1
|
Atashi N, Eshaghian N, Anjom-Shoae J, Askari G, Asadi M, Sadeghi O. Dietary intake and tissue biomarkers of omega-6 fatty acids and risk of colorectal cancer in adults: a systematic review and dose-response meta-analysis of prospective cohort studies. Nutr Diabetes 2025; 15:17. [PMID: 40251189 PMCID: PMC12008374 DOI: 10.1038/s41387-025-00367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 04/20/2025] Open
Abstract
Findings on the associations of dietary/tissue levels of omega-6 polyunsaturated fatty acids (n-6 PUFAs) with the risk of colorectal cancer (CRC) are conflicting. We conducted a dose-response meta-analysis to assess the associations of dietary/tissue levels of n-6 PUFAs [total, linoleic acid (LA), and arachidonic acid (AA)] with CRC risk in adults. Twenty prospective cohort studies with a total sample size of 787,490 participants were included. Comparing extreme intake levels of LA revealed the summary relative risks (RR) of 1.15 (95% confidence interval (CI): 1.05-1.27) for CRC, and 1.30 (95% CI: 1.00-1.68) for rectal cancer, indicating a significant positive association for LA. However, neither total n-6 PUFAs nor AA were associated with cancers. A significant positive association was also found between a 1 gr/day increase in dietary LA intake and risk of colon cancer (RR: 1.01, 95% CI: 1.00-1.02). There were no significant associations between tissue levels of total n-6 PUFAs (RR: 0.94, 95% CI: 0.75-1.19), LA (RR: 0.93, 95% CI: 0.61-1.41), and AA (RR: 0.97, 95% CI: 0.70-1.33) and CRC risk. In conclusion, these findings suggest that dietary intake, but not tissue levels, of LA was associated with an increased risk of colorectal, colon, and rectal cancers. (PROSPERO registration: CRD42024516584).
Collapse
Affiliation(s)
- Negin Atashi
- Center for Exercise, Nutrition & Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Niloofar Eshaghian
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Anjom-Shoae
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Asadi
- Department of Operating Room Nursing, Abadan University of Medical Sciences, Abadan, Iran.
| | - Omid Sadeghi
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Mahjourian M, Anjom-Shoae J, Mohammadi MA, Feinle-Bisset C, Sadeghi O. Associations of dietary fat types (MUFA, PUFA, SFA) and sources (animal, plant) with colorectal cancer risk: A comprehensive systematic review and dose-response meta-analysis of prospective cohort studies. Cancer Epidemiol 2025; 95:102768. [PMID: 39951860 DOI: 10.1016/j.canep.2025.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND OBJECTIVES While dietary fat intake has long been implicated as a risk factor for colorectal cancer, evidence from prospective cohort studies remains inconsistent. Moreover, previous meta-analyses examining the link between dietary fat intake and risk of colorectal cancer have not explored the dose-response relationships. Therefore, the current systematic review and meta-analysis was conducted to assess the dose-response associations of intakes of specific types (MUFA, PUFA and SFA) and sources (animal, plant) of dietary fat with the risk of colorectal, colon or rectal cancer. METHODS A comprehensive literature search of relevant online databases was performed to detect eligible studies until May 2023, identifying 21 prospective cohort studies with a total sample size of 2311,737 participants. The follow-up periods ranged from 7 to 19.4 years, during which 21,125 cases of colorectal, colon or rectal cancer were recorded. RESULTS Comparing extreme intake levels of total fat revealed the summary relative risk (RR) of 1.05 (95 % CI: 0.96-1.15) for colorectal cancer, 0.99 (95 % CI: 0.87-1.11) for colon cancer, and 1.09 (0.95 % CI: 0.93-1.13) for rectal cancer, indicating no significant association. Neither animal nor plant fat intake was associated with the risk of cancers. While no significant findings were also observed for MUFA or PUFA, the highest versus lowest comparison showed that a high intake of SFA was associated with a reduced risk of both colorectal 0.91 (95 % CI: 0.85-0.99) and colon cancer 0.86 (95 % CI: 0.75-0.98). However, in the non-linear dose-response analysis, the inverse association was seen within a certain range (<40 g/day). CONCLUSIONS These findings suggest that dietary SFA intake, less than 40 g/day, may have a protective effect against colorectal cancer. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
| | - Javad Anjom-Shoae
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Omid Sadeghi
- Nutrition and Food Security Research Centre and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
3
|
Zhang Y, Sun Y, Song S, Khankari NK, Brenna JT, Shen Y, Ye K. Associations of plasma omega-6 and omega-3 fatty acids with overall and 19 site-specific cancers: A population-based cohort study in UK Biobank. Int J Cancer 2025; 156:1154-1172. [PMID: 39417685 PMCID: PMC11736987 DOI: 10.1002/ijc.35226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Previous epidemiological studies on the associations between polyunsaturated fatty acids (PUFAs) and cancer incidence have been inconsistent. We investigated the associations of plasma omega-3 and omega-6 PUFAs with the incidence of overall and 19 site-specific cancers in a large prospective cohort. 253,138 eligible UK Biobank participants were included in our study. With a mean follow-up of 12.9 years, 29,838 participants were diagnosed with cancer. The plasma levels of omega-3 and omega-6 PUFAs were expressed as percentages of total fatty acids (omega-3% and omega-6%). In our main models, both omega-6% and omega-3% were inversely associated with overall cancer incidence (HR per SD = 0.98, 95% CI = 0.96-0.99; HR per SD = 0.99, 95% CI = 0.97-1.00; respectively). Of the 19 site-specific cancers available, 14 were associated with omega-6% and five with omega-3%, all indicating inverse associations, with the exception that prostate cancer was positively associated with omega-3% (HR per SD = 1.03, 95% CI = 1.01-1.05). Our population-based cohort study in UK Biobank indicates small inverse associations of plasma omega-6 and omega-3 PUFAs with the incidence of overall and most site-specific cancers, although there are notable exceptions, such as prostate cancer.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Epidemiology and Biostatistics, College of Public HealthUniversity of GeorgiaAthensGeorgiaUSA
| | - Yitang Sun
- Department of Genetics, Franklin College of Arts and SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Suhang Song
- Department of Health Policy and Management, College of Public HealthUniversity of GeorgiaAthensGeorgiaUSA
| | - Nikhil K. Khankari
- Division of Genetic MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics Institute, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - J. Thomas Brenna
- Division of Nutritional SciencesCornell UniversityIthacaNew YorkUSA
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical SchoolUniversity of Texas at AustinAustinTexasUSA
- Department of Nutritional Sciences, College of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Department of Chemistry, College of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Ye Shen
- Department of Epidemiology and Biostatistics, College of Public HealthUniversity of GeorgiaAthensGeorgiaUSA
| | - Kaixiong Ye
- Department of Genetics, Franklin College of Arts and SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of BioinformaticsUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
4
|
Turati F, Mignozzi S, Esposito G, Bravi F, D'Angelo A, Alicandro G, Garavello W, Augustin LSA, Vitale S, Giacosa A, Bidoli E, Polesel J, Negri E, Ferraroni M, La Vecchia C. Indices of healthy and unhealthy plant-based diets and the risk of selected digestive cancers. Clin Nutr 2025; 44:76-85. [PMID: 39637750 DOI: 10.1016/j.clnu.2024.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND & AIMS The relation between various types of plant-based diets and cancer risk is still unclear. We examined the association of the overall plant-based diet index (PDI) and healthy (hPDI) and unhealthy plant-based diet indices (uPDI) with the risk of selected digestive cancers. METHODS We used data from a network of hospital-based case-control studies including 942 oral/pharyngeal, 304 esophageal, 230 stomach, 1953 colorectal, and 326 pancreatic cancer cases. We calculated PDI, hPDI, and uPDI from a validated food frequency questionnaire. We used multivariable logistic regression models to estimate the odds ratios (OR) of selected digestive cancers across the three indices (in quintiles, Q, or tertiles, T, and in continuous). RESULTS The PDI was significantly inversely associated with oral/pharyngeal (ORQ5 vs Q1=0.63, 95% confidence interval, CI, 0.47-0.84) and esophageal cancer risk (ORT3 vs T1=0.47, 95% CI 0.31-0.72). The inverse associations appeared stronger for the hPDI (oral cavity/pharynx: ORQ5 vs Q1=0.52; 95% CI 0.39-0.70; esophagus: ORT3 vs T1=0.59, 95% CI 0.39-0.91; stomach: ORT3 vs T1=0.42, 95% CI 0.27-0.67; colorectum: ORQ5 vs Q1=0.69; 95% CI 0.57-0.84; pancreas: ORT3 vs T1=0.60; 95% CI 0.41-0.89). In contrast, the uPDI was directly associated with the risk of oral/pharyngeal (ORQ5 vs Q1=1.43, 95% CI 1.06-1.94), colorectal (ORQ5 vs Q1=2.28, 95% CI 1.86-2.81), and pancreatic cancer (ORT3 vs T1=1.74, 95% CI 1.14-2.65). Esophageal and stomach cancer risks were non-significantly increased by 34% and 46% respectively in the highest uPDI quantile. CONCLUSION A plant-based diet, especially a healthy plant-based diet, may reduce the risk of various digestive cancers, whereas an unhealthy plant-based diet may increase the risk. The quality of plant-based diets is important for digestive cancer risk evaluation and prevention.
Collapse
Affiliation(s)
- Federica Turati
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Silvia Mignozzi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Giovanna Esposito
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy.
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Angela D'Angelo
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Mother and Child Department, Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Werner Garavello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Livia S A Augustin
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Sara Vitale
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, Monza, Italy
| | - Ettore Bidoli
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Negri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Monica Ferraroni
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy; Fondazione IRCCS, Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| |
Collapse
|
5
|
López-Plaza B, Álvarez-Mercado AI, Arcos-Castellanos L, Plaza-Diaz J, Ruiz-Ojeda FJ, Brandimonte-Hernández M, Feliú-Batlle J, Hummel T, Gil Á, Palma-Milla S. Efficacy and Safety of Habitual Consumption of a Food Supplement Containing Miraculin in Malnourished Cancer Patients: The CLINMIR Pilot Study. Nutrients 2024; 16:1905. [PMID: 38931260 PMCID: PMC11207068 DOI: 10.3390/nu16121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Taste disorders (TDs) are common among systemically treated cancer patients and negatively impact their nutritional status and quality of life. The novel food approved by the European Commission (EFSA), dried miracle berries (DMB), contains the natural taste-modifying protein miraculin. DMB, also available as a supplement, has emerged as a possible alternative treatment for TDs. The present study aimed to evaluate the efficacy and safety of habitual DMB consumption in malnourished cancer patients undergoing active treatment. An exploratory clinical trial was carried out in which 31 cancer patients were randomized into three arms [standard dose of DMB (150 mg DMB/tablet), high dose of DMB (300 mg DMB/tablet) or placebo (300 mg freeze-dried strawberry)] for three months. Patients consumed a DMB tablet or placebo daily before each main meal (breakfast, lunch, and dinner). Throughout the five main visits, electrochemical taste perception, nutritional status, dietary intake, quality of life and the fatty acid profile of erythrocytes were evaluated. Patients consuming a standard dose of DMB exhibited improved taste acuity over time (% change right/left side: -52.8 ± 38.5/-58.7 ± 69.2%) and salty taste perception (2.29 ± 1.25 vs. high dose: 2.17 ± 1.84 vs. placebo: 1.57 ± 1.51 points, p < 0.05). They also had higher energy intake (p = 0.075) and covered better energy expenditure (107 ± 19%). The quality of life evaluated by symptom scales improved in patients receiving the standard dose of DMB (constipation, p = 0.048). The levels of arachidonic (13.1 ± 1.8; 14.0 ± 2.8, 12.0 ± 2.0%; p = 0.004) and docosahexaenoic (4.4 ± 1.7; 4.1 ± 1.0; 3.9 ± 1.6%; p = 0.014) acids in erythrocytes increased over time after DMB intake. The standard dose of DMB increased fat-free mass vs. placebo (47.4 ± 9.3 vs. 44.1 ± 4.7 kg, p = 0.007). Importantly, habitual patients with DMB did not experience any adverse events, and metabolic parameters remained stable and within normal ranges. In conclusion, habitual consumption of a standard 150 mg dose of DMB improves electrochemical food perception, nutritional status (energy intake, fat quantity and quality, fat-free mass), and quality of life in malnourished cancer patients receiving antineoplastic treatment. Additionally, DMB consumption appears to be safe, with no changes in major biochemical parameters associated with health status. Clinical trial registered (NCT05486260).
Collapse
Affiliation(s)
- Bricia López-Plaza
- Food, Nutrition and Health Platform, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.A.-C.); (S.P.-M.)
- Medicine Department, Faculty of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Ana Isabel Álvarez-Mercado
- Department of Pharmacology, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain; (J.P.-D.); (F.J.R.-O.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain;
| | - Lucía Arcos-Castellanos
- Food, Nutrition and Health Platform, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.A.-C.); (S.P.-M.)
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain; (J.P.-D.); (F.J.R.-O.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Francisco Javier Ruiz-Ojeda
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain; (J.P.-D.); (F.J.R.-O.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marco Brandimonte-Hernández
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
| | - Jaime Feliú-Batlle
- Oncology Department, Hospital La Paz Institute for Health Research—IdiPAZ, Hospital Universitario La Paz, 28029 Madrid, Spain;
- CIBERONC (CIBER Cancer), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Medicine Department, Faculty of Medicine, Autonomous University of Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Ángel Gil
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain; (J.P.-D.); (F.J.R.-O.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Samara Palma-Milla
- Food, Nutrition and Health Platform, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.A.-C.); (S.P.-M.)
- Medicine Department, Faculty of Medicine, Autonomous University of Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
- Nutrition Department, Hospital University La Paz, 28046 Madrid, Spain
| |
Collapse
|
6
|
Hao S, Ge P, Su W, Wang Y, Abd El-Aty AM, Tan M. Steady-State Delivery and Chemical Modification of Food Nutrients to Improve Cancer Intervention Ability. Foods 2024; 13:1363. [PMID: 38731734 PMCID: PMC11083276 DOI: 10.3390/foods13091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer is a crucial global health problem, and prevention is an important strategy to reduce the burden of the disease. Daily diet is the key modifiable risk factor for cancer, and an increasing body of evidence suggests that specific nutrients in foods may have a preventive effect against cancer. This review summarizes the current evidence on the role of nutrients from foods in cancer intervention. It discusses the potential mechanisms of action of various dietary components, including phytochemicals, vitamins, minerals, and fiber. The findings of epidemiological and clinical studies on their association with cancer risk are highlighted. The foods are rich in bioactive compounds such as carotenoids, flavonoids, and ω-3 fatty acids, which have been proven to have anticancer properties. The effects of steady-state delivery and chemical modification of these food's bioactive components on anticancer and intervention are summarized. Future research should focus on identifying the specific bioactive compounds in foods responsible for their intervention effects and exploring the potential synergistic effects of combining different nutrients in foods. Dietary interventions that incorporate multiple nutrients and whole foods may hold promise for reducing the risk of cancer and improving overall health.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Peng Ge
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
7
|
Jiang Y, Li LT, Hou SH, Chen LN, Zhang CX. Association between dietary intake of saturated fatty acid subgroups and breast cancer risk. Food Funct 2024; 15:2282-2294. [PMID: 38321832 DOI: 10.1039/d3fo04279k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The impact of dietary saturated fatty acids (SFAs) on breast cancer risk may vary depending on their carbon chain lengths, attributable to the discrepancy in their dietary sources and biological activities. The associations between SFA subgroups classified by chain length and breast cancer risk remain controversial. In this case-control study, we aimed to investigate the association between the dietary intake of SFA subgroups, classified by chain lengths, and odds of breast cancer in China. This study included 1661 cases of breast cancer (confirmed as primary and histologically) and 1674 frequency-matched controls. Face-to-face interviews were used to collect basic information, while dietary intake information was obtained by a food frequency questionnaire. The unconditional logistic regression model was used to calculate the odds ratios (ORs) and 95% confidence intervals (95% CIs). All SFA subgroups were inversely associated with odds of breast cancer. The adjusted ORs (95% CIs) were 0.78 (0.61-0.99) for medium-chain SFAs, 0.50 (0.31-0.83) for long even-chain SFAs, 0.69 (0.54-0.88) for long odd-chain, and 0.67 (0.48-0.95) for very long-chain SFAs, respectively. In the restricted cubic spline (RCS) models, a non-linear M-shaped association was observed between long odd-chain SFAs and odds of breast cancer (Pnon-linearity = 0.007). However, the associations of medium-chain SFAs, long even-chain SFAs, and very long-chain SFAs did not reach statistical significance (Pnon-linearity > 0.05). No significant interactions were observed between all these four subgroups of SFAs and menopausal status or BMI. Our findings emphasize the significance of elucidating the associations of dietary SFAs according to chain lengths, providing insights into the etiology as well as the potential benefits of SFA-rich food intake in reducing the risk of breast cancer. Further prospective cohort studies and intervention studies are warranted to confirm these findings and identify the underlying mechanisms of the association between dietary SFAs and breast cancer.
Collapse
Affiliation(s)
- Ying Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Lan-Ting Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Si-Han Hou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Le-Ning Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Cai-Xia Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
8
|
Mei J, Qian M, Hou Y, Liang M, Chen Y, Wang C, Zhang J. Association of saturated fatty acids with cancer risk: a systematic review and meta-analysis. Lipids Health Dis 2024; 23:32. [PMID: 38291432 PMCID: PMC10826095 DOI: 10.1186/s12944-024-02025-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE Extensive research has explored the link between saturated fatty acids (SFAs) and cardiovascular diseases, alongside other biological dysfunctions. Yet, their association with cancer risk remains a topic of debate among scholars. The present study aimed to elucidate this association through a robust meta-analysis. METHODS PubMed, Embase, Cochrane Library, and Web of Science databases were searched systematically to identify relevant studies published until December 2023. The Newcastle-Ottawa Scale was used as the primary metric for evaluating the quality of the included studies. Further, fixed- or random-effects models were adopted to determine the ORs and the associated confidence intervals using the Stata15.1 software. The subsequent subgroup analysis revealed the source of detection and the cancer types, accompanied by sensitivity analyses and publication bias evaluations. RESULTS The meta-analysis incorporated 55 studies, comprising 38 case-control studies and 17 cohort studies. It revealed a significant positive correlation between elevated levels of total SFAs and the cancer risk (OR of 1.294; 95% CI: 1.182-1.416; P-value less than 0.001). Moreover, elevated levels of C14:0, C16:0, and C18:0 were implicated in the augmentation of the risk of cancer. However, no statistically significant correlation of the risk of cancer was observed with the elevated levels of C4:0, C6:0, C8:0, C10:0, C12:0, C15:0, C17:0, C20:0, C22:0, and C24:0. Subgroup analysis showed a significant relationship between excessive dietary SFA intake, elevated blood SFA levels, and heightened cancer risk. Increased total SFA levels correlated with higher risks of breast, prostate, and colorectal cancers, but not with lung, pancreatic, ovarian, or stomach cancers. CONCLUSION High total SFA levels were correlated with an increased cancer risk, particularly affecting breast, prostate, and colorectal cancers. Higher levels of specific SFA subtypes (C14:0, C16:0, and C18:0) are also linked to an increased cancer risk. The findings of the present study would assist in providing dietary recommendations for cancer prevention, thereby contributing to the development of potential strategies for clinical trials in which diet-related interventions would be used in combination with immunotherapy to alter the levels of SFAs in patients and thereby improve the outcomes in cancer patients. Nonetheless, further high-quality studies are warranted to confirm these associations.
Collapse
Affiliation(s)
- Jin Mei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Meiyu Qian
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
9
|
Zhang Y, Sun Y, Song S, Khankari NK, Brenna JT, Shen Y, Ye K. Associations of plasma omega-6 and omega-3 fatty acids with overall and 19 site-specific cancers: a population-based cohort study in UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.21.24301568. [PMID: 38343844 PMCID: PMC10854355 DOI: 10.1101/2024.01.21.24301568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Previous epidemiological studies of the associations between polyunsaturated fatty acids (PUFAs) and cancer incidence have been inconsistent. We investigated the associations of plasma omega-3 and omega-6 PUFAs with the incidence of overall and 19 site-specific cancers in a large prospective cohort. Methods 253,138 eligible UK Biobank participants were included in our study. With a mean follow-up of 12.9 years, 29,838 participants were diagnosed with cancer. The plasma levels of omega-3 and omega-6 PUFAs were expressed as percentages of total fatty acids (omega-3% and omega-6%). Results In our main models, both omega-6% and omega-3% were inversely associated with overall cancer incidence (HR per SD = 0.98, 95% CI = 0.96-0.99; HR per SD = 0.99, 95% CI = 0.97-1.00; respectively). Of the 19 site-specific cancers available, 14 were associated with omega-6% and five with omega-3%, all indicating inverse associations, with the exception that prostate cancer was positively associated with omega-3% (HR per SD = 1.03, 95% CI = 1.01 - 1.05). Conclusions Our population-based cohort study in UK Biobank indicates small inverse associations of plasma omega-6 and omega-3 PUFAs with the incidence of overall and most site-specific cancers, although there are notable exceptions, such as prostate cancer.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia, US
| | - Yitang Sun
- Department of Genetics, University of Georgia, Athens, Georgia, US
| | - Suhang Song
- Department of Health Policy and Management, College of Public Health, University of Georgia, Athens, Georgia, US
| | - Nikhil K. Khankari
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, US
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, US
| | - J. Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, US
- Dell Pediatric Research Institute and the Depts of Pediatrics, of Nutrition, and of Chemistry, University of Texas at Austin, Austin, TX, US
| | - Ye Shen
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia, US
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, Georgia, US
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, US
| |
Collapse
|
10
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Shitanaka T, Higa L, Bryson AE, Bertucci C, Vande Pol N, Lucker B, Khanal SK, Bonito G, Du ZY. Flocculation of oleaginous green algae with Mortierella alpina fungi. BIORESOURCE TECHNOLOGY 2023; 385:129391. [PMID: 37364649 DOI: 10.1016/j.biortech.2023.129391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Microalgae are promising sources of valuable bioproducts such as biofuels, food, and nutraceuticals. However, harvesting microalgae is challenging due to their small size and low biomass concentrations. To address this challenge, bio-flocculation of starchless mutants of Chlamydomonas reinhardtii (sta6/sta7) was investigated with Mortierella alpina, an oleaginous fungus with high concentrations of arachidonic acid (ARA). Triacylglycerides (TAG) reached 85 % of total lipids in sta6 and sta7 through a nitrogen regime. Scanning electron microscopy determined cell-wall attachment and extra polymeric substances (EPS) to be responsible for flocculation. An algal-fungal biomass ratio around 1:1 (three membranes) was optimal for bio-flocculation (80-85 % flocculation efficiency in 24 h). Nitrogen-deprived sta6/sta7 were flocculated with strains of M. alpina (NVP17b, NVP47, and NVP153) with aggregates exhibiting fatty acid profiles similar to C. reinhardtii, with ARA (3-10 % of total fatty acids). This study showcases M. alpina as a strong bio-flocculation candidate for microalgae and advances a mechanistic understanding of algal-fungal interaction.
Collapse
Affiliation(s)
- Ty Shitanaka
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Lauren Higa
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Abigail E Bryson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Conor Bertucci
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Natalie Vande Pol
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Ben Lucker
- Trait Biosciences, Los Alamos, NM 87544, United States
| | - Samir Kumar Khanal
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States.
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States.
| |
Collapse
|
12
|
Mérida-Ortega Á, Pérez-Saldivar ML, Espinoza-Hernández LE, Dorantes-Acosta EM, Torres-Nava JR, Solís-Labastida KA, Paredes-Aguilera R, Velázquez-Aviña MM, Espinosa-Elizondo RM, Miranda-Madrazo MR, González-Ávila AI, Rodríguez-Villalobos LR, Dosta-Herrera JJ, Mondragón-García JA, Castañeda-Echevarría A, López-Caballero MG, Martínez-Silva SI, Rivera-González J, Hernández-Pineda NA, Flores-Botello J, Pérez-Gómez JA, Rodríguez-Vázquez MA, Torres-Valle D, Olvera-Durán JÁ, Martínez-Ríos A, García‐Cortés LR, Almeida-Hernández C, Flores-Lujano J, Núñez-Enríquez JC, Mata-Rocha M, Rosas-Vargas H, Duarte-Rodríguez DA, Jiménez-Morales S, Mejía-Arangure JM, López-Carrillo L. A protective maternal nutrient concomitant intake associated with acute leukemia might be modified by sex, in children under 2 years. Front Oncol 2023; 13:1239147. [PMID: 37746300 PMCID: PMC10514356 DOI: 10.3389/fonc.2023.1239147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Maternal dietary consumption during pregnancy has been inconclusively associated with acute leukemia (AL) in infants, probably because epidemiological evidence has emerged mainly from the analysis of one-by-one nutrient, which is not a real-life scenario. Our objective was to evaluate the association between AL in Mexican children under 2 years of age and their mothers' nutrients concomitant intake during pregnancy, as well as to explore whether there are differences between girls and boys. Methods We conducted a study of 110 cases of AL and 252 hospital-based controls in the Mexico City Metropolitan area from 2010 to 2019. We obtained information on maternal intake of 32 nutrients by a food frequency questionnaire and used weighted quantile sum regression to identify nutrient concomitant intakes. Results We found a concomitant intake of nutrients negatively associated with AL (OR 0.17; CI95% 0.03,0.88) only among girls; and we did not find a nutrient concomitant intake positively associated with AL. Discussion This is the first study that suggests nutrients that have been individually associated with AL are not necessarily the same in the presence of other nutrients (concomitant intake); as well as that maternal diet might reduce AL risk only in girls.
Collapse
Affiliation(s)
- Ángel Mérida-Ortega
- Center of Population Health Research, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), México City, Mexico
| | - Laura E. Espinoza-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, CMN “La Raza”, IMSS, Mexico City, Mexico
| | - Elisa M. Dorantes-Acosta
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SSA), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | | | | | | | | | - M. Raquel Miranda-Madrazo
- Servicio de Hematología Pediátrica, CMN”20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Ana Itamar González-Ávila
- Servicio de Hematología Pediátrica, HGR No. 1 “Dr. Carlos Mac Gregor Sánchez Navarro” IMSS, Mexico City, Mexico
| | | | - Juan José Dosta-Herrera
- Servicio de Cirugía Pediátrica, Hospital General “Gaudencio González Garza”, CMN “La Raza”, IMSS, Mexico City, Mexico
| | - Javier A. Mondragón-García
- Servicio de Cirugía Pediátrica, Hospital General Regional (HGR) No. 1 “Dr. Carlos Mac Gregor Sánchez Navarro” IMSS, Mexico City, Mexico
| | | | | | | | - Juan Rivera-González
- Hospital General Dr. “Gustavo Baz Prada”, Instituto de Salud del Estado de México (ISEM), State of Mexico, Mexico
| | | | - Jesús Flores-Botello
- Coordinación Clínica y Pediatría, Hospital General “La Perla” ISEM, Nezahualcóyotl, State of Mexico, Mexico
| | - Jessica Arleet Pérez-Gómez
- Coordinación Clínica y Pediatría, HGR No. 72 “Dr. Vicente Santos Guajardo”, IMSS, Tlalnepantla de Baz, State of Mexico, Mexico
| | | | - Delfino Torres-Valle
- Coordinación Clínica y Pediatría del Hospital General de Zona 71, IMSS, Chalco de Díaz Covarrubias, State of Mexico, Mexico
| | | | | | - Luis R. García‐Cortés
- Delegación Regional Estado de México Oriente, IMSS, Naucalpan de Juárez, State of Mexico, Mexico
| | | | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), México City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), México City, Mexico
| | - Minerva Mata-Rocha
- Laboratorio de Biología Molecular de las Leucemias, Unidad de Investigación en Genética Humana, UMAE, Hospital de Pediatría, CMN “Siglo XXI”, IMSS, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Laboratorio de Genética, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), México City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Innovación y Medicina de Precisión, Núcleo A, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
| | - Juan Manuel Mejía-Arangure
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| | - Lizbeth López-Carrillo
- Center of Population Health Research, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| |
Collapse
|
13
|
Tojjari A, Choucair K, Sadeghipour A, Saeed A, Saeed A. Anti-Inflammatory and Immune Properties of Polyunsaturated Fatty Acids (PUFAs) and Their Impact on Colorectal Cancer (CRC) Prevention and Treatment. Cancers (Basel) 2023; 15:4294. [PMID: 37686570 PMCID: PMC10487099 DOI: 10.3390/cancers15174294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of death from cancer worldwide, with increasing incidence in the Western world. Diet has become the focus of research as a significant risk factor for CRC occurrence, and the role of dietary polyunsaturated fatty acids (PUFAs) has become an area of interest given their potential role in modulating inflammation, particularly in the pro-carcinogenic inflammatory environment of the colon. This work reviews the main types of PUFAs, their characteristics, structure, and physiologic role. We then highlight their potential role in preventing CRC, their signaling function vis-à-vis tumorigenic signaling, and their subsequent potential role in modulating response to different treatment modalities. We review pre-clinical and clinical data and discuss their potential use as adjunct therapies to currently existing treatment modalities. Given our understanding of PUFAs' immune and inflammation modulatory effects, we explore the possible combination of PUFAs with immune checkpoint inhibitors and other targeted therapies.
Collapse
Affiliation(s)
- Alireza Tojjari
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
| | - Khalil Choucair
- Division of Hematology and Oncology, Department of Medicine, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA;
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran 14115-175, Iran;
| | - Azhar Saeed
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Anwaar Saeed
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
14
|
Guo Z, Bergeron KF, Lingrand M, Mounier C. Unveiling the MUFA-Cancer Connection: Insights from Endogenous and Exogenous Perspectives. Int J Mol Sci 2023; 24:9921. [PMID: 37373069 DOI: 10.3390/ijms24129921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Karl-Frédérik Bergeron
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Marine Lingrand
- Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| |
Collapse
|
15
|
The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines 2023; 11:biomedicines11020280. [PMID: 36830818 PMCID: PMC9953116 DOI: 10.3390/biomedicines11020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cancer is the second leading cause of death worldwide and the global cancer burden rises rapidly. The risk factors for cancer development can often be attributed to lifestyle factors, of which an unhealthy diet is a major contributor. Dietary fat is an important macronutrient and therefore a crucial part of a well-balanced and healthy diet, but it is still unclear which specific fatty acids contribute to a healthy and well-balanced diet in the context of cancer risk and prognosis. In this review, we describe epidemiological evidence on the associations between the intake of different classes of fatty acids and the risk of developing cancer, and we provide preclinical evidence on how specific fatty acids can act on tumor cells, thereby modulating tumor progression and metastasis. Moreover, the pro- and anti-inflammatory effects of each of the different groups of fatty acids will be discussed specifically in the context of inflammation-induced cancer progression and we will highlight challenges as well as opportunities for successful application of fatty acid tailored nutritional interventions in the clinic.
Collapse
|
16
|
Kim HK, Kang EY, Go GW. Recent insights into dietary ω-6 fatty acid health implications using a systematic review. Food Sci Biotechnol 2022; 31:1365-1376. [PMID: 36060573 PMCID: PMC9433510 DOI: 10.1007/s10068-022-01152-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/17/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The American Heart Association suggests that consuming ω-6 fatty acids (5-10% of total energy) can prevent cardiovascular disease by improving lipoprotein profiles. However, some studies warn of deleterious effects of these due to eicosanoid biosynthesis. We explored the five years for clinical evidence of ω-6 fatty acids on several diseases including inflammation, cancer, cardiovascular disease, and metabolic syndrome. Predefined criteria identified a total of 21 articles in 5 databases. Some studies indicated that dietary arachidonic acid was not related to increase of pro-inflammatory cytokines. In cohort studies, ω-6 fatty acids prevented the onset of digestive and lung cancer. ω-6 Fatty acids improved blood lipoprotein profiles. Moreover, consuming ω-6 fatty acids delayed diabetes mellitus and chronic renal disease and had positive effects on muscle recovery and glaucoma. In conclusion, ω-6 fatty acids have beneficial effects on cancers, blood lipoprotein profiles, diabetes, renal disease, muscle function, and glaucoma without inflammation response.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Eun Young Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| |
Collapse
|
17
|
Phannasorn W, Pharapirom A, Thiennimitr P, Guo H, Ketnawa S, Wongpoomchai R. Enriched Riceberry Bran Oil Exerts Chemopreventive Properties through Anti-Inflammation and Alteration of Gut Microbiota in Carcinogen-Induced Liver and Colon Carcinogenesis in Rats. Cancers (Basel) 2022; 14:cancers14184358. [PMID: 36139518 PMCID: PMC9496912 DOI: 10.3390/cancers14184358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Riceberry has recently been acknowledged for its beneficial pharmacological effects. Riceberry bran oil (RBBO) exhibited anti-proliferation activity in various cancer cell lines. However, animal studies of RBBO on anti-carcinogenicity and its molecular inhibitory mechanism have been limited. This study purposed to investigate the chemopreventive effects of RBBO on the carcinogen-induced liver and colorectal carcinogenesis in rats. Rats were injected with diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH) and further orally administered with RBBO equivalent to 100 mg/kg body weight of γ-oryzanol 5 days/week for 10 weeks. RBBO administration suppressed preneoplastic lesions including hepatic glutathione S-transferase placental form positive foci and colorectal aberrant crypt foci. Accordingly, RBBO induced hepatocellular and colorectal cell apoptosis and reduced pro-inflammatory cytokine expression. Interestingly, RBBO effectively promoted the alteration of gut microbiota in DEN- and DMH-induced rats, as has been shown in the elevated Firmicutes/Bacteroidetes ratio. This outcome was consistent with an increase in butyrate in the feces of carcinogen-induced rats. The increase in butyrate reflects the chemopreventive properties of RBBO through the mechanisms of its anti-inflammatory properties and cell apoptosis induction in preneoplastic cells. This would indicate that RBBO containing γ-oryzanol, phytosterols, and tocols holds significant potential in the prevention of cancer.
Collapse
Affiliation(s)
- Warunyoo Phannasorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aroonrat Pharapirom
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Huina Guo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sunantha Ketnawa
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53935325; Fax: +66-53894031
| |
Collapse
|
18
|
Association of dietary intake of n-3 polyunsaturated fatty acids with breast cancer risk in pre- and postmenopausal Chinese women. Menopause 2022; 29:932-943. [PMID: 35881925 DOI: 10.1097/gme.0000000000001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to evaluate the associations between breast cancer risk and intake of n-3 polyunsaturated fatty acids (PUFAs) and/or n-3 PUFA subclasses in Chinese women, and determine whether these associations varied with menopausal status or clinical characteristics. METHODS A hospital-based case-control study including 1,589 cases and 1,621 age-frequency-matched controls was conducted. Dietary data were assessed by a validated food frequency questionnaire. Odds ratios (ORs) and 95% confidence intervals were obtained using multiple unconditional logistic regression models after controlling for potential confounders. RESULTS Higher intake of marine n-3 PUFAs and total n-3 PUFAs was associated with lower risk of breast cancer, with adjusted OR quartile 4 v.1 (95% confidence intervals) of 0.68 (0.55-0.84) and 0.56 (0.42-0.75), respectively. Dietary a-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid were also inversely associated with breast cancer risk, with adjusted ORs (95% confidence intervals) of 0.51 (0.38-0.70), 0.68 (0.55-0.84), 0.68 (0.55-0.85), and 0.76 (0.61-0.94), respectively. In stratified analyses, these inverse associations between risk and dietary n-3 PUFAs were more evident among premenopausal women and women with ER+, PR+ and ER+PR+ tumors. A decreased risk of breast cancer was significantly associated with increasing n-3 PUFA intake in obese/overweight women, but not in women of normal weight. There was a significant interaction between linoleic acid and marine n-3 PUFAs. CONCLUSIONS High intake of n-3 PUFAs and n-3 PUFA subtypes was associated with a lower risk of breast cancer, especially among premenopausal women and women with ER+ and/or PR+ subtype breast cancer.
Collapse
|
19
|
Aldoori J, Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids: moving towards precision use for prevention and treatment of colorectal cancer. Gut 2022; 71:822-837. [PMID: 35115314 DOI: 10.1136/gutjnl-2021-326362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
Data from experimental studies have demonstrated that marine omega-3 polyunsaturated fatty acids (O3FAs) have anti-inflammatory and anticancer properties. In the last decade, large-scale randomised controlled trials of pharmacological delivery of O3FAs and prospective cohort studies of dietary O3FA intake have continued to investigate the relationship between O3FA intake and colorectal cancer (CRC) risk and mortality. Clinical data suggest that O3FAs have differential anti-CRC activity depending on several host factors (including pretreatment blood O3FA level, ethnicity and systemic inflammatory response) and tumour characteristics (including location in the colorectum, histological phenotype (eg, conventional adenoma or serrated polyp) and molecular features (eg, microsatellite instability, cyclooxygenase expression)). Recent data also highlight the need for further investigation of the effect of O3FAs on the gut microbiota as a possible anti-CRC mechanism, when used either alone or in combination with other anti-CRC therapies. Overall, these data point towards a precision approach to using O3FAs for optimal prevention and treatment of CRC based on mechanistic understanding of host, tumour and gut microbiota factors that predict anticancer activity of O3FAs.
Collapse
Affiliation(s)
- Joanna Aldoori
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.,Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Andrew J Cockbain
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Giles J Toogood
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Mark A Hull
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
20
|
Substitution of dietary macronutrients and their sources in association with breast cancer: results from a large-scale case–control study. Eur J Nutr 2022; 61:2687-2695. [DOI: 10.1007/s00394-022-02811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/19/2022] [Indexed: 11/04/2022]
|
21
|
Wu T, Guo H, Zhang T, Sun R, Tao N, Wang X, Zhong J. LipidSearch‐based manual comparative analysis of long‐chain free fatty acids in thermal processed tilapia muscles: workflow, thermal processing effect and comparative lipid analysis. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Wu
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Hao Guo
- Chongqing Institute of Forensic Science Chongqing 400021 China
| | - Ting Zhang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Rui Sun
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Ningping Tao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
| | - Xichang Wang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian 116034 China
| | - Jian Zhong
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Integrated Scientific Research Base on Comprehensive Utilization Technology for By‐Products of Aquatic Product Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation College of Food Science & Technology Shanghai Ocean University Shanghai 201306 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
22
|
Jeong DW, Lee S, Chun YS. How cancer cells remodel lipid metabolism: strategies targeting transcription factors. Lipids Health Dis 2021; 20:163. [PMID: 34775964 PMCID: PMC8590761 DOI: 10.1186/s12944-021-01593-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seulbee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
23
|
Bravo-Ruiz I, Medina MÁ, Martínez-Poveda B. From Food to Genes: Transcriptional Regulation of Metabolism by Lipids and Carbohydrates. Nutrients 2021; 13:nu13051513. [PMID: 33946267 PMCID: PMC8145205 DOI: 10.3390/nu13051513] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Lipids and carbohydrates regulate gene expression by means of molecules that sense these macronutrients and act as transcription factors. The peroxisome proliferator-activated receptor (PPAR), activated by some fatty acids or their derivatives, and the carbohydrate response element binding protein (ChREBP), activated by glucose-derived metabolites, play a key role in metabolic homeostasis, especially in glucose and lipid metabolism. Furthermore, the action of both factors in obesity, diabetes and fatty liver, as well as the pharmacological development in the treatment of these pathologies are indeed of high relevance. In this review we present an overview of the discovery, mechanism of activation and metabolic functions of these nutrient-dependent transcription factors in different tissues contexts, from the nutritional genomics perspective. The possibility of targeting these factors in pharmacological approaches is also discussed. Lipid and carbohydrate-dependent transcription factors are key players in the complex metabolic homeostasis, but these factors also drive an adaptive response to non-physiological situations, such as overeating. Possibly the decisive role of ChREBP and PPAR in metabolic regulation points to them as ideal therapeutic targets, but their pleiotropic functions in different tissues makes it difficult to "hit the mark".
Collapse
Affiliation(s)
- Inés Bravo-Ruiz
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.B.-R.); (M.Á.M.)
| | - Miguel Ángel Medina
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.B.-R.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.B.-R.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), E-29071 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), E-28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
24
|
Aguilera-Buenosvinos I, Fernandez-Lazaro CI, Romanos-Nanclares A, Gea A, Sánchez-Bayona R, Martín-Moreno JM, Martínez-González MÁ, Toledo E. Dairy Consumption and Incidence of Breast Cancer in the 'Seguimiento Universidad de Navarra' (SUN) Project. Nutrients 2021; 13:nu13020687. [PMID: 33669972 PMCID: PMC7924827 DOI: 10.3390/nu13020687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023] Open
Abstract
Dairy products might influence breast cancer (BC) risk. However, evidence is inconsistent. We sought to examine the association between dairy product consumption-and their subtypes-and incident BC in a Mediterranean cohort. The SUN ("Seguimiento Universidad de Navarra") Project is a Spanish dynamic ongoing cohort of university graduates. Dairy product consumption was estimated through a previously validated 136-item food frequency questionnaire (FFQ). Incident BC was reported in biennial follow-up questionnaires and confirmed with revision of medical records and consultation of the National Death Index. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated with Cox regression models. Among 123,297 women-years of follow-up (10,930 women, median follow-up 12.1 years), we confirmed 119 incident BC cases. We found a nonlinear association between total dairy product consumption and BC incidence (pnonlinear = 0.048) and a significant inverse association for women with moderate total dairy product consumption (HRQ2vs.Q1 = 0.49 (95% CI 0.28-0.84); HRQ3vs.Q1 = 0.49 (95% CI 0.29-0.84) ptrend = 0.623) and with moderate low-fat dairy product consumption (HRQ2vs.Q1 = 0.58 (95% CI 0.35-0.97); HRQ3vs.Q1 = 0.55 (95% CI 0.32-0.92), ptrend = 0.136). In stratified analyses, we found a significant inverse association between intermediate low-fat dairy product consumption and premenopausal BC and between medium total dairy product consumption and postmenopausal BC. Thus, dairy products, especially low-fat dairy products, may be considered within overall prudent dietary patterns.
Collapse
Affiliation(s)
- Inmaculada Aguilera-Buenosvinos
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
| | - Cesar Ignacio Fernandez-Lazaro
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Andrea Romanos-Nanclares
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Alfredo Gea
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Rodrigo Sánchez-Bayona
- Department of Clinical Oncology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Jose M. Martín-Moreno
- Department of Preventive Medicine and Public Health, Medical School & INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Miguel Ángel Martínez-González
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Estefanía Toledo
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Navarra, 31008 Pamplona, Spain; (I.A.-B.); (C.I.F.-L.); (A.R.-N.); (A.G.); (M.Á.M.-G.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948425600 (ext. 806224)
| |
Collapse
|
25
|
Anemonia sulcata and Its Symbiont Symbiodinium as a Source of Anti-Tumor and Anti-Oxoxidant Compounds for Colon Cancer Therapy: A Preliminary in Vitro Study. BIOLOGY 2021; 10:biology10020134. [PMID: 33567702 PMCID: PMC7915377 DOI: 10.3390/biology10020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Colorectal cancer is one of the most frequent types of cancer in the population. Recently, invertebrate marine animals have been investigated for the presence of natural products which can damage tumor cells, prevent their spread to other tissues or avoid cancer develop. We analyzed the anemone Anemonia sulcata with and without the presence of its microalgal symbiont (Symbiodinium) as a source of bioactive molecules for the colorectal cancer therapy and prevention. Colon cancer tumor cells were exposed to Anemone extracts observing a remarkable cell death and a great antioxidant capacity. These preliminary results support that Anemonia sulcata could be a source of bioactive compounds against colorectal cancer and that the absence of its symbiont may enhance these properties. Further studies will be necessary to define the bioactive compounds of Anemonia sulcata and their mechanisms of action. Abstract Recently, invertebrate marine species have been investigated for the presence of natural products with antitumor activity. We analyzed the invertebrate Anemonia sulcata with (W) and without (W/O) the presence of its microalgal symbiont Symbiodinium as a source of bioactive compounds that may be applied in the therapy and/or prevention of colorectal cancer (CRC). Animals were mechanically homogenized and subjected to ethanolic extraction. The proximate composition and fatty acid profile were determined. In addition, an in vitro digestion was performed to study the potentially dialyzable fraction. The antioxidant and antitumor activity of the samples and the digestion products were analyzed in CRC cells in vitro. Our results show a high concentration of polyunsaturated fatty acid in the anemone and a great antioxidant capacity, which demonstrated the ability to prevent cell death and a high antitumor activity of the crude homogenates against CRC cells and multicellular tumor spheroids, especially W/O symbiont. These preliminary results support that Anemonia sulcata could be a source of bioactive compounds with antioxidant and antitumor potential against CRC and that the absence of its symbiont may enhance these properties. Further studies will be necessary to define the bioactive compounds of Anemonia sulcata and their mechanisms of action.
Collapse
|
26
|
Bojková B, Kurhaluk N, Winklewski PJ. The interconnection of high-fat diets, oxidative stress, the heart, and carcinogenesis. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Serum Phospholipids Fatty Acids and Breast Cancer Risk by Pathological Subtype. Nutrients 2020; 12:nu12103132. [PMID: 33066483 PMCID: PMC7602197 DOI: 10.3390/nu12103132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
This study evaluates whether serum phospholipids fatty acids (PL-FAs) and markers of their endogenous metabolism are associated with breast cancer (BC) subtypes. EpiGEICAM is a Spanish multicenter matched case-control study. A lifestyle and food frequency questionnaire was completed by 1017 BC cases and healthy women pairs. Serum PL-FA percentages were measured by gas chromatography-mass spectrometry. Conditional and multinomial logistic regression models were used to quantify the association of PL-FA tertiles with BC risk, overall and by pathological subtype (luminal, HER2+ and triple negative). Stratified analyses by body mass index and menopausal status were also performed. Serum PL-FAs were measured in 795 (78%) pairs. Women with high serum levels of stearic acid (odds ratio (OR)T3vsT1 = 0.44; 95% confidence interval (CI) = 0.30–0.66), linoleic acid (ORT3vsT1 = 0.66; 95% CI = 0.49–0.90) and arachidonic to dihomo-γ-linolenic acid ratio (OR T3vsT1 = 0.64; 95% CI = 0.48–0.84) presented lower BC risk. Participants with high concentrations of palmitoleic acid (ORT3vsT1 = 1.65; 95% CI = 1.20–2.26), trans-ruminant palmitelaidic acid (ORT3vsT1 = 1.51; 95% CI = 1.12–2.02), trans-industrial elaidic acid (ORT3vsT1 = 1.52; 95% CI = 1.14–2.03), and high oleic to stearic acid ratio (ORT3vsT1 = 2.04; 95% CI = 1.45–2.87) showed higher risk. These associations were similar in all BC pathological subtypes. Our results emphasize the importance of analyzing fatty acids individually, as well as the desaturase activity indices.
Collapse
|
28
|
Huang JJ, Huang W, Li J, Li P, Cheung PCK. Potential advancement of ultraviolet-free solar radiation technology in enriching the nutrient composition and biodiesel feedstock production in marine green microalga Platymonas subcordiformis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
N-6 Polyunsaturated Fatty Acids and Risk of Cancer: Accumulating Evidence from Prospective Studies. Nutrients 2020; 12:nu12092523. [PMID: 32825393 PMCID: PMC7551408 DOI: 10.3390/nu12092523] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies on the association between polyunsaturated fatty acids (PUFAs) and cancer have focused on n-3 PUFAs. To investigate the association between intake or blood levels of n-6 PUFAs and cancer, we searched the PubMed and Embase databases up to March 2020 and conducted a meta-analysis. A total of 70 articles were identified. High blood levels of n-6 PUFAs were associated with an 8% lower risk of all cancers (relative risk (RR) = 0.92; 95% confidence interval (CI): 0.86-0.98) compared to low blood levels of n-6 PUFAs. In the subgroup analyses by cancer site, type of n-6 PUFAs, and sex, the inverse associations were strong for breast cancer (RR = 0.87; 95% CI: 0.77-0.98), linoleic acid (LA) (RR = 0.91; 95% CI: 0.82-1.00), and women (RR = 0.88; 95% CI: 0.79-0.97). In the dose-response analysis, a 2% and 3% decrease in the risk of cancer was observed with a 5% increase in blood levels of n-6 PUFAs and LA, respectively. Thus, there was no significant association between n-6 PUFA intake and the risk of cancer. The pooled RR of cancer for the highest versus lowest category of n-6 PUFA intake was 1.02 (95% CI: 0.99-1.05). Evidence from prospective studies indicated that intake of n-6 PUFAs was not significantly associated with risk of cancer, but blood levels of n-6 PUFAs were inversely associated with risk of cancer.
Collapse
|
30
|
Bojková B, Winklewski PJ, Wszedybyl-Winklewska M. Dietary Fat and Cancer-Which Is Good, Which Is Bad, and the Body of Evidence. Int J Mol Sci 2020; 21:ijms21114114. [PMID: 32526973 PMCID: PMC7312362 DOI: 10.3390/ijms21114114] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
A high-fat diet (HFD) induces changes in gut microbiota leading to activation of pro-inflammatory pathways, and obesity, as a consequence of overnutrition, exacerbates inflammation, a known risk factor not only for cancer. However, experimental data showed that the composition of dietary fat has a greater impact on the pathogenesis of cancer than the total fat content in isocaloric diets. Similarly, human studies did not prove that a decrease in total fat intake is an effective strategy to combat cancer. Saturated fat has long been considered as harmful, but the current consensus is that moderate intake of saturated fatty acids (SFAs), including palmitic acid (PA), does not pose a health risk within a balanced diet. In regard to monounsaturated fat, plant sources are recommended. The consumption of plant monounsaturated fatty acids (MUFAs), particularly from olive oil, has been associated with lower cancer risk. Similarly, the replacement of animal MUFAs with plant MUFAs decreased cancer mortality. The impact of polyunsaturated fatty acids (PUFAs) on cancer risk depends on the ratio between ω-6 and ω-3 PUFAs. In vivo data showed stimulatory effects of ω-6 PUFAs on tumour growth while ω-3 PUFAs were protective, but the results of human studies were not as promising as indicated in preclinical reports. As for trans FAs (TFAs), experimental data mostly showed opposite effects of industrially produced and natural TFAs, with the latter being protective against cancer progression, but human data are mixed, and no clear conclusion can be made. Further studies are warranted to establish the role of FAs in the control of cell growth in order to find an effective strategy for cancer prevention/treatment.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 041 54 Košice, Slovakia;
| | - Pawel J. Winklewski
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Anatomy and Physiology, Pomeranian University of Slupsk, 76-200 Slupsk, Poland
- Correspondence: ; Tel./Fax: +48-58-3491515
| | | |
Collapse
|
31
|
Abstract
Diet is an important risk factor for colorectal cancer (CRC), and several dietary constituents implicated in CRC are modified by gut microbial metabolism. Microbial fermentation of dietary fiber produces short-chain fatty acids, e.g., acetate, propionate, and butyrate. Dietary fiber has been shown to reduce colon tumors in animal models, and, in vitro, butyrate influences cellular pathways important to cancer risk. Furthermore, work from our group suggests that the combined effects of butyrate and omega-3 polyunsaturated fatty acids (n-3 PUFA) may enhance the chemopreventive potential of these dietary constituents. We postulate that the relatively low intakes of n-3 PUFA and fiber in Western populations and the failure to address interactions between these dietary components may explain why chemoprotective effects of n-3 PUFA and fermentable fibers have not been detected consistently in prospective cohort studies. In this review, we summarize the evidence outlining the effects of n-3 long-chain PUFA and highly fermentable fiber with respect to alterations in critical pathways important to CRC prevention, particularly intrinsic mitochondrial-mediated programmed cell death resulting from the accumulation of lipid reactive oxygen species (ferroptosis), and epigenetic programming related to lipid catabolism and beta-oxidation-associated genes.
Collapse
|
32
|
Lécuyer L, Dalle C, Lefevre-Arbogast S, Micheau P, Lyan B, Rossary A, Demidem A, Petera M, Lagree M, Centeno D, Galan P, Hercberg S, Samieri C, Assi N, Ferrari P, Viallon V, Deschasaux M, Partula V, Srour B, Latino-Martel P, Kesse-Guyot E, Druesne-Pecollo N, Vasson MP, Durand S, Pujos-Guillot E, Manach C, Touvier M. Diet-Related Metabolomic Signature of Long-Term Breast Cancer Risk Using Penalized Regression: An Exploratory Study in the SU.VI.MAX Cohort. Cancer Epidemiol Biomarkers Prev 2020; 29:396-405. [PMID: 31767565 DOI: 10.1158/1055-9965.epi-19-0900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diet has been recognized as a modifiable risk factor for breast cancer. Highlighting predictive diet-related biomarkers would be of great public health relevance to identify at-risk subjects. The aim of this exploratory study was to select diet-related metabolites discriminating women at higher risk of breast cancer using untargeted metabolomics. METHODS Baseline plasma samples of 200 incident breast cancer cases and matched controls, from a nested case-control study within the Supplémentation en Vitamines et Minéraux Antioxydants (SU.VI.MAX) cohort, were analyzed by untargeted LC-MS. Diet-related metabolites were identified by partial correlation with dietary exposures, and best predictors of breast cancer risk were then selected by Elastic Net penalized regression. The selection stability was assessed using bootstrap resampling. RESULTS 595 ions were selected as candidate diet-related metabolites. Fourteen of them were selected by Elastic Net regression as breast cancer risk discriminant ions. A lower level of piperine (a compound from pepper) and higher levels of acetyltributylcitrate (an alternative plasticizer to phthalates), pregnene-triol sulfate (a steroid sulfate), and 2-amino-4-cyano butanoic acid (a metabolite linked to microbiota metabolism) were observed in plasma from women who subsequently developed breast cancer. This metabolomic signature was related to several dietary exposures such as a "Western" dietary pattern and higher alcohol and coffee intakes. CONCLUSIONS Our study suggested a diet-related plasma metabolic signature involving exogenous, steroid metabolites, and microbiota-related compounds associated with long-term breast cancer risk that should be confirmed in large-scale independent studies. IMPACT These results could help to identify healthy women at higher risk of breast cancer and improve the understanding of nutrition and health relationship.
Collapse
Affiliation(s)
- Lucie Lécuyer
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France.
| | - Céline Dalle
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Micronutriments et Santé cardiovasculaire (MicroCard), Clermont-Ferrand, France
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Sophie Lefevre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Pierre Micheau
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Micronutriments et Santé cardiovasculaire (MicroCard), Clermont-Ferrand, France
| | - Bernard Lyan
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Adrien Rossary
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont-Ferrand, France
| | - Aicha Demidem
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont-Ferrand, France
| | - Mélanie Petera
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Marie Lagree
- Clermont Auvergne University, Institut de Chimie de Clermont-Ferrand, Plateforme d'Exploration du Métabolisme, MetaboHUB-Clermont, Aubière, France
| | - Delphine Centeno
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Pilar Galan
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Serge Hercberg
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
- Public Health Department, Avicenne Hospital, Bobigny, France
| | - Cecilia Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Nada Assi
- International Agency for Research on Cancer, Section of Nutrition and Metabolism, Nutritional Methodology and Biostatistics Group, Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer, Section of Nutrition and Metabolism, Nutritional Methodology and Biostatistics Group, Lyon, France
| | - Vivian Viallon
- International Agency for Research on Cancer, Section of Nutrition and Metabolism, Nutritional Methodology and Biostatistics Group, Lyon, France
| | - Mélanie Deschasaux
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Valentin Partula
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Bernard Srour
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Paule Latino-Martel
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Nathalie Druesne-Pecollo
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Marie-Paule Vasson
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont-Ferrand, France
- Anticancer Center Jean-Perrin, CHU Clermont-Ferrand, France
| | - Stéphanie Durand
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Claudine Manach
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Micronutriments et Santé cardiovasculaire (MicroCard), Clermont-Ferrand, France
| | - Mathilde Touvier
- Center of Research of Epidemiology and StatisticS (CRESS), French National Institute of Health and Medical Research (INSERM) U1153, French National Institute for Agricultural Research (INRA) U1125, French National Conservatory of Arts and Crafts (CNAM), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| |
Collapse
|
33
|
Liu L, Xie B, Fan M, Candas-Green D, Jiang JX, Wei R, Wang Y, Chen HW, Hu Y, Li JJ. Low-Level Saturated Fatty Acid Palmitate Benefits Liver Cells by Boosting Mitochondrial Metabolism via CDK1-SIRT3-CPT2 Cascade. Dev Cell 2019; 52:196-209.e9. [PMID: 31866205 DOI: 10.1016/j.devcel.2019.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Saturated fatty acids (SFAs) (the "bad" fat), especially palmitate (PA), in the human diet are blamed for potential health risks such as obesity and cancer because of SFA-induced lipotoxicity. However, epidemiological results demonstrate a latent benefit of SFAs, and it remains elusive whether a certain low level of SFAs is physiologically essential for maintaining cell metabolic hemostasis. Here, we demonstrate that although high-level PA (HPA) indeed induces lipotoxic effects in liver cells, low-level PA (LPA) increases mitochondrial functions and alleviates the injuries induced by HPA or hepatoxic agent carbon tetrachloride (CCl4). LPA treatment in mice enhanced liver mitochondrial activity and reduced CCl4 hepatotoxicity with improved blood levels of aspartate aminotransferase (AST), alanine transaminase (ALT), and mitochondrial aspartate transaminase (m-AST). LPA-mediated mitochondrial homeostasis is regulated by CDK1-mediated SIRT3 phosphorylation, which in turn deacetylates and dimerizes CPT2 to enhance fatty acid oxidation. Thus, an advantageous effect is suggested by the consumption of LPA that augments mitochondrial metabolic homeostasis via CDK1-SIRT3-CPT2 cascade.
Collapse
Affiliation(s)
- Lin Liu
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Institute of Liver Diseases, Shuguan Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bowen Xie
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ming Fan
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Demet Candas-Green
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Joy X Jiang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ryan Wei
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA; Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA
| | - Yiyang Hu
- Institute of Liver Diseases, Shuguan Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
34
|
Ding Y, Mullapudi B, Torres C, Mascariñas E, Mancinelli G, Diaz AM, McKinney R, Barron M, Schultz M, Heiferman M, Wojtanek M, Adrian K, DeCant B, Rao S, Ouellette M, Tsao MS, Bentrem DJ, Grippo PJ. Omega-3 Fatty Acids Prevent Early Pancreatic Carcinogenesis via Repression of the AKT Pathway. Nutrients 2018; 10:nu10091289. [PMID: 30213082 PMCID: PMC6163264 DOI: 10.3390/nu10091289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer remains a daunting foe despite a vast number of accumulating molecular analyses regarding the mutation and expression status of a variety of genes. Indeed, most pancreatic cancer cases uniformly present with a mutation in the KRAS allele leading to enhanced RAS activation. Yet our understanding of the many epigenetic/environmental factors contributing to disease incidence and progression is waning. Epidemiologic data suggest that diet may be a key factor in pancreatic cancer development and potentially a means of chemoprevention at earlier stages. While diets high in ω3 fatty acids are typically associated with tumor suppression, diets high in ω6 fatty acids have been linked to increased tumor development. Thus, to better understand the contribution of these polyunsaturated fatty acids to pancreatic carcinogenesis, we modeled early stage disease by targeting mutant KRAS to the exocrine pancreas and administered diets rich in these fatty acids to assess tumor formation and altered cell-signaling pathways. We discovered that, consistent with previous reports, the ω3-enriched diet led to reduced lesion penetrance via repression of proliferation associated with reduced phosphorylated AKT (pAKT), whereas the ω6-enriched diet accelerated tumor formation. These data provide a plausible mechanism underlying previously observed effects of fatty acids and suggest that administration of ω3 fatty acids can reduce the pro-survival, pro-growth functions of pAKT. Indeed, counseling subjects at risk to increase their intake of foods containing higher amounts of ω3 fatty acids could aid in the prevention of pancreatic cancer.
Collapse
Affiliation(s)
- Yongzeng Ding
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Bhargava Mullapudi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Carolina Torres
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Emman Mascariñas
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Georgina Mancinelli
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Andrew M Diaz
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ronald McKinney
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Morgan Barron
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Michelle Schultz
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Michael Heiferman
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Mireille Wojtanek
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Kevin Adrian
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Brian DeCant
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Sambasiva Rao
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Michel Ouellette
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Ming-Sound Tsao
- Toronto General Hospital, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada.
| | - David J Bentrem
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Paul J Grippo
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|