1
|
Neamțu AA, Maghiar TA, Turcuș V, Maghiar PB, Căpraru AM, Lazar BA, Dehelean CA, Pop OL, Neamțu C, Totolici BD, Mathe E. A Comprehensive View on the Impact of Chlorogenic Acids on Colorectal Cancer. Curr Issues Mol Biol 2024; 46:6783-6804. [PMID: 39057047 PMCID: PMC11276415 DOI: 10.3390/cimb46070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Chlorogenic acids are plant secondary metabolites, chemically-polyphenols with similar biological activity, formed through the esterification of quinic acid and hydrocinnamic acid moieties. They are best known for their high concentration in coffee and other dietary sources and the antioxidant properties that they exhibit. Both chlorogenic acids and plant extracts containing significant amounts of the compounds show promising in vitro activity against colorectal cancer. With coffee being the most popular drink in the world, and colorectal cancer at an unfortunate peak in incidence and mortality, the mechanisms through which the anti-tumorigenic effect of chlorogenic acids could be functionalized for CRC prevention seem appealing to study. Therefore, this review aims to enable a better understanding of the modes of action of chlorogenic acids in combating carcinogenesis, with a focus on cell cycle arrest, the induction of apoptosis, and the modulation of Wnt, Pi3K/Akt, and MAPK signal transduction pathways, alongside the reduction in the number of inflammatory cytokines and chemokines and the counterintuitive beneficial elevation of oxidative stress.
Collapse
Affiliation(s)
- Andreea-Adriana Neamțu
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-A.N.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical County Emergency Hospital of Arad, Andrenyi Karoly Str., No. 2-4, 310037 Arad, Romania;
- Clinical County Hospital of Târgu Mureș, 1 Decembrie 1918 Blvd., No. 1, 540011 Târgu Mures, Romania; (A.-M.C.); (B.-A.L.)
| | - Teodor Andrei Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, Universității Str., No. 1, 410087 Oradea, Romania; (T.A.M.); (P.B.M.)
- Clinical County Emergency Hospital of Oradea, Gheorghe Doja Str., No. 65, 410169 Oradea, Romania
- Pelican Hospital, Corneliu Coposu Str., No. 2, 410450 Oradea, Romania
| | - Violeta Turcuș
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
- National Institute for Economic Research “Costin C. Kiritescu” of the Romanian Academy/Centre for Mountain Economy (CE-MONT), 725700 Suceava, Romania
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, Universității Str., No. 1, 410087 Oradea, Romania; (T.A.M.); (P.B.M.)
- Clinical County Emergency Hospital of Oradea, Gheorghe Doja Str., No. 65, 410169 Oradea, Romania
- Pelican Hospital, Corneliu Coposu Str., No. 2, 410450 Oradea, Romania
| | - Anca-Maria Căpraru
- Clinical County Hospital of Târgu Mureș, 1 Decembrie 1918 Blvd., No. 1, 540011 Târgu Mures, Romania; (A.-M.C.); (B.-A.L.)
- Poiana Mare Psychiatry Hospital, Gării Str., No. 40, 207470 Poiana Mare, Romania
| | - Bianca-Andreea Lazar
- Clinical County Hospital of Târgu Mureș, 1 Decembrie 1918 Blvd., No. 1, 540011 Târgu Mures, Romania; (A.-M.C.); (B.-A.L.)
| | - Cristina-Adriana Dehelean
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-A.N.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ovidiu Laurean Pop
- Faculty of Medicine and Pharmacy, University of Oradea, Universității Str., No. 1, 410081 Oradea, Romania;
| | - Carmen Neamțu
- Clinical County Emergency Hospital of Arad, Andrenyi Karoly Str., No. 2-4, 310037 Arad, Romania;
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
| | - Bogdan Dan Totolici
- Clinical County Emergency Hospital of Arad, Andrenyi Karoly Str., No. 2-4, 310037 Arad, Romania;
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
| | - Endre Mathe
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str., No. 138, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Di Pede G, Mena P, Bresciani L, Achour M, Lamuela-Raventós RM, Estruch R, Landberg R, Kulling SE, Wishart D, Rodriguez-Mateos A, Clifford MN, Crozier A, Manach C, Del Rio D. A Systematic Review and Comprehensive Evaluation of Human Intervention Studies to Unravel the Bioavailability of Hydroxycinnamic Acids. Antioxid Redox Signal 2024; 40:510-541. [PMID: 37382416 PMCID: PMC10960166 DOI: 10.1089/ars.2023.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Significance: Hydroxycinnamic acids (HCAs) are the main phenolic acids in the western diet. Harmonizing the available information on the absorption, distribution, metabolism, and excretion (ADME) of HCAs is fundamental to unraveling the compounds responsible for their health effects. This work systematically assessed pharmacokinetics, including urinary recovery, and bioavailability of HCAs and their metabolites, based on literature reports. Recent Advances: Forty-seven intervention studies with coffee, berries, herbs, cereals, tomato, orange, grape products, and pure compounds, as well as other sources yielding HCA metabolites, were included. Up to 105 HCA metabolites were collected, mainly acyl-quinic and C6-C3 cinnamic acids. C6-C3 cinnamic acids, such as caffeic and ferulic acid, reached the highest blood concentrations (maximum plasma concentration [Cmax] = 423 nM), with time to reach Cmax (Tmax) values ranging from 2.7 to 4.2 h. These compounds were excreted in urine in higher amounts than their phenylpropanoic acid derivatives (4% and 1% of intake, respectively), but both in a lower percentage than hydroxybenzene catabolites (11%). Data accounted for 16 and 18 main urinary and blood HCA metabolites, which were moderately bioavailable in humans (collectively 25%). Critical Issues: A relevant variability emerged. It was not possible to unequivocally assess the bioavailability of HCAs from each ingested source, and data from some plant based-foods were absent or inconsistent. Future Directions: A comprehensive study investigating the ADME of HCAs derived from their most important dietary sources is urgently required. Eight key metabolites were identified and reached interesting plasma Cmax concentrations and urinary recoveries, opening up new perspectives to evaluate their bioactivity at physiological concentrations. Antioxid. Redox Signal. 40, 510-541.
Collapse
Affiliation(s)
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | | | - Mariem Achour
- Human Nutrition Unit, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramon Estruch
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sabine E. Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - David Wishart
- Department of Biological Sciences and University of Alberta, Edmonton, Canada
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, United Kingdom
| | - Michael N. Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Nutrition Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Australia
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Claudine Manach
- Human Nutrition Unit, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Cordeiro-Massironi K, Soares-Freitas RAM, Sampaio GR, Pinaffi-Langley ACDC, Bridi R, de Camargo AC, Torres EAFS. In Vitro Digestion of Peanut Skin Releases Bioactive Compounds and Increases Cancer Cell Toxicity. Antioxidants (Basel) 2023; 12:1356. [PMID: 37507896 PMCID: PMC10376574 DOI: 10.3390/antiox12071356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Peanut skin is a rich source of bioactive compounds which may be able to reduce the risk factors associated with metabolic syndromes. This study aimed to characterize bio-compounds from peanut skin (Arachis hypogaea) and their bioactivity (antioxidant activity, inhibition of lipase, and carbohydrase enzymes) and to evaluate their anti-proliferative properties in colorectal cancer cells (HCT116) upon in vitro digestion. Peanut skin was digested in two sequential phases, and the final content, named phase-1 (P1) and phase-2 (P2) extracts, was evaluated. Several bioactive compounds were positively identified and quantified by liquid chromatography, including quinic acid, released especially after in vitro digestion. The total phenolic content and, regardless of the method, the antioxidant activity of P1 was higher than P2. P1 also showed a lower enzyme inhibitory concentration IC50 than P2, lipase, and α-glucosidase. For cell viability in HCT116 cells, lower concentrations of P1 were found for IC50 compared to P2. In conclusion, bioactive compounds were released mainly during the first phase of the in vitro digestion. The digested samples presented antioxidant activity, enzyme inhibitory activity, and cancer cell cytotoxicity, especially those from the P1 extract. The potential applications of such a by-product in human health are reported.
Collapse
Affiliation(s)
- Karina Cordeiro-Massironi
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | | | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Ana Clara da C Pinaffi-Langley
- Department of Nutrition Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
| | | | | |
Collapse
|
4
|
Rogozinska M, Korsak D, Mroczek J, Biesaga M. Catabolism of hydroxycinnamic acids in contact with probiotic Lactobacillus. J Appl Microbiol 2021; 131:1464-1473. [PMID: 33470026 DOI: 10.1111/jam.15009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
AIMS The catabolism products of the fermentation process of selected hydroxycinnamic acids initiated by different species of Lactobacillus strains were identified. METHODS AND RESULTS Three dietary supplements (Sanprobi IBS® , BioGaia ProTectis Baby® and Dicoflor 60® ) were used to isolate the Lactobacillus strains. The overnight bacterial cultures (18 h) were diluted and grown in a microaerophilic atmosphere at 37°C. Then, each phenolic acid was added to bacterial cultures and incubated for 24 h at 37°C. Samples were collected at specific intervals for a further 24 h of incubation. LC-MS/MS was used for the identification of metabolism products of selected phenolic acids. CONCLUSIONS The phenolic acids were resistant to the Lactobacillus rhamnosus GG. Lactobacillus plantarum 299v caused degradation of caffeic and ferulic acids. The former was degraded either to dihydrocaffeic acid or to 4-vinylcatechol and 4-ethylcatechol. Ferulic acid was degraded only to dihydroferulic acid. Lactobacillus reuteri DSM 17938 caused only the degradation of chlorogenic acid (5-caffeoylquinic acid, referred to IUPAC nomenclature) to caffeic acid. SIGNIFICANCE AND IMPACT OF THE STUDY Using of Lactobacilli as food additive should be taken into account that phenolic acids metabolism rate depends on not only the specific bacterial strain but also the structural properties of the acid.
Collapse
Affiliation(s)
- M Rogozinska
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - D Korsak
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - J Mroczek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - M Biesaga
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Domínguez-Fernández M, Ludwig IA, De Peña MP, Cid C. Bioaccessibility of Tudela artichoke (Cynara scolymus cv. Blanca de Tudela) (poly)phenols: the effects of heat treatment, simulated gastrointestinal digestion and human colonic microbiota. Food Funct 2021; 12:1996-2011. [PMID: 33537693 DOI: 10.1039/d0fo03119d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of this study was to evaluate the bioaccessibility of (poly)phenolic compounds in Tudela artichokes (Cynara scolymus cv. Blanca de Tudela) after an in vitro gastrointestinal digestion and the effect of the human colonic microbiota. A total of 28 (poly)phenolic compounds were identified and quantified by LC-MS/MS in raw, boiled, sous vide and microwaved Tudela artichokes. Out of these, sixteen were phenolic acids, specifically caffeoylquinic acids (CQAs) and other minor hydroxycinnamic acid derivatives, ten flavonoids belonging to the family of flavones (apigenin and luteolin derivatives) and two lignans (pinoresinol derivatives). Sous vide and microwaving caused mainly transesterification reactions of CQAs but maintained or even augmented the total (poly)phenolic contents of artichokes, while boiling decreased (poly)phenolic compounds by 25% due to leaching into the boiling water. Heat treatment exerted a positive effect on the bioaccessibility of (poly)phenols after gastrointestinal digestion. In raw artichokes, only 1.6% of the total (poly)phenolic compounds remained bioaccessible after gastrointestinal digestion, while in artichoke samples cooked by sous vide, boiled and microwaved, the percentage of bioaccessibility was 60.38%, 59.93% and 39,03% respectively. After fecal fermentation, 20 native (poly)phenolic compounds and 11 newly formed catabolites were quantified. 48 h of fecal fermentation showed that native (poly)phenols are readily degraded by colonic microbiota during the first 2 h of incubation. The colonic degradation of artichoke (poly)phenols follows a major pathway that involves the formation of caffeic acid, dihydrocaffeic acid, 3-(3'-hydroxyphenyl)propionic acid, 3-phenylpropionic acid and phenylacetic acid, with 3-phenylpropionic acid being the most abundant end product. The catabolic pathways for colonic microbial degradation of artichoke CQAs are proposed.
Collapse
Affiliation(s)
- Maite Domínguez-Fernández
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Ciencias de la Alimentación y Fisiología, C/Irunlarrea 1, E-31008 Pamplona, Spain
| | | | | | | |
Collapse
|
6
|
Torres A, Noriega LG, Delgadillo-Puga C, Tovar AR, Navarro-Ocaña A. Caffeoylquinic Acid Derivatives of Purple Sweet Potato as Modulators of Mitochondrial Function in Mouse Primary Hepatocytes. Molecules 2021; 26:molecules26020319. [PMID: 33435516 PMCID: PMC7827015 DOI: 10.3390/molecules26020319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Owing to their antioxidant properties, caffeoylquinic acid (CQA)-derivatives could potentially improve the impaired metabolism in hepatic cells, however, their effect on mitochondrial function has not been demonstrated yet. Here, we evaluated the impact of three CQA-derivatives extracted from purple sweet potato, namely 5-CQA, 3,4- and 4,5-diCQA, on mitochondrial activity in primary hepatocytes using an extracellular flux analyzer. Notably, an increase of maximal respiration and spare respiratory capacity were observed when 5-CQA and 3,4-diCQA were added to the system indicating the improved mitochondrial function. Moreover, 3,4-diCQA was shown to considerably increase glycolytic reserve which is a measure of cell capability to respond to an energy demand through glycolysis. Conversely, 4,5-diCQA did not modify mitochondrial activity but increased glycolysis at low concentration in primary hepatocytes. All compounds tested improved cellular capacity to oxidize fatty acids. Overall, our results demonstrated the potential of test CQA-derivatives to modify mitochondrial function in hepatic cells. It is especially relevant in case of dysfunctional mitochondria in hepatocytes linked to hepatic steatosis during obesity, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Torres
- Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM, Ciudad de México 04529, Mexico;
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (L.G.N.); (A.R.T.)
| | - Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (L.G.N.); (A.R.T.)
| | - Arturo Navarro-Ocaña
- Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM, Ciudad de México 04529, Mexico;
- Correspondence: ; Tel.: +52-55556225345
| |
Collapse
|
7
|
Leonard W, Zhang P, Ying D, Fang Z. Hydroxycinnamic acids on gut microbiota and health. Compr Rev Food Sci Food Saf 2020; 20:710-737. [DOI: 10.1111/1541-4337.12663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Affiliation(s)
- William Leonard
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Pangzhen Zhang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Danyang Ying
- CSIRO Agriculture & Food Werribee Victoria Australia
| | - Zhongxiang Fang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
8
|
Clifford MN, Kerimi A, Williamson G. Bioavailability and metabolism of chlorogenic acids (acyl‐quinic acids) in humans. Compr Rev Food Sci Food Saf 2020; 19:1299-1352. [DOI: 10.1111/1541-4337.12518] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Michael N. Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical SciencesUniversity of Surrey Guildford UK
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash HealthFaculty of Medicine Nursing and Health SciencesMonash University Notting Hill Victoria Australia
| | - Asimina Kerimi
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash HealthFaculty of Medicine Nursing and Health SciencesMonash University Notting Hill Victoria Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash HealthFaculty of Medicine Nursing and Health SciencesMonash University Notting Hill Victoria Australia
| |
Collapse
|
9
|
Martini S, Conte A, Tagliazucchi D. Bioactivity and cell metabolism of in vitro digested sweet cherry (Prunus avium) phenolic compounds. Int J Food Sci Nutr 2018; 70:335-348. [PMID: 30234411 DOI: 10.1080/09637486.2018.1513996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, the bioaccessibility of phenolic compounds after in vitro gastrointestinal digestion of two cherry cultivars was assessed. The phenolic profile was modified during in vitro digestion, with a considerable decrease of total and individual phenolic compounds. Hydroxycinnamic acids and especially coumaroylquinic acids showed the highest bioaccessibility. Isomerisation of caffeoylquinic and coumaroylquinic acids was observed after in vitro digestion. Modification of the phenolic profile after digestion resulted in an increased or decreased scavenging activity depending on the assay. In vitro digested phenolic-rich fractions also showed antiproliferative activity against SW480 but no effect against Caco-2 cell lines. Both Caco-2 and SW480 cell lines were able to metabolise cherry phenolic compounds with remarkable differences. An accumulation of glycosylated flavonols was observed in SW480 medium. In conclusion, phenolic compounds from cherries and especially hydroxycinnamic acids were efficiently released and remained bioaccessible after in vitro digestion, resulting in antioxidant and antiproliferative activities.
Collapse
Affiliation(s)
- Serena Martini
- a Department of Life Sciences , University of Modena and Reggio Emilia , Reggio Emilia , Italy
| | - Angela Conte
- a Department of Life Sciences , University of Modena and Reggio Emilia , Reggio Emilia , Italy
| | - Davide Tagliazucchi
- a Department of Life Sciences , University of Modena and Reggio Emilia , Reggio Emilia , Italy
| |
Collapse
|
10
|
Rahmouni N, Pinto DCGA, Beghidja N, Benayache S, Silva AMS. Scabiosa stellata L. Phenolic Content Clarifies Its Antioxidant Activity. Molecules 2018; 23:E1285. [PMID: 29861483 PMCID: PMC6100036 DOI: 10.3390/molecules23061285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022] Open
Abstract
The phenolic profile of Scabiosa stellata L., a species used in Moroccan traditional medicine, is disclosed. To obtain that profile the species extract was analyzed by ultra-high-performance chromatography coupled to photodiode-array detection and electrospray ionization/ion trap mass spectrometry (UHPLC-DAD-ESI/MSn). Twenty-five phenolic compounds were identified from which isoorientin and 4-O-caffeoylquinic acid can be highlighted because they are the major ones. The antioxidant activity was significantly controlled by the fraction type, with the n-butanol fraction showing the highest antioxidant activity (FRS50 = 64.46 µg/mL in the DPPH assay, FRS50 = 27.87 µg/mL in the ABTS assay and EC50 = 161.11 µg/mL in the reducing power assay). A phytochemical study of the n-butanol fraction was performed, and some important flavone glycosides were isolated. Among them the tamarixetin derivatives-the less common ones-can be emphasized. This phytochemical study and polyphenolic profile can be correlated with S. stellata extracts in vitro antioxidant activity. Moreover, it can be regarded as an evidence of its medicinal use and can incentivize its consumption.
Collapse
Affiliation(s)
- Naima Rahmouni
- Campus de Santiago, Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
- Unité de Recherche et Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physico-chimiques et Biologiques, Université des Frères Mentouri Constantine 1, Constantine, Algeria.
| | - Diana C G A Pinto
- Campus de Santiago, Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Noureddine Beghidja
- Unité de Recherche et Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physico-chimiques et Biologiques, Université des Frères Mentouri Constantine 1, Constantine, Algeria.
| | - Samir Benayache
- Unité de Recherche et Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physico-chimiques et Biologiques, Université des Frères Mentouri Constantine 1, Constantine, Algeria.
| | - Artur M S Silva
- Campus de Santiago, Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
Bohn T, Carriere F, Day L, Deglaire A, Egger L, Freitas D, Golding M, Le Feunteun S, Macierzanka A, Menard O, Miralles B, Moscovici A, Portmann R, Recio I, Rémond D, Santé-Lhoutelier V, Wooster TJ, Lesmes U, Mackie AR, Dupont D. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit Rev Food Sci Nutr 2017; 58:2239-2261. [DOI: 10.1080/10408398.2017.1315362] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- T. Bohn
- Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - L. Day
- Agresearch, Palmerston North, New Zealand
| | | | - L. Egger
- Agroscope, Institute for Food Sciences, Bern, Switzerland
| | | | - M. Golding
- Massey University, Palmerston North, New Zealand
| | | | | | | | | | - A. Moscovici
- Technion—Israel Institute of Technology, Haifa, Israel
| | - R. Portmann
- Agroscope, Institute for Food Sciences, Bern, Switzerland
| | | | | | | | - T. J. Wooster
- Nestlé Research Centre, Nestec S.A., Lausanne, Switzerland
| | - U. Lesmes
- Technion—Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
12
|
Bioaccessibility of (poly)phenolic compounds of raw and cooked cardoon (Cynara cardunculus L.) after simulated gastrointestinal digestion and fermentation by human colonic microbiota. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
de Oliveira DM, Sampaio GR, Pinto CB, Catharino RR, Bastos DHM. Bioavailability of chlorogenic acids in rats after acute ingestion of maté tea (Ilex paraguariensis) or 5-caffeoylquinic acid. Eur J Nutr 2016; 56:2541-2556. [DOI: 10.1007/s00394-016-1290-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/02/2016] [Indexed: 01/29/2023]
|
14
|
Monente C, Ludwig IA, Stalmach A, de Peña MP, Cid C, Crozier A. In vitro studies on the stability in the proximal gastrointestinal tract and bioaccessibility in Caco-2 cells of chlorogenic acids from spent coffee grounds. Int J Food Sci Nutr 2015. [PMID: 26203817 DOI: 10.3109/09637486.2015.1064874] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spent coffee grounds are a potential commercial source of substantial amounts of chlorogenic acids (CGAs). The aim of this study was to evaluate the stability of spent coffee CGAs using in vitro simulated gastroduodenal digestion and to investigate their potential absorption using an in vitro Caco-2 model of human small intestinal epithelium. During in vitro digestion, lactones were partially degraded while caffeoylquinic and feruloylquinic acids were much more stable. Transport and metabolism studies showed that 1% of the total CGAs were absorbed and transported from the apical to the basolateral side of a Caco-2 cell monolayer after 1 h. Lactones and coumaroylquinic acids showed the rate of highest absorption. Caco-2 cells possessed low metabolic activity. In conclusion, spent coffee extracts contain large amounts of CGAs, which remained bioaccessible across the intestinal barrier, albeit to a relatively low degree.
Collapse
Affiliation(s)
- Carmen Monente
- a Department of Nutrition , Food Science and Physiology, School of Pharmacy, University of Navarra , Pamplona , Spain
| | - Iziar A Ludwig
- a Department of Nutrition , Food Science and Physiology, School of Pharmacy, University of Navarra , Pamplona , Spain
| | | | - Maria Paz de Peña
- a Department of Nutrition , Food Science and Physiology, School of Pharmacy, University of Navarra , Pamplona , Spain
| | - Concepción Cid
- a Department of Nutrition , Food Science and Physiology, School of Pharmacy, University of Navarra , Pamplona , Spain
| | - Alan Crozier
- c Department of Nutrition , University of California , Davis , CA , USA
| |
Collapse
|
15
|
Rodriguez-Mateos A, Del Pino-García R, George TW, Vidal-Diez A, Heiss C, Spencer JPE. Impact of processing on the bioavailability and vascular effects of blueberry (poly)phenols. Mol Nutr Food Res 2014; 58:1952-61. [PMID: 25044909 DOI: 10.1002/mnfr.201400231] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/12/2022]
Abstract
SCOPE Blueberries are a rich source of flavonoids and phenolic acids. Currently, little information is available regarding the impact of processing on the bioavailability and the bioactivity of blueberry (poly)phenols. METHODS AND RESULTS In a randomized, controlled crossover trial, ten healthy volunteers consumed (a) blueberry-containing baked products, (b) an unprocessed blueberry drink containing the same amount of freeze-dried blueberry powder as used in the baked products, and (c) matched control baked products. Endothelial function was measured as flow-mediated dilation (FMD) and plasma samples taken at baseline and at 1, 2, 4, and 6 h postconsumption. Although processing did not significantly change the total (poly)phenolic amount, the processed products contained significantly less anthocyanins (-42%), more chlorogenic acid (23%), no flavanol nonamers or decamers, and significantly more flavanol dimers and trimers (36% and 28%, respectively). FMD increased after 1, 2, and 6 h consumption of the baked products to a similar degree as the unprocessed blueberries, despite significant differences in the levels of individual plasma metabolites. No changes were observed after the consumption of the control product. CONCLUSION Careful processing can preserve important biological activities of blueberries despite changing the blueberry (poly)phenol composition and plasma metabolite profile.
Collapse
Affiliation(s)
- Ana Rodriguez-Mateos
- School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK; Division of Cardiology, Pulmonology and Vascular Medicine, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 2014; 88:1803-53. [PMID: 25182418 DOI: 10.1007/s00204-014-1330-7] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
There is substantial interest in the role of plant secondary metabolites as protective dietary agents. In particular, the involvement of flavonoids and related compounds has become a major topic in human nutrition research. Evidence from epidemiological and human intervention studies is emerging regarding the protective effects of various (poly)phenol-rich foods against several chronic diseases, including neurodegeneration, cancer and cardiovascular diseases. In recent years, the use of HPLC-MS for the analysis of flavonoids and related compounds in foods and biological samples has significantly enhanced our understanding of (poly)phenol bioavailability. These advancements have also led to improvements in the available food composition and metabolomic databases, and consequently in the development of biomarkers of (poly)phenol intake to use in epidemiological studies. Efforts to create adequate standardised materials and well-matched controls to use in randomised controlled trials have also improved the quality of the available data. In vitro investigations using physiologically achievable concentrations of (poly)phenol metabolites and catabolites with appropriate model test systems have provided new and interesting insights on potential mechanisms of actions. This article will summarise recent findings on the bioavailability and biological activity of (poly)phenols, focusing on the epidemiological and clinical evidence of beneficial effects of flavonoids and related compounds on urinary tract infections, cognitive function and age-related cognitive decline, cancer and cardiovascular disease.
Collapse
|
17
|
Abstract
While many epidemiological studies have associated the consumption of polyphenols within fruits and vegetables with a decreased risk of developing several chronic diseases, intervention studies have generally not confirmed these beneficial effects. The reasons for this discrepancy are not fully understood but include potential differences in dosing, interaction with the food matrix, and differences in polyphenol bioavailability. In addition to endogenous factors such as microbiota and digestive enzymes, the food matrix can also considerably affect bioaccessibility, uptake, and further metabolism of polyphenols. While dietary fiber (such as hemicellulose), divalent minerals, and viscous and protein-rich meals are likely to cause detrimental effects on polyphenol bioaccessibility, digestible carbohydrates, dietary lipids (especially for hydrophobic polyphenols, e.g., curcumin), and additional antioxidants may enhance polyphenol availability. Following epithelial uptake, polyphenols such as flavonoids may reduce phase II metabolism and excretion, enhancing polyphenol bioavailability. Furthermore, polyphenols may act synergistically due to their influence on efflux transporters such as p-glycoprotein. In order to understand polyphenol bioactivity, increased knowledge of the factors affecting polyphenol bioavailability, including dietary factors, is paramount.
Collapse
Affiliation(s)
- Torsten Bohn
- Centre de Recherche Public - Gabriel Lippmann, Environment and Agro-biotechnologies Department, Belvaux, Luxembourg
| |
Collapse
|
18
|
Pimpão RC, Dew T, Figueira ME, McDougall GJ, Stewart D, Ferreira RB, Santos CN, Williamson G. Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Mol Nutr Food Res 2014; 58:1414-25. [DOI: 10.1002/mnfr.201300822] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Rui C. Pimpão
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaAv. da RepúblicaEAN Oeiras Portugal
| | - Tristan Dew
- School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Maria E. Figueira
- iMed‐UL and Faculdade de FarmáciaUniversidade de LisboaAv. Prof. Gama Pinto Lisboa Portugal
| | | | - Derek Stewart
- The James Hutton Institute Scotland UK
- Bioforsk – Norwegian Institute for Agricultural and Environmental Research Tromso Norway
| | - Ricardo B. Ferreira
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaAv. da RepúblicaEAN Oeiras Portugal
- Instituto Superior de AgronomiaUniversidade de LisboaTapada da Ajuda Lisboa Portugal
| | - Claudia N. Santos
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaAv. da RepúblicaEAN Oeiras Portugal
- Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
| | - Gary Williamson
- School of Food Science and NutritionUniversity of Leeds Leeds UK
| |
Collapse
|
19
|
Ahn HR, Lee HJ, Kim KA, Kim CY, Nho CW, Jang H, Pan CH, Lee CY, Jung SH. Hydroxycinnamic acids in Crepidiastrum denticulatum protect oxidative stress-induced retinal damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1310-1323. [PMID: 24428171 DOI: 10.1021/jf4046232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigated the effects of an ethanol extract of C. denticulatum (EECD) in a mouse model of glaucoma established by optic nerve crush (ONC), and found that EECD significantly protected against retinal ganglion cell (RGC) death caused by ONC. Furthermore, EECD effectively protected against N-methyl-d-aspartate-induced damage to the rat retinas. In vitro, EECD attenuated transformed retinal ganglion cell (RGC-5) death and significantly blunted the up-regulation of apoptotic proteins and mRNA level induced by 1-buthionine-(S,R)-sulfoximine combined with glutamate, reduced reactive oxygen species production by radical species, and inhibited lipid peroxidation. The major EECD components were found to be chicoric acid and 3,5-dicaffeoylquinic acid (3,5-DCQA) that have shown beneficial effects on retinal degeneration both in vitro and in vivo studies. Thus, EECD could be used as a natural neuroprotective agent for glaucoma, and chicoric acid and 3,5-DCQA as mark compounds for the development of functional food.
Collapse
Affiliation(s)
- Hong Ryul Ahn
- Functional Food Center, Korea Institute of Science and Technology (KIST) , Daejeon-dong, Gangneung 210-340, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stalmach A, Williamson G, Crozier A. Impact of dose on the bioavailability of coffee chlorogenic acids in humans. Food Funct 2014; 5:1727-37. [DOI: 10.1039/c4fo00316k] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports an investigation of the effect of dose on the bioavailability of chlorogenic acids in humans based on HPLC-MS2analysis of plasma and urine collected 0–24 h after supplementation.
Collapse
Affiliation(s)
- Angélique Stalmach
- Plant Products and Human Nutrition Group
- Joseph Black Building
- School of Medicine
- College of Biomedical, Veterinary and Life Sciences
- University of Glasgow
| | - Gary Williamson
- School of Food Science and Nutrition
- University of Leeds
- Leeds, UK
| | - Alan Crozier
- Plant Products and Human Nutrition Group
- Joseph Black Building
- School of Medicine
- College of Biomedical, Veterinary and Life Sciences
- University of Glasgow
| |
Collapse
|