
| |
Collapse
|
5
|
Sharifi-Rad J, Quispe C, Zam W, Kumar M, Cardoso SM, Pereira OR, Ademiluyi AO, Adeleke O, Moreira AC, Živković J, Noriega F, Ayatollahi SA, Kobarfard F, Faizi M, Martorell M, Cruz-Martins N, Butnariu M, Bagiu IC, Bagiu RV, Alshehri MM, Cho WC. Phenolic Bioactives as Antiplatelet Aggregation Factors: The Pivotal Ingredients in Maintaining Cardiovascular Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2195902. [PMID: 34447485 PMCID: PMC8384526 DOI: 10.1155/2021/2195902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023]
Abstract
Cardiovascular diseases (CVD) are one of the main causes of mortality in the world. The development of these diseases has a specific factor-alteration in blood platelet activation. It has been shown that phenolic compounds have antiplatelet aggregation abilities and a positive impact in the management of CVD, exerting prominent antioxidant, anti-inflammatory, antitumor, cardioprotective, antihyperglycemic, and antimicrobial effects. Thus, this review is intended to address the antiplatelet activity of phenolic compounds with special emphasis in preventing CVD, along with the mechanisms of action through which they are able to prevent and treat CVD. In vitro and in vivo studies have shown beneficial effects of phenolic compound-rich plant extracts and isolated compounds against CVD, despite that the scientific literature available on the antiplatelet aggregation ability of phenolic compounds in vivo is scarce. Thus, despite the current advances, further studies are needed to confirm the cardioprotective potential of phenolic compounds towards their use alone or in combination with conventional drugs for effective therapeutic interventions.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olivia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adedayo O. Ademiluyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwakemi Adeleke
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Science Laboratory Technology, Ekiti State University, Ado-Ekiti, Nigeria
| | | | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Felipe Noriega
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillan 4070386, Chile
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Preventive Medicine Study Center, Timisoara, Romania
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
6
|
Dinu M, Pagliai G, Scavone F, Bellumori M, Cecchi L, Nediani C, Maggini N, Sofi F, Giovannelli L, Mulinacci N. Effects of an Olive By-Product Called Pâté on Cardiovascular Risk Factors. J Am Coll Nutr 2020; 40:617-623. [DOI: 10.1080/07315724.2020.1813060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Scavone
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Maria Bellumori
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Lorenzo Cecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Niccolò Maggini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Don Carlo Gnocchi Foundation, Onlus IRCCS, Florence, Italy
| | - Lisa Giovannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Nadia Mulinacci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
7
|
Abstract
BACKGROUND Alcohol is consumed by over 2 billion people worldwide. It is a common substance of abuse and its use can lead to more than 200 disorders including hypertension. Alcohol has both acute and chronic effects on blood pressure. This review aimed to quantify the acute effects of different doses of alcohol over time on blood pressure and heart rate in an adult population. OBJECTIVES Primary objective To determine short-term dose-related effects of alcohol versus placebo on systolic blood pressure and diastolic blood pressure in healthy and hypertensive adults over 18 years of age. Secondary objective To determine short-term dose-related effects of alcohol versus placebo on heart rate in healthy and hypertensive adults over 18 years of age. SEARCH METHODS The Cochrane Hypertension Information Specialist searched the following databases for randomised controlled trials up to March 2019: the Cochrane Hypertension Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 2), in the Cochrane Library; MEDLINE (from 1946); Embase (from 1974); the World Health Organization International Clinical Trials Registry Platform; and ClinicalTrials.gov. We also contacted authors of relevant articles regarding further published and unpublished work. These searches had no language restrictions. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing effects of a single dose of alcohol versus placebo on blood pressure (BP) or heart rate (HR) in adults (≥ 18 years of age). DATA COLLECTION AND ANALYSIS Two review authors (ST and CT) independently extracted data and assessed the quality of included studies. We also contacted trial authors for missing or unclear information. Mean difference (MD) from placebo with 95% confidence interval (CI) was the outcome measure, and a fixed-effect model was used to combine effect sizes across studies. MAIN RESULTS: We included 32 RCTs involving 767 participants. Most of the study participants were male (N = 642) and were healthy. The mean age of participants was 33 years, and mean body weight was 78 kilograms. Low-dose alcohol (< 14 g) within six hours (2 RCTs, N = 28) did not affect BP but did increase HR by 5.1 bpm (95% CI 1.9 to 8.2) (moderate-certainty evidence). Medium-dose alcohol (14 to 28 g) within six hours (10 RCTs, N = 149) decreased systolic blood pressure (SBP) by 5.6 mmHg (95% CI -8.3 to -3.0) and diastolic blood pressure (DBP) by 4.0 mmHg (95% CI -6.0 to -2.0) and increased HR by 4.6 bpm (95% CI 3.1 to 6.1) (moderate-certainty evidence for all). Medium-dose alcohol within 7 to 12 hours (4 RCTs, N = 54) did not affect BP or HR. Medium-dose alcohol > 13 hours after consumption (4 RCTs, N = 66) did not affect BP or HR. High-dose alcohol (> 30 g) within six hours (16 RCTs, N = 418) decreased SBP by 3.5 mmHg (95% CI -6.0 to -1.0), decreased DBP by 1.9 mmHg (95% CI-3.9 to 0.04), and increased HR by 5.8 bpm (95% CI 4.0 to 7.5). The certainty of evidence was moderate for SBP and HR, and was low for DBP. High-dose alcohol within 7 to 12 hours of consumption (3 RCTs, N = 54) decreased SBP by 3.7 mmHg (95% CI -7.0 to -0.5) and DBP by 1.7 mmHg (95% CI -4.6 to 1.8) and increased HR by 6.2 bpm (95% CI 3.0 to 9.3). The certainty of evidence was moderate for SBP and HR, and low for DBP. High-dose alcohol ≥ 13 hours after consumption (4 RCTs, N = 154) increased SBP by 3.7 mmHg (95% CI 2.3 to 5.1), DBP by 2.4 mmHg (95% CI 0.2 to 4.5), and HR by 2.7 bpm (95% CI 0.8 to 4.6) (moderate-certainty evidence for all). AUTHORS' CONCLUSIONS: High-dose alcohol has a biphasic effect on BP; it decreases BP up to 12 hours after consumption and increases BP > 13 hours after consumption. High-dose alcohol increases HR at all times up to 24 hours. Findings of this review are relevant mainly to healthy males, as only small numbers of women were included in the included trials.
Collapse
Affiliation(s)
- Sara Tasnim
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Chantel Tang
- Faculty of Health Sciences, McGill University, Montreal, Canada
| | - Vijaya M Musini
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - James M Wright
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Faggio C, Sureda A, Morabito S, Sanches-Silva A, Mocan A, Nabavi SF, Nabavi SM. Flavonoids and platelet aggregation: A brief review. Eur J Pharmacol 2017; 807:91-101. [DOI: 10.1016/j.ejphar.2017.04.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
|
9
|
Polyphenols and DNA Damage: A Mixed Blessing. Nutrients 2016; 8:nu8120785. [PMID: 27918471 PMCID: PMC5188440 DOI: 10.3390/nu8120785] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 12/26/2022] Open
Abstract
Polyphenols are a very broad group of chemicals, widely distributed in plant foods, and endowed with antioxidant activity by virtue of their numerous phenol groups. They are widely studied as putative cancer-protective agents, potentially contributing to the cancer preventive properties of fruits and vegetables. We review recent publications relating to human trials, animal experiments and cell culture, grouping them according to whether polyphenols are investigated in whole foods and drinks, in plant extracts, or as individual compounds. A variety of assays are in use to study genetic damage endpoints. Human trials, of which there are rather few, tend to show decreases in endogenous DNA damage and protection against DNA damage induced ex vivo in blood cells. Most animal experiments have investigated the effects of polyphenols (often at high doses) in combination with known DNA-damaging agents, and generally they show protection. High concentrations can themselves induce DNA damage, as demonstrated in numerous cell culture experiments; low concentrations, on the other hand, tend to decrease DNA damage.
Collapse
|
10
|
Nersesyan A, Hoelzl C, Ferk F, Mišík M, Al-Serori H, Setayesh T, Knasmueller S. Use of Single-cell Gel Electrophoresis Assays in Dietary Intervention Trials. THE COMET ASSAY IN TOXICOLOGY 2016. [DOI: 10.1039/9781782622895-00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The single-cell gel electrophoresis (SCGE) technique has been frequently used to investigate the impact of consumption of complex foods and individual constituents on DNA stability in humans. Since no division or cultivation of the indicator cells (in most studies lymphocytes) is required, this approach is less costly and time consuming than cytogenetic methods. Apart from single- and double-stand breaks and apurinic sites, which can be detected under standard conditions, it is also possible to assess the formation of oxidized DNA bases and alterations of DNA repair as well as protection of the DNA against chemical carcinogens. In total, 93 studies have been published since the first use of the Comet assay in this field in 1997. The results which emerged from these studies show that human foods contain specific highly protective components (e.g. gallic acid, xanthohumol, isoflavones); promising results were also obtained with beverages (coffee and other drinks), while mixed diets with vegetables and fruits conferred no or moderate protection; however, individual plant foods (e.g. kiwis and specific cruciferous vegetables) were highly protective. It is notable that prevention of DNA damage was rarely detected under standard conditions while evidence for reduced formation of oxidized DNA bases was found in approximately 30% of the trials. In some investigations it was possible to identify the modes of action by which specific compounds prevented damage of the genetic material in additional mechanistic experiments. The currently available data show that SCGE assays are a valuable tool for identifying dietary factors which improve the stability of the genetic material and prevent adverse health effects which are causally related to DNA damage.
Collapse
Affiliation(s)
- Armen Nersesyan
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Christine Hoelzl
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Franziska Ferk
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Miroslav Mišík
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Halh Al-Serori
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Tahereh Setayesh
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Siegfried Knasmueller
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
11
|
Grosso G, Stepaniak U, Micek A, Stefler D, Bobak M, Pająk A. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur J Nutr 2016; 56:1409-1420. [PMID: 26913852 PMCID: PMC5486632 DOI: 10.1007/s00394-016-1187-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/08/2016] [Indexed: 01/12/2023]
Abstract
Purpose The aim of this study was to evaluate the association between total and individual classes and subclasses of dietary polyphenol intake and prevalence of metabolic syndrome (MetS) in the Polish arm of the Health, Alcohol and Psychosocial factors In Eastern Europe cohort study. Methods A cross-sectional population-based survey including 8821 adults (51.4 % female) was conducted in Kraków, Poland. Dietary polyphenol intake was evaluated using food frequency questionnaires and matching food consumption data with the Phenol-Explorer database. MetS was defined according to the International Diabetes Federation definition. Linear and logistic regression models were performed to estimate odds ratios (ORs) and confidence intervals (CIs). Results Significant differences in age and energy intake among different categories of total dietary polyphenol intake were found. Body mass index (BMI), waist circumference (WC), blood pressure, and triglycerides were significantly lower among individuals in the higher quartiles of polyphenol intake, but a linear association was found only for BMI and WC. After adjusting for potential confounding factors, individuals in the highest quartile of polyphenol intake were less likely to have MetS (OR 0.80; 95 % CI 0.64, 0.98 and OR 0.70; 95 % CI 0.56, 0.86 for both men and women, respectively). High total polyphenol intake was negatively associated with WC, blood pressure, high lipoprotein cholesterol, and triglycerides in women, and fasting plasma glucose in both genders. Among individual classes of polyphenols, phenolic acids and stilbenes were significantly associated with MetS; lignans and stilbenes with WC; phenolic acids with blood pressure and triglycerides; and flavonoids with fasting plasma glucose. Among specific subclasses of polyphenols, hydroxycinnamic acids, flavanols, and dihydrochalcones had the most relevant role. Conclusions Total and individual classes and subclasses of dietary polyphenols were inversely associated with MetS and some of its components. Electronic supplementary material The online version of this article (doi:10.1007/s00394-016-1187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppe Grosso
- Integrated Cancer Registry of Catania-Messina-Siracusa-Enna, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele, Via S. Sofia 85, 95123, Catania, Italy. .,Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland.
| | - Urszula Stepaniak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Micek
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland
| | - Denes Stefler
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Martin Bobak
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Andrzej Pająk
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
12
|
Luceri C, Bigagli E, Pitozzi V, Giovannelli L. A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. Eur J Nutr 2015; 56:865-877. [DOI: 10.1007/s00394-015-1134-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022]
|
13
|
Ibero-Baraibar I, Azqueta A, Lopez de Cerain A, Martinez JA, Zulet MA. Assessment of DNA damage using comet assay in middle-aged overweight/obese subjects after following a hypocaloric diet supplemented with cocoa extract. Mutagenesis 2014; 30:139-46. [DOI: 10.1093/mutage/geu056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
The comet assay as a tool for human biomonitoring studies: The ComNet Project. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 759:27-39. [DOI: 10.1016/j.mrrev.2013.10.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
|
15
|
Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18:1818-92. [PMID: 22794138 PMCID: PMC3619154 DOI: 10.1089/ars.2012.4581] [Citation(s) in RCA: 1662] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist in planta, at concentrations in the low-μM-to-mM range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds nM concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed in vivo intervention and in vitro mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes.
Collapse
Affiliation(s)
- Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Oliveras-López MJ, Molina JJM, Mir MV, Rey EF, Martín F, de la Serrana HLG. Extra virgin olive oil (EVOO) consumption and antioxidant status in healthy institutionalized elderly humans. Arch Gerontol Geriatr 2013; 57:234-42. [PMID: 23642776 DOI: 10.1016/j.archger.2013.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 04/02/2013] [Accepted: 04/06/2013] [Indexed: 01/18/2023]
Abstract
Recent studies show that the elderly have increased oxidative stress and impaired antioxidant defense systems. Our study aims to evaluate the effects of daily consumption of EVOO in the healthy institutionalized elderly. We studied anthropometric, biochemical and antioxidant parameters in 62 subjects aged 65-96 years after a 6-week daily intake of polyphenol-rich EVOO with high oleuropein derivative contents. Subjects were divided into a control group (CG) who maintained their dietary habits (n=39) and an olive group (OG) who consumed EVOO as the only added fat, plus a daily dose of 50ml (n=23). We found a significant reduction of total cholesterol (TC), HDL, LDL and TGs in OG subjects and a significant increase of HDL levels. There was no significant variation in the CG parameters. In OG the total antioxidant capacity (TAC) in plasma increased with significant differences over CG. Plasma hydroxytyrosol (OH-Tyr) concentration showed a significant increase after EVOO intervention. Daily consumption of EVOO was found to have positive effects on lipid profiles, OH-Tyr levels and TAC. The results also show a significant increase of catalase (CAT) in erythrocytes and a decrease (p<0.05) in superoxide dismutase (SOD) and glutathione peroxidase (GH-PX) activity after EVOO intake. To our knowledge, no other study has examined the effects of EVOO consumption on biochemical parameters, antioxidant capacity and antioxidant enzyme activity in healthy elderly subjects. In conclusion, our results show that nutritional intervention with EVOO improves antioxidant status in healthy elderly people.
Collapse
Affiliation(s)
- María-Jesús Oliveras-López
- Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide of Seville, Ctra. Utrera km 1, 41013 Seville, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Jeon GI, Shin MJ, Lee KH, Park E. Effect of onion juice supplementation on antioxidant status in participants with mild hypercholesterolemia. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0071-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Intake of alcohol-free red wine modulates antioxidant enzyme activities in a human intervention study. Pharmacol Res 2012; 65:609-14. [PMID: 22484523 DOI: 10.1016/j.phrs.2012.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 12/11/2022]
Abstract
Wine intake affects the antioxidant enzyme activities that contribute to the overall antioxidant properties of wine. The purpose of this study is to evaluate whether alcohol-free wine has any effect on antioxidant enzymes. The study was a randomized cross-over human intervention. A low phenolic diet (LPD) was designed to prevent interference from polyphenols in other food sources. In the first period, the volunteers ate only this low phenolic diet; in the second, they ate this diet and also drank 300 mL of alcohol-free wine. The enzymes under study were: superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The activities of glutathione reductase, superoxide dismutase and catalase decreased during the LPD period and increased in the LPD+dealcoholized wine period. On the third day of intervention, significant changes were observed in glutathione reductase and superoxide dismutase activity for both intervention periods under study. Catalase activity changed significantly on the seventh day of intervention. Antioxidant enzymes modulated their activity more easily than the endogenous antioxidants, which did not undergo any changes. Our results show for the first time that the increase in the activity of the antioxidant enzymes is not due to the alcohol content in wine but to the polyphenolic composition. Therefore, alcohol-free wine could be an excellent source of antioxidants to protect people suffering from oxidative stress (cancer, diabetes, alzheimer, etc.) who should not consume alcohol.
Collapse
|