1
|
Li W, Saeki H, Yang B, Shimizu Y, Joe GH. Enhanced anti-inflammatory effect of fish myofibrillar protein by introducing pectin oligosaccharide and its molecular mechanisms. Food Chem 2025; 463:141082. [PMID: 39276689 DOI: 10.1016/j.foodchem.2024.141082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
This study investigated the efficacy of glycation with edible uronic acid-containing oligosaccharides via the Maillard reaction to enhance the anti-inflammatory effect of fish myofibrillar protein (Mf). Lyophilized Mf was reacted with pectin oligosaccharide (PO, half of the total protein weight) at 60 °C and 35 % relative humidity for up to 12 h to produce glycated Mf (Mf-PO). After pepsin and trypsin digestion, the anti-inflammatory effect was assessed by measuring the secretions of proinflammatory cytokines in LPS-stimulated RAW 264.7 macrophages, and the anti-inflammatory effect of Mf was enhanced by PO-glycation without marked lysine loss and browning. The effects on the expressions of genes related to the LPS-stimulated signaling pathway in macrophages were also examined. PO-glycation suppressed LPS-stimulated inflammation by suppressing expression of cd14 and enhancing suppressive effect of Mf on the TLR4-MyD88-dependent inflammatory signaling pathway. Therefore, as an edible reducing sugar, PO could be an effective bioindustrial material for developing anti-inflammatory Mf.
Collapse
Affiliation(s)
- Wenzhao Li
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroki Saeki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Boxue Yang
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yutaka Shimizu
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Ga-Hyun Joe
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
2
|
Hsieh KC, Ting Y. Atmospheric cold plasma reduces Ara h 1 antigenicity in roasted peanuts by altering the protein structure and amino acid profile. Food Chem 2024; 441:138115. [PMID: 38183716 DOI: 10.1016/j.foodchem.2023.138115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
Ara h 1 is the major allergen in peanuts. To enhance the unique flavor, peanuts are usually roasted at high temperatures. However, roasting can increase the allergenic potential, owing to glycation of allergens. Atmospheric cold plasma (ACP) is a non-thermal processing technology that generates reactive species, enabling protein structural changes. Herein, glucose was also added to the ACP-treated peanut protein before roasting. The content and antigenicity of the advanced glycation end products were measured. The antigenicity was evaluated by ELISA and in vitro digestion assays. The amino acid profile and secondary and tertiary protein structures were also assessed. The antigenicity of Ara h 1 decreased by 91 % and 76 % after 30 min of air and nitrogen plasma treatment, respectively. The glycation degree and thermal and digestive stabilities were also reduced. These results correlated with the structural changes, denaturation, and aggregation. Therefore, cold plasma may reduce the allergic effects of peanuts.
Collapse
Affiliation(s)
- Kuan-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd, Taipei, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd, Taipei, Taiwan.
| |
Collapse
|
3
|
Xie Q, Xu K, Sang Z, Luo D, Chen C, Fu W, Xue W. Allergenicity Modulation of Casein with the Modifications of Linearization, Cross-Linking, and Glycation via the Regulation of Th1/Th2 Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10031-10045. [PMID: 38629959 DOI: 10.1021/acs.jafc.3c09962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Casein (CN) is the primary allergenic protein in cow's milk, contributing to the worldwide escalating prevalence of food allergies. However, there remains limited knowledge regarding the effect of structural modifications on CN allergenicity. Herein, we prepared three modified CNs (mCN), including sodium dodecyl sulfate and dithiothreitol-induced linear CN (LCN), transglutaminase-cross-linked CN (TCN), and glucose-glycated CN (GCN). The electrophoresis results indicated widespread protein aggregation among mCN, causing variations in their molecular weights. The unique internal and external structural characteristics of mCN were substantiated by disparities in surface microstructure, alterations in the secondary structure, variations in free amino acid contents, and modifications in functional molecular groups. Despite the lower digestibility of TCN and GCN compared to LCN, they significantly suppressed IL-8 production in Caco-2 cells without significantly promoting their proliferation. Moreover, GCN showed the weakest capacity to induce LAD2 cell degranulation. Despite the therapeutic effect of TCN, GCN-treated mice displayed the most prominent attenuation of allergic reactions and a remarkably restored Th1/Th2 imbalance, while LCN administration resulted in severe allergic phenotypes and endotypes in both cellular and murine models. This study highlighted the detrimental effect of linear modifications and underscored the significance of glycation in relation to CN allergenicity.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Ke Xu
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, Zhejiang Province 311200, P. R. China
| | - Ziqing Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Wenhui Fu
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| |
Collapse
|
4
|
Zhang Y, Zhang C, Wang J, Wen Y, Li H, Liu X, Liu X. Can proteins, protein hydrolysates and peptides cooperate with probiotics to inhibit pathogens? Crit Rev Food Sci Nutr 2023; 65:1023-1036. [PMID: 38032153 DOI: 10.1080/10408398.2023.2287185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Studies have shown that probiotics can effectively inhibit pathogens in the presence of proteins, protein hydrolysates and peptides (protein derivates). However, it is still unclear the modes of probiotics to inhibit pathogens regulated by protein derivates. Therefore, we summarized the possible effects of protein derivates from different sources on probiotics and pathogens. There is abundant evidence that proteins and peptides from different sources can significantly promote the proliferation of probiotics and increase their secretion of antibacterial substances. Such proteins and peptides can also stimulate the adhesion of probiotics to intestinal epithelial cells and contribute to regulating intestinal immunity, but they seem to have the negative effects on pathogens. Moreover, a direct effect of proteins on intestinal cells is summarized. Whether or not they can cooperate with probiotics to inhibit pathogens using above possible mechanisms were discussed. Furthermore, there seems to be no consistent conclusions that protein derivates have synergistic effects with probiotics, and there is still limited evidence on the inhibiting patterns. Therefore, the existing problems and shortcomings are noted, and future research direction is proposed.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Chi Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Jingyi Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Yanchao Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xiaoyan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
5
|
Wu H, Chen B, Wu Y, Gao J, Li X, Tong P, Wu Y, Meng X, Chen H. New Perspectives on Food Matrix Modulation of Food Allergies: Immunomodulation and Component Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13181-13196. [PMID: 37646334 DOI: 10.1021/acs.jafc.3c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Food allergy is a multifactorial interplay process influenced not only by the structure and function of the allergen itself but also by other components of the food matrix. For food, before it is thoroughly digested and absorbed, numerous factors make the food matrix constantly change. This will also lead to changes in the chemistry, biochemical composition, and structure of the various components in the matrix, resulting in multifaceted effects on food allergies. In this review, we reveal the relationship between the food matrix and food allergies and outline the immune role of the components in the food matrix, while highlighting the ways and pathways in which the components in the food matrix interact and their impact on food allergies. The in-depth study of the food matrix will essentially explore the mechanism of food allergies and bring about new ideas and breakthroughs for the prevention and treatment of food allergies.
Collapse
Affiliation(s)
- Huan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Bihua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Yuhong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| |
Collapse
|
6
|
Ballegaard ASR, Bøgh KL. Intestinal protein uptake and IgE-mediated food allergy. Food Res Int 2023; 163:112150. [PMID: 36596102 DOI: 10.1016/j.foodres.2022.112150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Food allergy is affecting 5-8% of young children and 2-4% of adults and seems to be increasing in prevalence. The cause of the increase in food allergy is largely unknown but proposed to be influenced by both environmental and lifestyle factors. Changes in intestinal barrier functions and increased uptake of dietary proteins have been suggested to have a great impact on food allergy. In this review, we aim to give an overview of the gastrointestinal digestion and intestinal barrier function and provide a more detailed description of intestinal protein uptake, including the various routes of epithelial transport, how it may be affected by both intrinsic and extrinsic factors, and the relation to food allergy. Further, we give an overview of in vitro, ex vivo and in vivo techniques available for evaluation of intestinal protein uptake and gut permeability in general. Proteins are digested by gastric, pancreatic and integral brush border enzymes in order to allow for sufficient nutritional uptake. Absorption and transport of dietary proteins across the epithelial layer is known to be dependent on the physicochemical properties of the proteins and their digestion fragments themselves, such as size, solubility and aggregation status. It is believed, that the greater an amount of intact protein or larger peptide fragments that is transported through the epithelial layer, and thus encountered by the mucosal immune system in the gut, the greater is the risk of inducing an adverse allergic response. Proteins may be absorbed across the epithelial barrier by means of various mechanisms, and studies have shown that a transcellular facilitated transport route unique for food allergic individuals are at play for transport of allergens, and that upon mediator release from mast cells an enhanced allergen transport via the paracellular route occurs. This is in contrast to healthy individuals where transcytosis through the enterocytes is the main route of protein uptake. Thus, knowledge on factors affecting intestinal barrier functions and methods for the determination of their impact on protein uptake may be useful in future allergenicity assessments and for development of future preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Tai J, Qiao D, Huang X, Hu H, Li W, Liang X, Zhang F, Lu Y, Zhang H. Structural Property, Immunoreactivity and Gastric Digestion Characteristics of Glycated Parvalbumin from Mandarin Fish ( Siniperca chuaisi) during Microwave-Assisted Maillard Reaction. Foods 2022; 12:foods12010052. [PMID: 36613268 PMCID: PMC9818276 DOI: 10.3390/foods12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
This study was aimed to investigate the structural and immunological properties of parvalbumin from mandarin fish during the Maillard reaction. The microwave-assisted the Maillard reaction was optimized by orthogonal designed experiments. The results showed that the type of sugar and heating time had a significant effect on the Maillard reaction (p < 0.05). The SDS-PAGE analysis displayed that the molecular weight of parvalbumin in mandarin fish changed after being glycated with the Maillard reaction. The glycated parvalbumin was analyzed by Nano-LC-MS/MS and eleven glycation sites as well as five glycation groups were identified. By using the indirect competitive ELISA method, it was found that microwave heating gave a higher desensitization ability of mandarin fish parvalbumin than induction cooker did. In vitro gastric digestion experiments showed that microwave-heated parvalbumin was proved to be digested more easily than that cooked by induction cookers. The microwave-assisted Maillard reaction modified the structure of parvalbumin and reduced the immunoreactivity of parvalbumin of mandarin fish.
Collapse
Affiliation(s)
- Jingjing Tai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dan Qiao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xue Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huang Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Wanzheng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yanbin Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hong Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence: ; Tel.: +86-138-5800-1588
| |
Collapse
|
8
|
Comprehensive Analysis of the Structure and Allergenicity Changes of Seafood Allergens Induced by Non-Thermal Processing: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185857. [PMID: 36144594 PMCID: PMC9505237 DOI: 10.3390/molecules27185857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Seafood allergy, mainly induced by fish, shrimp, crab, and shellfish, is a food safety problem worldwide. The non-thermal processing technology provides a new method in reducing seafood allergenicity. Based on the structural and antigenic properties of allergenic proteins, this review introduces current methods for a comprehensive analysis of the allergenicity changes of seafood allergens induced by non-thermal processing. The IgE-binding capacities/immunoreactivity of seafood allergens are reduced by the loss of conformation during non-thermal processing. Concretely, the destruction of native structure includes degradation, aggregation, uncoiling, unfolding, folding, and exposure, leading to masking of the epitopes. Moreover, most studies rely on IgE-mediated assays to evaluate the allergenic potential of seafood protein. This is not convincing enough to assess the effect of novel food processing techniques. Thus, further studies must be conducted with functional assays, in vivo assays, animal trials, simulated digestion, and intestinal microflora to strengthen the evidence. It also enables us to better identify the effects of non-thermal processing treatment, which would help further analyze its mechanism.
Collapse
|
9
|
Ateeq M, Adeel MM, Kanwal A, Tahir ul Qamar M, Saeed A, Khaliq B, Saeed Q, Atiq MN, Bilal M, Alharbi M, Alshammari A, Akrem A. In Silico Analysis and Functional Characterization of Antimicrobial and Insecticidal Vicilin from Moth Bean ( Vigna aconitifolia (Jacq.) Marechal) Seeds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103251. [PMID: 35630727 PMCID: PMC9145308 DOI: 10.3390/molecules27103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023]
Abstract
Vicilin has nutraceutical potential and different noteworthy medicative health-promoting biotic diversions, and it is remarkable against pathogenic microorganisms and insects. In this study, Vigna aconitifolia vicilin (VacV) has been identified and characterized from the seed of Vigna aconitifolia (Jacq.) Marechal (Moth beans). LC-MS/MS analysis of VacV provided seven random fragmented sequences comprising 238 residues, showing significant homology with already reported Vigna radiata vicilin (VraV). VacV was purified using ammonium sulfate precipitation (60%) followed by size exclusion chromatography on Hi-Load 16/60 Superdex 200 pg column and anion-exchange chromatography (Hi trap Q FF column). Purified VacV showed a major ~50 kDa band and multiple lower bands on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under both reduced and non-reduced conditions. After all, a three-dimensional molecular structure of VacV was predicted, which showed β-sheeted molecular conformation similar to crystallographic structure of VraV. All Vicilins from V. aconitifolia and other plants were divided into six sub-groups by phylogenetic analysis, and VacV shared a high degree of similarity with vicilins of Vigna radiata, Pisum sativum, Lupinus albus, Cicer arietinum and Glycine max. Additionally, VacV (20 μg) has significant growth inhibition against different pathogenic bacteria along strong antifungal activity (50 μg). Likewise, VacV (3.0 mg) produced significant growth reduction in Rice Weevil Sitophilus oryzae larvae after 9 days compared with control. Furthermore, by using MMT assay, the cytotoxicity effect of VacV on the growth of HepG2 liver cancerous cells was tested. VacV showed cytotoxicity against the HepG-2 line and the acquired value was 180 µg after 48 h. Finally, we performed molecular docking against caspase-3 protein (PDB ID: 3DEI) for VacV bioactive receptor interface residues. Hence, our results reveal that VacV, has nutraceutical potential and moth beans can be used as a rich resource of functional foods.
Collapse
Affiliation(s)
- Muhammad Ateeq
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Muzammal Adeel
- Hubei Provincial Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Ayesha Kanwal
- College of Life Sciences, University of Science and Technology of China, Hefei 230027, China;
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.H.); (A.A.)
| | - Ahsan Saeed
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Binish Khaliq
- Department of Botany, Faculty of Life Science, University of Okara, Okara 56300, Pakistan;
| | - Qamar Saeed
- Department of Entomology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Nauman Atiq
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Muhammad Bilal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road Thokar Niaz Baig, Lahore 53700, Pakistan;
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (M.T.u.Q.); (A.A.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (M.T.u.Q.); (A.A.)
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Correspondence: (M.H.); (A.A.)
| |
Collapse
|
10
|
Wang S, Sun X, Wang M, Deng Z, Niu B, Chen Q. Effect of roasted peanut allergen Ara h 3 protein on the sensitization of Caco-2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5325-5336. [PMID: 33650104 DOI: 10.1002/jsfa.11180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Roasted peanut is widely loved as a kind of food with rich taste. However, peanut allergy is one of the major threats to human health, which affects about 5% of children and 1.4-2% of adults in the world. RESULTS To evaluate the sensitization mechanism of peanut allergen Ara h 3, Caco-2 cells as the model, which has the similar structure and function to differentiated small intestinal epithelial cells. Compared with Ara h 3-raw (purified from raw peanut) group, more significant results such as the inhibited Caco-2 cell viability and proliferation, the increased secretion of reactive oxygen species (ROS) and the decreased transepithelial electrical resistance were obtained in Ara h 3-roasted (purified from roasted peanut) group. Accordingly, oxidative stress and NF-κB signaling pathway were more imbalanced, which lead to the increased of thymic stromal lymphopoietin (TSLP), interleukin 6 (IL-6), IL-8 and monocyte chemotactic protein 1 (MCP-1). Then, the gene expression of tight junction proteins ZO-1, occludin and JAM-1 were reduced, which proved that the integrity of the Caco-2 monolayer barrier is severely damaged. CONCLUSION These finding identify the mechanisms of the allergenicity of roasted peanut allergy proteins are probably associated with intestinal uptake and cytokine dependent allergies. The aggravated allergic reaction might be caused by the increment of TSLP, IL-6, IL-8 and MCP-1 due to the activated NF-κB signaling pathway, and the enhanced transport of Ara h 3-roasted protein by Caco-2 monolayer. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuo Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaodong Sun
- School of Medicine, Shanghai University, Shanghai, China
| | - Minjia Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhirui Deng
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
García-Cano I, Yeh PW, Rocha-Mendoza D, Jiménez-Flores R. Supercritical CO 2 treatment reduces the antigenicity of buttermilk β-lactoglobulin and its inflammatory response in Caco-2 cells. JDS COMMUNICATIONS 2021; 2:1-6. [PMID: 36337288 PMCID: PMC9623642 DOI: 10.3168/jdsc.2020-0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 01/14/2024]
Abstract
β-Lactoglobulin (β-LG) is believed to be a common allergen in bovine milk. Buttermilk (BM) powder has abundant contents of milk fat globule membrane and phospholipid, both of which have been demonstrated to have positive effects on brain and cognitive development during early infancy. This study focused on modifying β-LG in BM via supercritical CO2 (ScCO2) treatment to modify its reactivity to antibodies and thus reduce its antigenicity. Buttermilk powder was treated in a supercritical fluid extraction system with food-grade CO2 at 100, 150, 200, 250, 350, and 400 bar at 2 temperatures, 50 and 75°C. All analyses were completed in a 10% BM suspension (wt/vol). The BM proteins were examined using sodium dodecyl sulfate (SDS)-PAGE, Western blot, ELISA, and periodic acid staining methods. Semi-purified β-LG was used to evaluate the cytotoxicity, viability, and inflammatory response in the Caco-2 cell line by means of the lactate dehydrogenase assay, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium] assay, and IL-8 production, respectively. The SDS-PAGE showed that the signal intensity of β-LG bands was reduced by up to 50% after being processed at 250 bar and 75°C for 30 min. Lighter and more diffuse signals were found by Western blot, indicating modification of the protein structure. The ELISA demonstrated that ScCO2 treatment could significantly change β-LG antigenicity in BM. Sugar moieties in bands corresponding to β-LG were revealed by periodic acid staining, indicating glycosylation only in samples treated with ScCO2. Caco-2 cells treated with whey proteins had high viability, 24.9% lower inflammation, and no evidence of cytotoxicity compared with untreated cultures. These results showed that reduced antigenicity of β-LG was caused by lactosylation, which has been reported as a possible pathway to reduce the allergenicity in foods. The denaturation of β-LG by supercritical fluid processing is a promising way to address milk allergy, which remains a problem requiring more attention and further research.
Collapse
Affiliation(s)
- Israel García-Cano
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus 43210
| | - Po-Wei Yeh
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus 43210
| | - Diana Rocha-Mendoza
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus 43210
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus 43210
| |
Collapse
|
12
|
Shi Y, Wang M, Ding Y, Chen J, Niu B, Chen Q. Effects of Maillard reaction on structural modification and potential allergenicity of peanut 7S globulin (Ara h 1). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5617-5626. [PMID: 32608517 DOI: 10.1002/jsfa.10614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/16/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ara h 1 is a major food allergen in peanuts. Recently, many studies have revealed that the Maillard reaction (MR) affects the allergenicity of food proteins. RESULTS To investigate the influence of the MR on the allergenicity of Ara h 1, R-Ara h 1 was processed with glucose in dry heating conditions for different periods. The extent of the MR was assessed by four methods. The changes in secondary and tertiary structures were characterized through spectroscopy assays. Advanced glycation end products (AGE) structures were identified by protein sample dry heating for 60 min, indicating the formation of AGE-Ara h 1. Simulated gastric fluid (SGF) digestion analysis showed that AGE-Ara h 1 has higher resistance to peptic digestion than R-Ara h 1. The BALB/c mouse model was also utilized to explore the effect of the MR on the allergenicity of Ara h 1, and the results showed that the Th2-type cytokines, antibodies, and histamine content increased, and there was a greater degree of degranulation of rat basophilic leukemia (RBL) cells in the AGE-Ara h 1 group compared with the R-Ara h 1 group. CONCLUSION During the process of dry heating, proteins participated in the MR with changes in secondary and tertiary structures. The condition applying a temperature of 100 °C for 60 min caused the formation of AGE-Ara h 1. Simulated gastric fluid digestion analysis showed that AGE-Ara h 1 had a greater resistance to peptic digestion than R-Ara h 1. The BALB/c mouse model showed that AGE-Ara h 1 had more allergenicity, indicating that the MR could enhance the allergenicity of Ara h 1. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunfeng Shi
- School of Life Sciences, Shanghai University, Shanghai, China
- Shanghai Institute of Biological Products Co., ltd., Shanghai, China
| | | | | | | | | | | |
Collapse
|
13
|
Korça E, Piskovatska V, Börgermann J, Navarrete Santos A, Simm A. Circulating antibodies against age-modified proteins in patients with coronary atherosclerosis. Sci Rep 2020; 10:17105. [PMID: 33051525 PMCID: PMC7553914 DOI: 10.1038/s41598-020-73877-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022] Open
Abstract
Advanced glycation endproducts (AGEs) are formed in a series of non-enzymatic reactions between reducing sugars and the amino groups of proteins and accumulate during aging, diabetes mellitus, chronic kidney disease and other chronic diseases. Accumulation of AGE-modifications alters protein structure and function, transforming these molecules into potential targets of the immune system, presumably triggering the production of autoantibodies against AGEs. In this study, we detected autoantibodies against AGE-modified proteins with ELISA in plasma samples of 91 patients with documented coronary artery disease (CAD), who underwent coronary artery bypass grafting (CABG) surgery. Patients with high levels of autoantibodies had a higher body mass index (BMI 28.6 vs 27.1 kg/m2; p = 0.046), were more likely to suffer from chronic obstructive pulmonary disease (COPD 30% vs 9.8%; p = 0.018), and more likely to need dialysis after the surgery (10% vs 0%; p = 0.037). Our findings show a weak link between the levels of autoantibodies against AGEs and diabetes mellitus (DM 44% vs 24.4%; p = 0.05). In a small subpopulation of patients, antibodies against native bovine serum albumin (BSA) were detected. A growing body of research explores the potential role of antibodies against AGE-modified proteins in pathogenesis of different chronic diseases; our data confirms the presence of AGE-autoantibodies in patients with CAD and that in parallel to the AGEs themselves, they may have a potential role in concomitant clinical conditions in patients undergoing CABG surgery. Further research is necessary to verify the molecular role of these antibodies in different pathological conditions.
Collapse
Affiliation(s)
- Edina Korça
- Department of Cardiothoracic Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Veronika Piskovatska
- Department of Cardiothoracic Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jochen Börgermann
- Department of Cardiothoracic Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Halle, Germany.,Herzzentrum Duisburg, Duisburg, Germany
| | | | - Andreas Simm
- Department of Cardiothoracic Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Halle, Germany. .,Center for Medical Basic Research, Martin-Luther University Halle-Wittenberg, Halle, Germany. .,Klinik für Herzchirurgie, Mitteldeutsches Herzzentrum, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
14
|
Abstract
This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.
Collapse
|
15
|
Glycosylation between recombinant peanut protein Ara h 1 and glucosamine could decrease the allergenicity due to the protein aggregation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Bavaro SL, Orlando A, De Angelis E, Russo F, Monaci L. Investigation on the allergen profile of the soluble fraction of autoclaved peanuts and its interaction with Caco-2 cells. Food Funct 2019; 10:3615-3625. [PMID: 31162510 DOI: 10.1039/c9fo00309f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peanuts are a source of proteins and fats but they are also considered a harmful food for individuals who are allergic to them due to their ability to trigger severe and life-threatening reactions. Strict avoidance of peanuts is the most effective means to prevent the development of an allergic reaction. Physical or chemical strategies employing autoclaving can represent a valid alternative to produce a final food with a decreased allergenic power as in the case of peanuts. Thermal processing might induce protein modifications in foods and affect protein digestibility or absorption of nutrients across the intestinal mucosa. Besides, the type of processing could also alter food protein allergenicity thus influencing the interplay with the biological system at the gut level. In this paper, we investigated the influence of autoclaving based treatments on the proliferation of epithelial cells at the intestinal level. Extractable proteins of raw and autoclaved peanuts were analysed by SDS-PAGE and untargeted LC-high resolution-MS/MS to investigate the peptide composition. Our findings show that when raw peanuts were assayed on Caco 2 cell lines, an antiproliferative effect was observed. By contrast, peanuts subjected to hydration and autoclaving did not show an inhibition of proliferation on Caco-2 cells. In parallel, extensive fragmentation induced by autoclaving treatments on the original peanut proteins was also recorded by LC-MS/MS analysis with a consequent increase in the number of peptides detected. These results indicate that the processing applied to peanuts can have an influence on both the nutritional and allergological sides, and more investigations will be required on this issue to understand the alteration of inflammatory mediators induced by the treatment applied.
Collapse
Affiliation(s)
- Simona L Bavaro
- Institute of Sciences of Food Production, Italian National Research Council (ISPA-CNR), Via Amendola 122/O, 70126, Bari, Italy.
| | | | | | | | | |
Collapse
|
17
|
Zhang Z, Xiao H, Zhou P. Allergenicity suppression of tropomyosin from Exopalaemon modestus by glycation with saccharides of different molecular sizes. Food Chem 2019; 288:268-275. [DOI: 10.1016/j.foodchem.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/30/2023]
|
18
|
Tian Y, Rao H, Fu W, Tao S, Xue WT. Effect of digestion on the immunoreactivity and proinflammatory properties of recombinant peanut allergen Ara h 1. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1592123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yang Tian
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, People’s Republic of China
| | - Huan Rao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, People’s Republic of China
| | - Wenhui Fu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, People’s Republic of China
| | - Sha Tao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Wen-Tong Xue
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Zhang Z, Xiao H, Zhang X, Zhou P. Conformation, allergenicity and human cell allergy sensitization of tropomyosin from Exopalaemon modestus: Effects of deglycosylation and Maillard reaction. Food Chem 2019; 276:520-527. [DOI: 10.1016/j.foodchem.2018.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 02/05/2023]
|
20
|
Tian Y, Rao H, Zhang K, Tao S, Xue W. Effects of different thermal processing methods on the structure and allergenicity of peanut allergen Ara h 1. Food Sci Nutr 2018; 6:1706-1714. [PMID: 30258615 PMCID: PMC6145249 DOI: 10.1002/fsn3.742] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/12/2023] Open
Abstract
Boiling and frying can alter the structure of peanut allergens and therefore change the IgE-binding capacity of the Ara h 1. In this research, we aim to clarify the connections between structural changes and the allergenicity alteration, and recommend an effective thermal method to minimize the allergenicity of Ara h 1. Anion exchange chromatography was used to isolate Ara h 1 from non/heat-treated peanuts. Ara h 1 in boiled peanuts has a relatively low hydrophobic index, reduced maximum emission wavelength in the fluorescence, less content of α-helix, and the lowest IgE-binding efficiency. On the contrary, Ara h 1 in fried peanuts present a much higher degeneration degree, a red shift in fluorescence, and a decrease in the content of α-helix. These data indicate that boiling can reduce the allergenicity of Ara h 1, thus can be utilized in peanut processing from a security point of view.
Collapse
Affiliation(s)
- Yang Tian
- Beijing Advanced Innovation Centre for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- College of Food Science and Nutritional EngineeringChina Agriculture UniversityBeijingChina
| | - Huan Rao
- Beijing Advanced Innovation Centre for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- College of Food Science and Nutritional EngineeringChina Agriculture UniversityBeijingChina
| | - Ke Zhang
- Beijing Advanced Innovation Centre for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- College of Food Science and Nutritional EngineeringChina Agriculture UniversityBeijingChina
| | - Sha Tao
- College of Information and Electrical EngineeringBeijingChina
| | - Wen‐Tong Xue
- Beijing Advanced Innovation Centre for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- College of Food Science and Nutritional EngineeringChina Agriculture UniversityBeijingChina
| |
Collapse
|
21
|
Tian Y, Rao H, Tao S, Xue WT. Effect of boiling on the structure and immunoreactivity of recombinant peanut protein Ara h 1. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1461812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Yang Tian
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Huan Rao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Sha Tao
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, People’s Republic of China
| | - Wen-Tong Xue
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Reitsma M, Bastiaan-Net S, Sijbrandij L, de Weert E, Sforza S, Gerth van Wijk R, Savelkoul HFJ, de Jong NW, Wichers HJ. Origin and Processing Methods Slightly Affect Allergenic Characteristics of Cashew Nuts (Anacardium occidentale). J Food Sci 2018. [PMID: 29524213 DOI: 10.1111/1750-3841.14003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein content and allergen composition was studied of cashews from 8 different origins (Benin, Brazil, Ghana, India, Ivory Coast, Mozambique, Tanzania, Vietnam), subjected to different in-shell heat treatments (steamed, fried, drum-roasted). On 2D electrophoresis, 9 isoforms of Ana o 1, 29 isoforms of Ana o 2 (11 of the acidic subunit, 18 of the basic subunit), and 8 isoforms of the large subunit of Ana o 3 were tentatively identified. Based on 1D and 2D electrophoresis, no difference in allergen content (Ana o 1, 2, 3) was detected between the cashews of different origins (P > 0.5), some small but significant differences were detected in allergen solubility between differently heated cashews. No major differences in N- and C-terminal microheterogeneity of Ana o 3 were detected between cashews of different origins. Between the different heat treatments, no difference was detected in glycation, pepsin digestibility, or IgE binding of the cashew proteins.
Collapse
Affiliation(s)
- Marit Reitsma
- Food and Biobased Research, Wageningen Univ. and Research Centre, Wageningen, the Netherlands.,Lab. of Food Chemistry, Wageningen Univ. and Research Centre, Wageningen, the Netherlands
| | - Shanna Bastiaan-Net
- Food and Biobased Research, Wageningen Univ. and Research Centre, Wageningen, the Netherlands
| | - Lutske Sijbrandij
- Lab. of Food Chemistry, Wageningen Univ. and Research Centre, Wageningen, the Netherlands
| | - Evelien de Weert
- Lab. of Food Chemistry, Wageningen Univ. and Research Centre, Wageningen, the Netherlands
| | - Stefano Sforza
- Lab. of Food Chemistry, Wageningen Univ. and Research Centre, Wageningen, the Netherlands.,Dept. of Food Science, Univ. of Parma, 43124 Parma, Italy
| | - Roy Gerth van Wijk
- Dept. of Allergology, Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen Univ., Wageningen, the Netherlands
| | - Nicolette W de Jong
- Dept. of Allergology, Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Harry J Wichers
- Food and Biobased Research, Wageningen Univ. and Research Centre, Wageningen, the Netherlands
| |
Collapse
|
23
|
Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins. Nutrients 2017; 9:nu9080835. [PMID: 28777346 PMCID: PMC5579628 DOI: 10.3390/nu9080835] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/25/2017] [Accepted: 08/01/2017] [Indexed: 01/19/2023] Open
Abstract
The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers’ choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins.
Collapse
|
24
|
Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, Dwivedi PD. Maillard reaction in food allergy: Pros and cons. Crit Rev Food Sci Nutr 2017; 58:208-226. [PMID: 26980434 DOI: 10.1080/10408398.2016.1152949] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food allergens have a notable potential to induce various health concerns in susceptible individuals. The majority of allergenic foods are usually subjected to thermal processing prior to their consumption. However, during thermal processing and long storage of foods, Maillard reaction (MR) often takes place. The MR is a non-enzymatic glycation reaction between the carbonyl group of reducing sugars and compounds having free amino groups. MR may sometimes be beneficial by damaging epitope of allergens and reducing allergenic potential, while exacerbation in allergic reactions may also occur due to changes in the motifs of epitopes or neoallergen generation. Apart from these modulations, non-enzymatic glycation can also modify the food protein(s) with various type of advance glycation end products (AGEs) such as Nϵ-(carboxymethyl-)lysine (CML), pentosidine, pyrraline, and methylglyoxal-H1 derived from MR. These Maillard products may act as immunogen by inducing the activation and proliferation of various immune cells. Literature is available to understand pathogenesis of glycation in the context of various diseases but there is hardly any review that can provide a thorough insight on the impact of glycation in food allergy. Therefore, present review explores the pathogenesis with special reference to food allergy caused by non-enzymatic glycation as well as AGEs.
Collapse
Affiliation(s)
- Rinkesh Kumar Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,b Department of Biosciences , Integral University , Lucknow , India
| | - Kriti Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | - Akanksha Sharma
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,c Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Capmus , Lucknow , India
| | - Mukul Das
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | | | | |
Collapse
|
25
|
Zhao YJ, Cai QF, Jin TC, Zhang LJ, Fei DX, Liu GM, Cao MJ. Effect of Maillard reaction on the structural and immunological properties of recombinant silver carp parvalbumin. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Key factors affecting the immunoreactivity of roasted and boiled peanuts: Temperature and water. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
The influence of breast milk and infant formulae hydrolysates on bacterial adhesion and Caco-2 cells functioning. Food Res Int 2016; 89:679-688. [PMID: 28460966 DOI: 10.1016/j.foodres.2016.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 01/11/2023]
Abstract
The aim of the study was to determine the concentration of BCM7 in human milk and infant formulae (IF) before and after eznymatic hydrolysis, and to evaluate the effect of obtained hydrolysates on interleukin-8 (IL-8) secretion and on proliferation of enterocytes in the in vitro model (Caco-2 cells). This study evaluates also the effect of hydrolysates on the adhesion of intestinal microbiota isolated from faeces of both healthy (H) and allergic (A) infants. In the study we investigated breast milk delivered by mothers of healthy ('healthy milk'; HM) and allergic ('allergic milk'; AM) infants. Three infant formulae were investigated: from hydrolysed cow casein (IF1), from hydrolysed cow whey (IF2) and from whole cow milk (IF3). Intestinal bacteria: Bifidobacterium, lactic acid bacteria, Enterobacteriaceae, Clostridium and Enterococcus were isolated from faeces of five healthy and five allergic infants. Mixtures of bacterial isolates and bacteria adhering to Caco-2 cells were characterised qualitatively with PCR-DGGE, and quantitavely with FISH. Concentration of BCM7 in breast milk and infant formulae was 1.6 to 8.9 times higher after enzymatic hydrolysis in comparison to undigested samples. The presence of this peptide resulted in alteration of intestinal epithelial proliferation and increase in secretion of IL-8. The quantitative profile of adherred bacteria applied as a mix of all isolates from healthy infants (H-MIX) was unchanged in the presence of HM hydrolysate and was modulated (increased number of beneficial Bifidobacterium and reduced commensal Enterobacteriaceae) in the presence of all IF hydrolysates. The presence of IF hydrolysates affected the profile of adhering isolates obtained from allergic infants (A-MIX) and reduced the adhesion of Enterobacteriaceae; the IF2 and IF3 hydrolysates decreased also the total number of adhering bacteria (TBN). However, a stimulating effect of AM hydrolysate on A-MIX adhesion (increased TBN) was observed.
Collapse
|
28
|
Karnjanapratum S, O'Callaghan YC, Benjakul S, O'Brien NM. In vitro cellular bioactivities of Maillard reaction products from sugar-gelatin hydrolysate of unicorn leatherjacket skin system. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Johnson KL, Williams JG, Maleki SJ, Hurlburt BK, London RE, Mueller GA. Enhanced Approaches for Identifying Amadori Products: Application to Peanut Allergens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1406-1413. [PMID: 26811263 PMCID: PMC4813809 DOI: 10.1021/acs.jafc.5b05492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The dry roasting of peanuts is suggested to influence allergic sensitization as a result of the formation of advanced glycation end products (AGEs) on peanut proteins. Identifying AGEs is technically challenging. The AGEs of a peanut allergen were probed with nano-scale liquid chromatography-electrospray ionization-mass spectrometry (nanoLC-ESI-MS) and tandem mass spectrometry (MS/MS) analyses. Amadori product ions matched to expected peptides and yielded fragments that included a loss of three waters and HCHO. As a result of the paucity of b and y ions in the MS/MS spectrum, standard search algorithms do not perform well. Reactions with isotopically labeled sugars confirmed that the peptides contained Amadori products. An algorithm was developed on the basis of information content (Shannon entropy) and the loss of water and HCHO. Results with test data show that the algorithm finds the correct spectra with high precision, reducing the time needed to manually inspect data. Computational and technical improvements allowed for better identification of the chemical differences between modified and unmodified proteins.
Collapse
Affiliation(s)
- Katina L. Johnson
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences
| | - Jason G. Williams
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences
| | | | | | - Robert E. London
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences
| | - Geoffrey A. Mueller
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences
| |
Collapse
|
30
|
González-Ortiz G, Bronsoms S, Quarles Van Ufford HC, Halkes SBA, Virkola R, Liskamp RMJ, Beukelman CJ, Pieters RJ, Pérez JF, Martín-Orúe SM. A proteinaceous fraction of wheat bran may interfere in the attachment of enterotoxigenic E. coli K88 (F4+) to porcine epithelial cells. PLoS One 2014; 9:e104258. [PMID: 25119298 PMCID: PMC4138013 DOI: 10.1371/journal.pone.0104258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 07/11/2014] [Indexed: 12/16/2022] Open
Abstract
Wheat bran (WB) from Triticum aestivum has many beneficial effects on human health. To the best of our knowledge, very little has been published about its ability to prevent pathogenic bacterial adhesion in the intestine. Here, a WB extract was fractionated using different strategies, and the obtained fractions were tested in different in vitro methodologies to evaluate their interference in the attachment of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal porcine epithelial cells (IPEC-J2) with the aim of identifying the putative anti-adhesive molecules. It was found that a proteinaceous compound in the >300-kDa fraction mediates the recognition of ETEC K88 to IPEC-J2. Further fractionation of the >300-kDa sample by size-exclusion chromatography showed several proteins below 90 kDa, suggesting that the target protein belongs to a high-molecular-weight (MW) multi-component protein complex. The identification of some relevant excised bands was performed by mass spectrometry (MS) and mostly revealed the presence of various protease inhibitors (PIs) of low MW: Serpin-Z2B, Class II chitinase, endogenous alpha-amylase/subtilisin inhibitor and alpha-amylase/trypsin inhibitor CM3. Furthermore, an incubation of the WB extract with ETEC K88 allowed for the identification of a 7S storage protein globulin of wheat, Globulin 3 of 66 kDa, which may be one of the most firmly attached WB proteins to ETEC K88 cells. Further studies should be performed to gain an understanding of the molecular recognition of the blocking process that takes place. All gathered information can eventually pave the way for the development of novel anti-adhesion therapeutic agents to prevent bacterial pathogenesis.
Collapse
Affiliation(s)
- Gemma González-Ortiz
- Servei de Nutrició i Benestar Animal (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| | - Sílvia Bronsoms
- Servei de Proteòmica i Biologia Estructural, Universitat Autònoma de Barcelona, Mòdul B Parc de Recerca, Barcelona, Spain
| | - H. C. Quarles Van Ufford
- Department of Medicinal Chemistry & Chemical Biology, Utrecht University, Utrecht, The Netherlands
| | - S. Bart A. Halkes
- Department of Medicinal Chemistry & Chemical Biology, Utrecht University, Utrecht, The Netherlands
| | - Ritva Virkola
- Department of Biosciences, General Microbiology, University of Helsinki, Helsinki, Finland
| | - Rob M. J. Liskamp
- Department of Medicinal Chemistry & Chemical Biology, Utrecht University, Utrecht, The Netherlands
| | - Cees J. Beukelman
- Department of Medicinal Chemistry & Chemical Biology, Utrecht University, Utrecht, The Netherlands
| | - Roland J. Pieters
- Department of Medicinal Chemistry & Chemical Biology, Utrecht University, Utrecht, The Netherlands
| | - José Francisco Pérez
- Servei de Nutrició i Benestar Animal (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana María Martín-Orúe
- Servei de Nutrició i Benestar Animal (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Abstract
Peanut allergens can trigger a potent and sometimes dangerous immune response in an increasing number of people. The molecular structures of these allergens form the basis for understanding this response. This review describes the currently known peanut allergen structures and discusses how modifications both enzymatic and non-enzymatic affect digestion, innate immune recognition, and IgE interactions. The allergen structures help explain cross-reactivity among allergens from different sources, which is useful in improving patient diagnostics. Surprisingly, it was recently noted that similar short peptide sequences among unrelated peanut allergens could also be a source of cross-reactivity. The molecular features of peanut allergens continue to inform predictions and provide new research directions in the study of allergic disease.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, MD-MR-01, Research Triangle Park, NC, 27709, USA,
| | | | | |
Collapse
|
32
|
Mueller GA, Maleki SJ, Johnson K, Hurlburt BK, Cheng H, Ruan S, Nesbit JB, Pomés A, Edwards LL, Schorzman A, Deterding LJ, Park H, Tomer KB, London RE, Williams JG. Identification of Maillard reaction products on peanut allergens that influence binding to the receptor for advanced glycation end products. Allergy 2013; 68:1546-54. [PMID: 24266677 DOI: 10.1111/all.12261] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent immunological data demonstrated that dendritic cells preferentially recognize advanced glycation end product (AGE)-modified proteins, upregulate expression of the receptor for AGE (RAGE), and consequently bias the immune response toward allergy. METHODS Peanut extract was characterized by mass spectrometry (MS) to elucidate the specific residues and specific AGE modifications found in raw and roasted peanuts and on rAra h 1 that was artificially glycated by incubation with glucose or xylose. The binding of the RAGE-V1C1 domain to peanut allergens was assessed by PAGE and Western analysis with anti-Ara h 1, 2, and 3 antibodies. IgE binding to rAra h 1 was also assessed using the same methods. RESULTS AGE modifications were found on Ara h 1 and Ara h 3 in both raw and roasted peanut extract. No AGE modifications were found on Ara h 2. Mass spectrometry and Western blot analysis demonstrated that RAGE binds selectively to Ara h 1 and Ara h 3 derived from peanut extract, whereas the analysis failed to demonstrate Ara h 2 binding to RAGE. rAra h 1 with no AGE modifications did not bind RAGE; however, after AGE modification with xylose, rAra h 1 bound to RAGE. CONCLUSIONS AGE modifications to Ara h 1 and Ara h 3 can be found in both raw and roasted peanuts. Receptor for AGE was demonstrated to selectively interact with AGE-modified rAra h 1. If sensitization to peanut allergens occurs in dendritic cells via RAGE interactions, these cells are likely interacting with modified Ara h 1 and Ara h 3, but not Ara h 2.
Collapse
Affiliation(s)
- G. A. Mueller
- Laboratory of Structural Biology; National Institute of Environmental Health Sciences; Research Triangle Park NC USA
| | - S. J. Maleki
- US Department of Agriculture; Agricultural Research Service; Southern Regional Research Center; New Orleans LA USA
| | - K. Johnson
- Laboratory of Structural Biology; National Institute of Environmental Health Sciences; Research Triangle Park NC USA
| | - B. K. Hurlburt
- US Department of Agriculture; Agricultural Research Service; Southern Regional Research Center; New Orleans LA USA
| | - H. Cheng
- US Department of Agriculture; Agricultural Research Service; Southern Regional Research Center; New Orleans LA USA
| | - S. Ruan
- US Department of Agriculture; Agricultural Research Service; Southern Regional Research Center; New Orleans LA USA
| | - J. B. Nesbit
- US Department of Agriculture; Agricultural Research Service; Southern Regional Research Center; New Orleans LA USA
| | - A. Pomés
- Indoor Biotechnologies, Inc.; Charlottesville VA USA
| | - L. L. Edwards
- Laboratory of Structural Biology; National Institute of Environmental Health Sciences; Research Triangle Park NC USA
| | - A. Schorzman
- Laboratory of Structural Biology; National Institute of Environmental Health Sciences; Research Triangle Park NC USA
| | - L. J. Deterding
- Laboratory of Structural Biology; National Institute of Environmental Health Sciences; Research Triangle Park NC USA
| | - H. Park
- The Scripps Research Institute; Jupiter FL USA
| | - K. B. Tomer
- Laboratory of Structural Biology; National Institute of Environmental Health Sciences; Research Triangle Park NC USA
| | - R. E. London
- Laboratory of Structural Biology; National Institute of Environmental Health Sciences; Research Triangle Park NC USA
| | - J. G. Williams
- Laboratory of Structural Biology; National Institute of Environmental Health Sciences; Research Triangle Park NC USA
| |
Collapse
|
33
|
Teodorowicz M, Świątecka D, Savelkoul H, Wichers H, Kostyra E. Hydrolysates of glycated and heat-treated peanut 7S globulin (Ara h 1) modulate human gut microbial proliferation, survival and adhesion. J Appl Microbiol 2013; 116:424-34. [PMID: 24118877 DOI: 10.1111/jam.12358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/16/2013] [Accepted: 10/02/2013] [Indexed: 01/01/2023]
Abstract
AIMS Evaluation of an effect of glycation of Ara h 1 on proliferation and survival rate and adhesion of intestinal Enterococcus faecalis, Escherichia coli and Lactobacillus acidophilus. METHODS AND RESULTS Pure Ara h 1 heated at three different temperature conditions (G37, G60 and C145°C) in the presence or absence of glucose was subjected to enzymatic hydrolysis. Impacts of Ara h 1 hydrolysates on the bacterial proliferation, survival rate and adhesion to Caco-2 cells in mono and heterogeneous cultures were studied with fluorescent techniques: DAPI, LIVE/DEAD staining and FISH. Examined hydrolysates hindered proliferation of E. coli and Ent. faecalis with simultaneous decrease in their survival. Maillard reaction (MR, glycation) of Ara h 1 did not alter the effect of hydrolysates on bacterial proliferation rate. Hydrolysates modified at 60 and 145°C with glucose altered the profile of immobilized bacteria, mostly by lowering the number of adhering E. coli and promoting the adhesion of bacteria from genera Lactobacillus and Enterococcus. CONCLUSIONS Ara h1 hydrolysates processed in various ways demonstrated their strong modulatory effect on bacterial proliferation, survival rate and adhesion. SIGNIFICANCE AND IMPACT OF THE STUDY Reducing the adhesion of opportunistic bacteria by hydrolysates of Ara h 1 glycated at 60 and 145°C, together with modulation of immobilization of beneficial lactobacilli and enterococci, may be of relevance in terms of the physiological status of the intestinal barrier.
Collapse
Affiliation(s)
- M Teodorowicz
- Faculty of Biology, University of Warmia and Mazury, Olsztyn, Poland.,Cell Biology and Immunology Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - D Świątecka
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - H Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - H Wichers
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - E Kostyra
- Faculty of Biology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|