1
|
Aksakal A, Kerget B, Gülbahar BN, Laloğlu E, Sağlam L. Can apelins guide the diagnosis of coronary artery disease in COPD patients? Heart Lung 2025; 71:90-97. [PMID: 40073766 DOI: 10.1016/j.hrtlng.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/06/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Apelins are adipokines known for their anti-inflammatory, vasodilator, and antiatherosclerotic effects. They are involved in the pathogenesis of chronic diseases like chronic obstructive pulmonary disease (COPD) and coronary artery disease (CAD). OBJECTIVES This study aims to investigate apelin as a potential biomarker for early diagnosis and management of CAD in COPD patients. METHODS The study included 73 stable COPD patients admitted between June 2023 and June 2024 and 35 healthy volunteers matched by age and gender. COPD patients were categorized into two groups: those without CAD (Group 1) and those with CAD (Group 2). Serum levels of apelin 12, 13, 17, and 36 were measured using ELISA. RESULTS Serum apelin levels were significantly lower in COPD patients than in controls (p < 0.001). Among COPD patients, those with CAD showed lower serum apelin levels compared to those without CAD (p = 0.005 for apelin 12, p < 0.001 for apelin 13, 17, and 36). ROC analysis indicated high sensitivity and specificity for apelin 13 and 36 in predicting CAD in COPD patients. Apelin 13 and 36 were positively correlated with ejection fraction (EF) (R = 0.43, p = 0.01; R = 0.4, p = 0.01), and apelin 12 was positively correlated with FEV1 and FVC (R = 0.24, p = 0.04; R = 0.27, p = 0.02). CONCLUSION While CAD worsens the prognosis in COPD patients, it remains underdiagnosed. Serum apelin, especially apelin 13 and 36, may assist in the early diagnosis and management of CAD in COPD patients.
Collapse
Affiliation(s)
- Alperen Aksakal
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey.
| | - Buğra Kerget
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Burcu Nur Gülbahar
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Esra Laloğlu
- Depertment of Biochemistry, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Leyla Sağlam
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| |
Collapse
|
2
|
Xu C, Nie X, Xu R, Zhou L, Wang D. Protective effects of Apelin-13 on nicotine-induced H9c2 cardiomyocyte apoptosis and oxidative stress. Tob Induc Dis 2025; 23:TID-23-33. [PMID: 40104400 PMCID: PMC11915093 DOI: 10.18332/tid/201400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
INTRODUCTION We aimed to explore the role of Apelin-13 in resisting oxidation, inflammation as well as apoptosis and its underlying mechanisms of action using a model of nicotine-induced H9c2 cardiomyocyte injury. METHODS H9c2 cardiomyocytes were randomly divided into control, nicotine, nicotine + Apelin-13, and Apelin-13 groups. Cell counting kit-8 assay was conducted to determine the cell viability. Interleukin (IL)-6, superoxide dismutase, tumor necrosis factor-alpha (TNF-α), glutathione peroxidase (GSH-Px), IL-β, catalase (CAT), IL-8, lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined. A 2',7'-dichlorodihydrofluorescein diacetate assay was conducted to measure the intracellular reactive oxygen species (ROS) level. The morphology of apoptotic cardiomyocytes was observed by 4',6-diamidino-2-phenylindole staining. Western blotting was employed to measure the protein expressions of apoptotic factors B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X (Bax). Apoptosis was quantified using Annexin V/propidium iodide staining. RESULTS Exposure of H9c2 cardiomyocytes to 10 μM nicotine significantly reduced cell viability and increased LDH release, oxidative stress (elevated MDA and ROS levels with decreased superoxide dismutase, GSH-Px, and CAT activities), pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, IL-8), and apoptotic markers (increased Bax with decreased Bcl-2 expression, along with nuclear condensation) (p<0.05). In contrast, treatment with 2 μM Apelin-13 significantly alleviated these deleterious effects, enhancing cell viability, restoring antioxidant enzyme activities, reducing oxidative and inflammatory responses, and inhibiting apoptosis (p<0.05). CONCLUSIONS Nicotine induction increases the oxidative stress and apoptotic capacity of H9c2 cardiomyocytes, but Apelin-13 protects H9c2 cardiomyocytes against nicotine-induced apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Can Xu
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xinyu Nie
- Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ru Xu
- Nanjing University Medical School, Nanjing, People's Republic of China
| | - Luyang Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Dongjin Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Zheng X, Chen D, Wu J, Gao Z, Huang M, Fan C, Chang J, Liu Y, Zeng X, Wang W. Apelin-13 inhibits ischemia-reperfusion mediated podocyte apoptosis by reducing m-TOR phosphorylation to enhance autophagy. FASEB J 2025; 39:e70319. [PMID: 39812591 DOI: 10.1096/fj.202402850r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes. Therefore, it is hypothesized that apelin-13 may protect podocytes from IRI by inhibiting podocyte apoptosis through regulation of podocyte autophagy. Our study demonstrates for that podocytes are also involved in renal ischemia-reperfusion (I/R) injury and shows in detail the morphological and functional changes in podocytes during renal I/R. Because podocytes are terminally differentiated cells whose homeostasis require high levels of autophagy, we investigate the cellular mechanisms underlying the effects of apelin-13 on I/R-mediated podocyte injury in terms of autophagy. In addition, our study demonstrates that apelin-13 ameliorates renal I/R injury in podocyte injury, by increasing podocyte autophagy through inhibition of m-TOR phosphorylation, which in turn inhibits apoptosis.
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Dongshan Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiyue Wu
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Zihao Gao
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Mingcong Huang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Chunmeng Fan
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Jing Chang
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
4
|
Zhao Y, Liang X, Li T, Shao Z, Cao Z, Zeng Y, Yan X, Chen Q, Zhou H, Li W, Cheng G, Jiang Y, Li X, Zhang Y, Hu B. Apelin deficiency exacerbates cardiac injury following infarction by accelerating cardiomyocyte ferroptosis. Free Radic Res 2024; 58:854-867. [PMID: 39731709 DOI: 10.1080/10715762.2024.2443606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024]
Abstract
Apelin is an endogenous ligand for the Apelin receptor and is a critical protective effector in myocardial infarction (MI). Nevertheless, these protective mechanisms are not fully understood. Ferroptosis is the major driving factor of MI. This study aimed to investigate the effects and underlying regulatory mechanisms of Apelin on cardiomyocyte ferroptosis in MI. A model of MI was induced in adult C57BL/6J wild type (WT) and Apelin knockout (Apelin-/-) mice. Cardiac function was examined by echocardiography 4 weeks post-MI. RNA-seq, histochemical analyses, and Western blotting were applied to examine the effects of Apelin knockout on the transcriptome and pathological remodeling following infarction and the molecular mechanisms. Mice neonatal cardiomyocytes (NCMs) were used to establish the serum deprivation/hypoxia (SD/H) model in vitro. Compared with WT mice, Apelin-/- mice exhibited more severe impairment of cardiac function and increased fibrosis following infarction. Transcriptome and biochemical analyses revealed the involvement of ferroptosis in mediating Apelin function in MI. Ferroptosis-related proteins were significantly increased post-MI in Apelin-/- mice whereas p-AMPK was greatly decreased. Apelin treatment activated the AMPK pathway and thereby inhibited ferroptosis of NCMs induced by SD/H in vitro. These protective effects were partially reversed by AMPK inhibitor. Apelin deficiency aggravated cardiac dysfunction following infarction by activating cardiomyocyte ferroptosis via inhibition of the AMPK pathway. This offers a novel potential therapeutic target for MI treatment.
Collapse
Affiliation(s)
- Yuechu Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoting Liang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ting Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhuang Shao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhi Cao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi Zeng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaofei Yan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Zhou
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guifen Cheng
- Department of Cardiac Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yaping Jiang
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuelin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bei Hu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Tomruk C, Şirin Tomruk C, Denizlioğlu B, Olukman M, Ercan G, Duman S, Köse T, Çetin Uyanıkgil EÖ, Uyanıkgil Y, Uysal A. Effects of apelin on neonatal brain neurogenesis in L-NAME-induced maternal preeclampsia. Sci Rep 2024; 14:19347. [PMID: 39164321 PMCID: PMC11335761 DOI: 10.1038/s41598-024-69326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
The aim of this study was to investigate the possible protective effects of apelin, which is known to have antioxidant and anti-inflammatory effects, on changes in neurogenesis in newborns of pregnant rats with L-NAME-induced preeclampsia. Wistar albino female rats were divided into four experimental groups: Control, Apelin, Preeclampsia and Preeclampsia + Apelin. Blood pressure was measured on the 5th, 11th and 17th days of gestation, urine protein was analyzed from urine samples collected for 24 h on the 6th, 12th and 18th days and serum creatinine was analyzed from serum samples. Maternal kidney and placenta tissues were obtained to establish the preeclampsia model, and neonatal brain tissues including the cortex, hippocampus and cerebellum regions were obtained to investigate neurogenesis and examined by histological and immunohistochemical methods. The number of newborns, body weight and brain weight of the newborns were measured. eNOS, IL-10, nNOS and NO levels in the brain analyzed via ELISA. Mean arterial pressure, urine protein and serum creatinine increased in the preeclampsia. Newborn weight decreased in the Preeclampsia group, the values in the Preeclampsia + Apelin group were closer to the Control and Apelin groups. In the Preeclampsia group, edema and dilatation in the proximal and distal tubules of kidneys, perivillous fibrin deposition and increase in syncytial nodules of placenta were observed. VEGF immunoreactivity decreased and iNOS immunoreactivity increased in both kidney and placenta. In neonatal brain tissue examinations, cytotoxic edema accompanied by thinning of cortex, delayed migration and lower cell counts in the hippocampus, and increase in intercellular spaces and EGL thickening in the cerebellum were observed in the preeclampsia. Expression of NeuN, GFAP, MBP, IL-10, eNOS, nNOS and NO levels decreased, whereas expression of Iba-1 increased in the preeclampsia. In the Preeclampsia + Apelin group, these findings were similar to the Control and Apelin groups. Apelin administration was found to be beneficial for preventing the adverse consequences of preeclampsia, but further experimental and clinical studies are needed to better understand these effects.
Collapse
Affiliation(s)
- Canberk Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
- Histology and Embryology, Samsun Training and Research Hospital, İlkadim, Samsun, Türkiye
| | - Cansın Şirin Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Burcu Denizlioğlu
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
- Emergency Medicine, Aydın State Hospital, Efeler, Aydın, Türkiye
| | - Murat Olukman
- Department of Medical Pharmacology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Soner Duman
- Department of Internal Medicine, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Emel Öykü Çetin Uyanıkgil
- Department of Pharmaceutical Technology, Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Bornova, İzmir, Türkiye
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye.
| | - Ayşegül Uysal
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| |
Collapse
|
6
|
Kamińska K, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. Neuroprotective effect of apelin-13 and other apelin forms-a review. Pharmacol Rep 2024; 76:439-451. [PMID: 38568371 DOI: 10.1007/s43440-024-00587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024]
Abstract
Neurodegenerative diseases, which occur when neurons begin to deteriorate, affect millions of people worldwide. These age-related disorders are becoming more common partly because the elderly population has increased in recent years. While no treatments are accessible, every year an increasing number of therapeutic and supportive options become available. Various substances that may have neuroprotective effects are currently being researched. One of them is apelin. This review aims to illustrate the results of research on the neuroprotective effect of apelin amino acid oligopeptide which binds to the apelin receptor and exhibits neuroprotective effects in the central nervous system. The collected data indicate that apelin can protect the central nervous system against injury by several mechanisms. More studies are needed to thoroughly investigate the potential neuroprotective effects of this peptide in neurodegenerative diseases and various other types of brain damage.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Hubert Borzuta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| |
Collapse
|
7
|
Lu H, Chen M, Zhu C. Intranasal Administration of Apelin-13 Ameliorates Cognitive Deficit in Streptozotocin-Induced Alzheimer's Disease Model via Enhancement of Nrf2-HO1 Pathways. Brain Sci 2024; 14:488. [PMID: 38790466 PMCID: PMC11118954 DOI: 10.3390/brainsci14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The discovery of novel diagnostic methods and therapies for Alzheimer's disease (AD) faces significant challenges. Previous research has shed light on the neuroprotective properties of Apelin-13 in neurodegenerative disorders. However, elucidating the mechanism underlying its efficacy in combating AD-related nerve injury is imperative. In this study, we aimed to investigate Apelin-13's mechanism of action in an in vivo model of AD induced by streptozocin (STZ). METHODS We utilized an STZ-induced nerve injury model of AD in mice to investigate the effects of Apelin-13 administration. Apelin-13 was administered intranasally, and cognitive impairment was assessed using standardized behavioral tests, primarily, behavioral assessment, histological analysis, and biochemical assays, in order to evaluate synaptic plasticity and oxidative stress signaling pathways. RESULTS Our findings indicate that intranasal administration of Apelin-13 ameliorated cognitive impairment in the STZ-induced AD model. Furthermore, we observed that this effect was potentially mediated by the enhancement of synaptic plasticity and the attenuation of oxidative stress signaling pathways. CONCLUSIONS The results of this study suggest that intranasal administration of Apelin-13 holds promise as a therapeutic strategy for preventing neurodegenerative diseases such as AD. By improving synaptic plasticity and mitigating oxidative stress, Apelin-13 may offer a novel approach to neuroprotection in AD and related conditions.
Collapse
Affiliation(s)
- Hai Lu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Fudan University, Shanghai 200032, China; (H.L.); (M.C.)
- College of Clinical Medicine, Jining Medical University, Jining 272067, China
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Fudan University, Shanghai 200032, China; (H.L.); (M.C.)
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Fudan University, Shanghai 200032, China; (H.L.); (M.C.)
| |
Collapse
|
8
|
Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res 2023; 119:2683-2696. [PMID: 37956047 PMCID: PMC10757586 DOI: 10.1093/cvr/cvad171] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Pisarenko OI, Studneva IM. Apelin C-Terminal Fragments: Biological Properties and Therapeutic Potential. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1874-1889. [PMID: 38105205 DOI: 10.1134/s0006297923110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
Creation of bioactive molecules for treatment of cardiovascular diseases based on natural peptides is the focus of intensive experimental research. In the recent years, it has been established that C-terminal fragments of apelin, an endogenous ligand of the APJ receptor, reduce metabolic and functional disorders in experimental heart damage. The review presents literature data and generalized results of our own experiments on the effect of apelin-13, [Pyr]apelin-13, apelin-12, and their chemically modified analogues on the heart under normal and pathophysiological conditions in vitro and in vivo. It has been shown that the spectrum of action of apelin peptides on the damaged myocardium includes decrease in the death of cardiomyocytes from necrosis, reduction of damage to cardiomyocyte membranes, improvement in myocardial metabolic state, and decrease in formation of reactive oxygen species and lipid peroxidation products. The mechanisms of protective action of these peptides associated with activation of the APJ receptor and manifestation of antioxidant properties are discussed. The data presented in the review show promise of the molecular design of APJ receptor peptide agonists, which can serve as the basis for the development of cardioprotectors that affect the processes of free radical oxidation and metabolic adaptation.
Collapse
Affiliation(s)
- Oleg I Pisarenko
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia.
| | - Irina M Studneva
- Chazov National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
10
|
Yellon DM, Beikoghli Kalkhoran S, Davidson SM. The RISK pathway leading to mitochondria and cardioprotection: how everything started. Basic Res Cardiol 2023; 118:22. [PMID: 37233787 PMCID: PMC10220132 DOI: 10.1007/s00395-023-00992-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Ischaemic heart disease, which often manifests clinically as myocardial infarction (MI), remains a major cause of mortality worldwide. Despite the development of effective pre-clinical cardioprotective therapies, clinical translation has been disappointing. Nevertheless, the 'reperfusion injury salvage kinase' (RISK) pathway appears to be a promising target for cardioprotection. This pathway is crucial for the induction of cardioprotection by numerous pharmacological and non-pharmacological interventions, such as ischaemic conditioning. An important component of the cardioprotective effects of the RISK pathway involves the prevention of mitochondrial permeability transition pore (MPTP) opening and subsequent cardiac cell death. Here, we will review the historical perspective of the RISK pathway and focus on its interaction with mitochondria in the setting of cardioprotection.
Collapse
Affiliation(s)
- Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| | | | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
11
|
Gong G, Wan W, Liu X, Yin J. Apelin-13, a regulator of autophagy, apoptosis and inflammation in multifaceted bone protection. Int Immunopharmacol 2023; 117:109991. [PMID: 37012875 DOI: 10.1016/j.intimp.2023.109991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Apelin/APJ is widely distributed in various tissues in the body and participates in the regulation of physiological and pathological mechanisms such as autophagy, apoptosis, inflammation, and oxidative stress. Apelin-13 is an adipokine family member with multiple biological roles and has been shown to be involved in the development and progression of bone diseases. In the process of osteoporosis and fracture healing, Apelin-13 plays an osteoprotective role by regulating the autophagy and apoptosis of BMSCs, and promotes the osteogenic differentiation of BMSCs. In addition, Apelin-13 also attenuates the progression of arthritis by regulating the inflammatory response of macrophages. In conclusion, Apelin-13 has an important connection with bone protection, which provides a new strategy for the clinical treatment of bone-related diseases.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing 211002, China
| | - Xinhui Liu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.
| |
Collapse
|
12
|
Özsoyler İ, Uçak HA, Badak TO, Çakallıoğlu A, Bayraktar M, Arslan AS. The impact of the apelinergic system in coronary collateral formation. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2023; 31:192-198. [PMID: 37484641 PMCID: PMC10357849 DOI: 10.5606/tgkdc.dergisi.2023.24422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 07/25/2023]
Abstract
Background This study aims to examine the relationship between the development of coronary collateral circulation and serum elabela levels. Methods Between January 2020 and December 2021, a total of 50 control individuals (29 males, 21 females; mean age: 63.2±10.0 years; range, 52 to 73 years) with no significant coronary artery disease as confirmed by angiography (Group 1) and 100 patients (55 males, 45 females; mean age: 66.6±9.6 years; range, 56 to 75 years) with coronary artery disease were included. The patients were further divided into two equal groups according to the Rentrop classification as poor (Group 2) and good coronary collateral circulation (Group 3). All groups were compared in terms of several parameters, particularly serum elabela levels. Results Serum elabela levels were found to be statistically higher in the group with good collateral than the other groups (p<0.05). Low serum elabela levels increased the risk of developing weak collaterals by 2.43 times. Conclusion The elabela protein is directly related to good collateral development and can be considered a potential agent for treatment.
Collapse
Affiliation(s)
- İbrahim Özsoyler
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| | - Haci Ali Uçak
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| | - Tolga Onur Badak
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| | - Ahmet Çakallıoğlu
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| | - Muhammet Bayraktar
- Department of Public Health, Niğde Ömer Halisdemir University Faculty of Medicine, Niğde, Türkiye
| | - Ahmet Süha Arslan
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| |
Collapse
|
13
|
Popov SV, Maslov LN, Mukhomedzyanov AV, Kurbatov BK, Gorbunov AS, Kilin M, Azev VN, Khlestkina MS, Sufianova GZ. Apelin Is a Prototype of Novel Drugs for the Treatment of Acute Myocardial Infarction and Adverse Myocardial Remodeling. Pharmaceutics 2023; 15:pharmaceutics15031029. [PMID: 36986889 PMCID: PMC10056827 DOI: 10.3390/pharmaceutics15031029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is 5-6%. Consequently, it is necessary to develop fundamentally novel drugs capable of reducing mortality in patients with acute myocardial infarction. Apelins could be the prototype for such drugs. Chronic administration of apelins mitigates adverse myocardial remodeling in animals with myocardial infarction or pressure overload. The cardioprotective effect of apelins is accompanied by blockage of the MPT pore, GSK-3β, and the activation of PI3-kinase, Akt, ERK1/2, NO-synthase, superoxide dismutase, glutathione peroxidase, matrix metalloproteinase, the epidermal growth factor receptor, Src kinase, the mitoKATP channel, guanylyl cyclase, phospholipase C, protein kinase C, the Na+/H+ exchanger, and the Na+/Ca2+ exchanger. The cardioprotective effect of apelins is associated with the inhibition of apoptosis and ferroptosis. Apelins stimulate the autophagy of cardiomyocytes. Synthetic apelin analogues are prospective compounds for the development of novel cardioprotective drugs.
Collapse
Affiliation(s)
- Sergey V Popov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Leonid N Maslov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr V Mukhomedzyanov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Boris K Kurbatov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr S Gorbunov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Michail Kilin
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Viacheslav N Azev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria S Khlestkina
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| |
Collapse
|
14
|
Fibbi B, Marroncini G, Naldi L, Peri A. The Yin and Yang Effect of the Apelinergic System in Oxidative Stress. Int J Mol Sci 2023; 24:4745. [PMID: 36902176 PMCID: PMC10003082 DOI: 10.3390/ijms24054745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer's and Parkinson's diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile.
Collapse
Affiliation(s)
- Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Giada Marroncini
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
15
|
Pisarenko OI, Studneva IM. Modified APJ Receptor Peptide Ligands as Postconditioning Drugs in Myocardial Ischaemia/Reperfusion Injury. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Ramírez-Zamudio GD, Ganga MJG, Pereira GL, Nociti RP, Chiaratti MR, Cooke RF, Chardulo LAL, Baldassini WA, Machado-Neto OR, Curi RA. Effect of Cow-Calf Supplementation on Gene Expression, Processes, and Pathways Related to Adipogenesis and Lipogenesis in Longissimus thoracis Muscle of F1 Angus × Nellore Cattle at Weaning. Metabolites 2023; 13:metabo13020160. [PMID: 36837780 PMCID: PMC9962728 DOI: 10.3390/metabo13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to identify differentially expressed genes, biological processes, and metabolic pathways related to adipogenesis and lipogenesis in calves receiving different diets during the cow-calf phase. Forty-eight uncastrated F1 Angus × Nellore males were randomly assigned to two treatments from thirty days of age to weaning: no creep feeding (G1) or creep feeding (G2). The creep feed offered contained ground corn (44.8%), soybean meal (40.4%), and mineral core (14.8%), with 22% crude protein and 65% total digestible nutrients in dry matter. After weaning, the animals were feedlot finished for 180 days and fed a single diet containing 12.6% forage and 87.4% corn-based concentrate. Longissimus thoracis muscle samples were collected by biopsy at weaning for transcriptome analysis and at slaughter for the measurement of intramuscular fat content (IMF) and marbling score (MS). Animals of G2 had 17.2% and 14.0% higher IMF and MS, respectively (p < 0.05). We identified 947 differentially expressed genes (log2 fold change 0.5, FDR 5%); of these, 504 were upregulated and 443 were downregulated in G2. Part of the genes upregulated in G2 were related to PPAR signaling (PPARA, SLC27A1, FABP3, and DBI), unsaturated fatty acid synthesis (FADS1, FADS2, SCD, and SCD5), and fatty acid metabolism (FASN, FADS1, FADS2, SCD, and SCD5). Regarding biological processes, the genes upregulated in G2 were related to cholesterol biosynthesis (EBP, CYP51A1, DHCR24, and LSS), unsaturated fatty acid biosynthesis (FADS2, SCD, SCD5, and FADS1), and insulin sensitivity (INSIG1 and LPIN2). Cow-calf supplementation G2 positively affected energy metabolism and lipid biosynthesis, and thus favored the deposition of marbling fat during the postweaning period, which was shown here in an unprecedented way, by analyzing the transcriptome, genes, pathways, and enriched processes due to the use of creep feeding.
Collapse
Affiliation(s)
| | - Maria Júlia Generoso Ganga
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Guilherme Luis Pereira
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Ricardo Perecin Nociti
- College of Animal Science and Food Engineering, São Paulo University (USP), Pirassununga 13635-900, SP, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCAR), São Carlos 13565-905, SP, Brazil
| | | | - Luis Artur Loyola Chardulo
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Welder Angelo Baldassini
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Otávio Rodrigues Machado-Neto
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Rogério Abdallah Curi
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
- Correspondence:
| |
Collapse
|
17
|
Metagenomic features of Tibetan kefir grains and its metabolomics analysis during fermentation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
19
|
Sumbul HE, Gulumsek E, Avci BS, Ay N, Okyay RA, Sahin AR, Gold J, Avci A, Koc M. Serum Elabela level is significantly increased in patients with acromegaly. Ir J Med Sci 2022; 192:665-670. [PMID: 35665895 DOI: 10.1007/s11845-022-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although the bioactive peptides associated with the apelinergic system are known to be associated with heart failure and ischemic heart disease, there are no data on their association with acromegaly. AIM We aimed to investigate the change in serum Elabela levels, a novel peptide of the apelinergic system, in patients with acromegaly. METHODS Our study included 30 treatment naive patients who were recently diagnosed with acromegaly, and 50 age-and-sex-matched healthy controls. In addition to routine history, physical examination and laboratory examinations, serum Elabela level was measured. Participants were divided into two groups as individuals with and without acromegaly and compared to each other. RESULTS Diastolic blood pressure (DBP) and systolic blood pressure (SBP) were found to be higher in patients with acromegaly. Serum glucose, Hs-CRP, NT-proBNP, insulin-like growth factor-1, growth hormone and serum Elabela levels were higher in patients with acromegaly (p < 0.05 for each). Left ventricular ejection fraction (LV-EF) was found to be lower in patients with acromegaly than the patients in healthy control group (p < 0.05). In multivariate analysis; age, systolic blood pressure, NT-proBNP, Insulin-like growth factor 1 and growth hormone levels were found to be very closely and positively related to serum Elabela level (p < 0.05 for each). CONCLUSIONS Serum Elabela level can be used as an early and objective indicator of early cardiovascular involvement in patients with acromegaly. Further research is needed to clarify the role of serum Elabela levels on cardiovascular system in acromegaly patients.
Collapse
Affiliation(s)
- Hilmi Erdem Sumbul
- Department of Internal Medicine, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Erdinc Gulumsek
- Department of Gastroenterology, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Begum Seyda Avci
- Department of Internal Medicine, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Nurettin Ay
- Department of Internal Medicine, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Ramazan Azim Okyay
- Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Ahmet Riza Sahin
- Department of Infectious Diseases and Clinical Microbiology, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | | | - Akkan Avci
- Department of Emergency Medicine, Health Science University, Adana City Research and Training Hospital, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, 01060, Adana, Turkey.
| | - Mevlut Koc
- Department of Cardiology, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| |
Collapse
|
20
|
Fernandez Rico C, Konate K, Josse E, Nargeot J, Barrère-Lemaire S, Boisguérin P. Therapeutic Peptides to Treat Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med 2022; 9:792885. [PMID: 35252383 PMCID: PMC8891520 DOI: 10.3389/fcvm.2022.792885] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) including acute myocardial infarction (AMI) rank first in worldwide mortality and according to the World Health Organization (WHO), they will stay at this rank until 2030. Prompt revascularization of the occluded artery to reperfuse the myocardium is the only recommended treatment (by angioplasty or thrombolysis) to decrease infarct size (IS). However, despite beneficial effects on ischemic lesions, reperfusion leads to ischemia-reperfusion (IR) injury related mainly to apoptosis. Improvement of revascularization techniques and patient care has decreased myocardial infarction (MI) mortality however heart failure (HF) morbidity is increasing, contributing to the cost-intense worldwide HF epidemic. Currently, there is no treatment for reperfusion injury despite promising results in animal models. There is now an obvious need to develop new cardioprotective strategies to decrease morbidity/mortality of CVD, which is increasing due to the aging of the population and the rising prevalence rates of diabetes and obesity. In this review, we will summarize the different therapeutic peptides developed or used focused on the treatment of myocardial IR injury (MIRI). Therapeutic peptides will be presented depending on their interacting mechanisms (apoptosis, necroptosis, and inflammation) reported as playing an important role in reperfusion injury following myocardial ischemia. The search and development of therapeutic peptides have become very active, with increasing numbers of candidates entering clinical trials. Their optimization and their potential application in the treatment of patients with AMI will be discussed.
Collapse
Affiliation(s)
- Carlota Fernandez Rico
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, Valbonne, France
| | - Karidia Konate
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emilie Josse
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, Valbonne, France
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Laboratory of Excellence Ion Channel Science and Therapeutics, Valbonne, France
| | - Prisca Boisguérin
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
21
|
Gulumsek E, Sumbul HE, Yesildal F, Kizildag C, Ozturk DD, Avci BS, Aktas B, Avci A, Bayrak E, Tas A, Kara B. Serum Elabela level is related to endoscopic activity index in patients with active ulcerative colitis. Ir J Med Sci 2022; 191:1171-1176. [PMID: 35000117 DOI: 10.1007/s11845-021-02914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND In ulcerative colitis patients, Elabela levels and the relation of Elabela with laboratory parameters is unknown. AIM The purpose of this study was to investigate the serum Elabela levels in UC patients and its relationship with other clinical and laboratory findings. METHODS Forty-three patients with UC and 40 healthy controls (group I) similar in age and gender were included in the study. Routine patient history, physical examination, and laboratory tests were followed by analysis of serum Elabela levels. Endoscopic activity index (EAI) of patients with UC was calculated. There were two groups of patients: those in remission (group II) and with active disease (group III). RESULTS Groups I, II, and III had 40, 22, and 21 participants, respectively. Serum Elabela levels were found to be 3.32 ± 1.25 ng/mL in group I, 3.38 ± 0.88 ng/mL in group II, and 5.48 ± 1.61 ng/mL in group III. Comparing the serum Elabela levels, a statistically significant difference was found between three groups (p < 0.001). Serum Elabela level showed a significant and positive correlation with EAI, leukocyte count, and hs-CRP, while a negative correlation was found with hemoglobin levels in univariate analysis (p < 0.001, for each). In linear regression analysis, these parameters were found to be associated with EAI and hs-CRP (p = 0.049, β = 0.337, and p = 0.015, β = 0.396, respectively). CONCLUSION Elabela concentrations in patients with active UC was significantly higher and was associated with EAI and hs-CRP. Blood Elabela concentrations can be useful in the diagnosis and follow-up of patients with active UC.
Collapse
Affiliation(s)
- Erdinc Gulumsek
- Department of Gastroenterology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Hilmi Erdem Sumbul
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey.
| | - Fatih Yesildal
- Department of Medical Biochemistry, Suleyman Yalcin City Hospital, Goztepe Prof. Dr, Istanbul, Turkey
| | - Cisem Kizildag
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey
| | - Dilan Damla Ozturk
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey
| | - Begum Seyda Avci
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey
| | - Beytullah Aktas
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey
| | - Akkan Avci
- Department of Emergency Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Edip Bayrak
- Department of Infectious Disease, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Adnan Tas
- Department of Gastroenterology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Banu Kara
- Department of Gastroenterology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| |
Collapse
|
22
|
Lin R, Rahtu-Korpela L, Szabo Z, Kemppi A, Skarp S, Kiviniemi AM, Lepojärvi ES, Halmetoja E, Kilpiö T, Porvari K, Pakanen L, Tolva J, Paakkanen R, Segersvärd H, Tikkanen I, Laine M, Sinisalo J, Lakkisto P, Huikuri H, Magga J, Junttila J, Kerkelä R. MiR-185-5p regulates the development of myocardial fibrosis. J Mol Cell Cardiol 2021; 165:130-140. [PMID: 34973276 DOI: 10.1016/j.yjmcc.2021.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cardiac fibrosis stiffens the ventricular wall, predisposes to cardiac arrhythmias and contributes to the development of heart failure. In the present study, our aim was to identify novel miRNAs that regulate the development of cardiac fibrosis and could serve as potential therapeutic targets for myocardial fibrosis. METHODS AND RESULTS Analysis for cardiac samples from sudden cardiac death victims with extensive myocardial fibrosis as the primary cause of death identified dysregulation of miR-185-5p. Analysis of resident cardiac cells from mice subjected to experimental cardiac fibrosis model showed induction of miR-185-5p expression specifically in cardiac fibroblasts. In vitro, augmenting miR-185-5p induced collagen production and profibrotic activation in cardiac fibroblasts, whereas inhibition of miR-185-5p attenuated collagen production. In vivo, targeting miR-185-5p in mice abolished pressure overload induced cardiac interstitial fibrosis. Mechanistically, miR-185-5p targets apelin receptor and inhibits the anti-fibrotic effects of apelin. Finally, analysis of left ventricular tissue from patients with severe cardiomyopathy showed an increase in miR-185-5p expression together with pro-fibrotic TGF-β1 and collagen I. CONCLUSIONS Our data show that miR-185-5p targets apelin receptor and promotes myocardial fibrosis.
Collapse
Affiliation(s)
- Ruizhu Lin
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Lea Rahtu-Korpela
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland; Division of Cardiology, Research Unit of Internal Medicine, University of Oulu and University Hospital of Oulu, Oulu, Finland
| | - Anna Kemppi
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Sini Skarp
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Antti M Kiviniemi
- Division of Cardiology, Research Unit of Internal Medicine, University of Oulu and University Hospital of Oulu, Oulu, Finland
| | - E Samuli Lepojärvi
- Division of Cardiology, Research Unit of Internal Medicine, University of Oulu and University Hospital of Oulu, Oulu, Finland
| | - Eveliina Halmetoja
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Teemu Kilpiö
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Katja Porvari
- Department of Forensic Medicine, Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Lasse Pakanen
- Department of Forensic Medicine, Research Unit of Internal Medicine, University of Oulu, Oulu, Finland; Forensic Medicine Unit, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Johanna Tolva
- Transplantation laboratory, Department of Pathology, University of Helsinki, Finland
| | - Riitta Paakkanen
- Department of Cardiology, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Heli Segersvärd
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Helsinki, Finland
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Laine
- Department of Cardiology, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Juha Sinisalo
- Department of Cardiology, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Helsinki, Finland; Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Finland
| | - Heikki Huikuri
- Division of Cardiology, Research Unit of Internal Medicine, University of Oulu and University Hospital of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Juhani Junttila
- Division of Cardiology, Research Unit of Internal Medicine, University of Oulu and University Hospital of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
23
|
Yavuz F, Kaplan M. Association Between Serum Elabela Levels and Chronic Totally Occlusion in Patients with Stable Angina Pectoris. Arq Bras Cardiol 2021; 117:503-510. [PMID: 34076064 PMCID: PMC8462951 DOI: 10.36660/abc.20200492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The beneficial effects of Elabela on the cardiovascular system have been shown in studies. OBJECTIVE To compare serum Elabela levels of chronic total occlusion (CTO) patients with control patients with normal coronary arteries, and to investigate whether there is a correlation with collateral development. METHODS The study was planned cross-sectionally and prospectively. Fifty patients (28.0% female, mean age 61.6±7.3years) with CTO in at least one coronary vessel and 50 patients (38% female, mean age 60,7±6.38 years) with normal coronary arteries were included in the study. Patients in the CTO group were divided into two groups as Rentrop 0-1, those with weak collateral development, and Rentrop 2-3 with good collateral development. In addition to the age, sex, demographic characteristics and routine laboratory tests of the patients, Elabela levels were measured. RESULTS Demographic characteristics and laboratory values were similar in both groups. While the mean NT-proBNP and troponin were higher in the CTO group, the Elabela mean was lower (p <0.05 for all). In the multivariate regression analysis, NT-proBNP and Elabela levels were found to be independent predictors for CTO. Also, Elabela level was found to be statistically higher in Rentrop class 2-3 patients compared to Rentrop class 0-1 patients (p<0.05). CONCLUSION In our study, we showed that the average Elabela level was low in CTO patients compared to normal patients. In addition, we found the level of Elabela to be lower in patients with weak collateral development compared to patients with good collateral development. (Arq Bras Cardiol. 2021; [online].ahead print, PP.0-0).
Collapse
Affiliation(s)
- Fethi Yavuz
- Departamento de Cardiologia, Adıyaman University Training and Research Hospital, Adıyaman - Turquia
| | - Mehmet Kaplan
- Gaziantep University Medicine Faculty, Departamento de Cardiologia, Gaziantep - Turquia
| |
Collapse
|
24
|
Sturny M, Anguenot L, Costa-Fraga FP, Bragina ME, Lima AM, da Silva RF, Fraga-Silva RA, Stergiopulos N. Apelin-13 Protects Corpus Cavernosum Against Fibrosis Induced by High-Fat Diet in an MMP-Dependent Mechanism. J Sex Med 2021; 18:875-888. [PMID: 33863684 DOI: 10.1016/j.jsxm.2021.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND An increased fibrosis of the corpora cavernosa is a prevalent process that underlies most cases of erectile dysfunction. Apelin, an endogenous circulating peptide, has been documented as an important effector on cardiovascular homeostasis, controlling vascular function and reducing fibrosis in multiple pathological conditions. Recently, initial studies have shown that Apelin, acting through the APJ receptor, also modulates penile erection, however, the role of this system on penile structure and intracorporal collagen remodeling has not been investigated yet. AIMS Here we sought to investigate the effect of chronic Apelin treatment on the corpus cavernosum structure of hyperchOlesterolemic mice. METHODS Apolipoprotein gene-deleted (ApoE-/-) mice were fed with a Western diet for 11 weeks and received Apelin-13 (2 mg/kg/day) or vehicle during the last 3 weeks. Penile samples were obtained for histological and biochemical analyses to assess the intracorporal collagen content and key proteins expression. Furthermore, the effect of Apelin-13 was evaluated in cultured NIH3T3 mouse fibroblasts stimulated with TGF-β. OUTCOME Local expression of Apelin-13 in mouse corpus cavernosum and its protective effect against fibrosis. RESULTS Apelin and APJ receptor were expressed (gene and protein) within the corpus cavernosum of ApoE-/- mice, indicating a local modulation of the Apelin system. Interestingly, 3 weeks of Apelin-13 treatment strongly reduced intracavernosal collagen content. In addition, Apelin-13 enhanced total matrix metalloproteinase (MMP) activity in the mice penis, which was associated with an increased protein expression of MMP-1, MMP-3, MMP-8, and MMP-9, while tissue inhibitor of metalloproteinase were unaltered. These beneficial actions were not associated with changes in nNOS or eNOS protein expression, intracavernosal reactive oxygen species content, or atherosclerotic plaque deposition. Additionally, in cultured fibroblast, Apelin-13 inhibited TGF-β-induced fibroblast to myofibroblast differentiation and collagen production, possibly through the activation of ERK1/2 kinase. CLINICAL TRANSLATION These results point out Apelin/APJ system as a potential target to treat intracavernosal fibrosis-related disorders. STRENGTH & LIMITATIONS These results provide the first evidence of the Apelin system's positive role on erectile tissue structure/remodeling. Nevertheless, additional functional study addressing erectile response would bring extended validation regarding the relevance of such effect. CONCLUSION These results suggest a local modulation of the Apelin system within the corpus cavernosum. Remarkably, Apelin-13 reduced intracavernosal fibrosis in hypercholesterolemic mice by: (i) enhancing MMPs expression and activity; and (ii) inhibiting fibroblast differentiation into myofibroblast. Altogether, these results suggest an essential protective role of Apelin, indicating Apelin/APJ system as a promising candidate for the development of fibrosis-associated erectile dysfunction treatments. Sturny M, Anguenot L Costa-Fraga FP, et al. Apelin-13 Protects Corpus Cavernosum Against Fibrosis Induced by High-Fat Diet in an MMP-Dependent Mechanism. J Sex Med 2021;18:875-888.
Collapse
Affiliation(s)
- Mikael Sturny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Léa Anguenot
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fabiana P Costa-Fraga
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maiia E Bragina
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Augusto Martins Lima
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rafaela F da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo A Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Guzelburc O, Demirtunc R, Altay S, Kemaloglu Oz T, Tayyareci G. Plasma apelin level in acute myocardial infarction and its relation with prognosis: A prospective study. JRSM Cardiovasc Dis 2021; 10:2048004020963970. [PMID: 33643639 PMCID: PMC7894579 DOI: 10.1177/2048004020963970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
Objective Apelin is a novel adipocytokine with a significant role in ischemia/reperfusion injury that is synthesized and secreted in myocardial cells and coronary endothelium. There is debate on its value for the diagnosis and prognosis of myocardial infarction. We aimed to investigate plasma apelin level in patients with acute ST segment elevation (STEMI) and non-ST segment elevation (NSTEMI) myocardial infarction and its relationship with left ventricular function and prognostic parameters. Methods Forty-one patients with STEMI, 21 patients with NSTEMI and 10 patients as control group with normal coronary angiograms were included. Plasma apelin level at presentation was investigated regarding its relationship with other diagnostic and prognostic parameters. Results Apelin level was significantly higher in acute myocardial infarction (0.31 ± 0.56 ng/mL) compared to control group (0.08 ± 0.05 ng/mL) (p < 0.01). Likewise, it was found to be significantly higher in STEMI group (0.45 ± 0.73 ng/mL) compared to control group (0.08 ± 0.05 ng/mL) (p < 0.01). Although apelin was higher in NSTEMI group (0.13 ± 0.10 ng/mL) compared to control group (0.08 ± 0.05 ng/mL), this difference was not statistically significant (p > 0.05). No correlation was found between apelin and NT-proBNP, hsCRP, troponin, ejection fraction (EF) and Killip score (p > 0.05). A positive correlation was found between apelin and TIMI, GRACE and Gensini scores (p < 0.05). Only GRACE score was found to be correlated with apelin in MI groups. Conclusion Apelin level was found to be high in acute myocardial infarction. With its inotropic and vasodilator effects, apelin was thought to have a protective role against severe ischemia.
Collapse
Affiliation(s)
- Ozge Guzelburc
- Department of Cardiology, University of Health Sciences Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Refik Demirtunc
- Department of Internal Medicine, University of Health Sciences Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Servet Altay
- Department of Cardiology, Trakya University Hospital, Erdirne, Turkey
| | - Tugba Kemaloglu Oz
- Department of Cardiology, Istinye University Ulus Liv Hospital, Istanbul, Turkey
| | - Gulsah Tayyareci
- Department of Cardiology, University of Health Sciences Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
26
|
Vural E, Hazar L, Karakukçu C, Arslan ME, Sirem MR, Sirakaya E, Ozsaygılı C, Çiçek A. Apelin-13: A Promising Biomarker for Age-Related Macular Degeneration? Ophthalmologica 2020; 244:102-109. [PMID: 33197910 DOI: 10.1159/000513050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the value of serum apelin-13 levels in patients with age-related macular degeneration (AMD). METHODS Patients with dry-type AMD, patients with treatment-naïve neovascular-type AMD, and healthy controls were included in this study. Diagnoses were confirmed on detailed fundus examination, optical coherence tomography (OCT), and fundus fluorescein angiography (FFA). Central foveal thickness and subfoveal choroidal thickness were evaluated. Both serum apelin-13 and vascular endothelial growth factor (VEGF) levels were measured by a competitive enzyme-linked immunosorbent assay (ELISA) principle. RESULTS A total of 84 subjects, i.e., 24 in the dry-type AMD group (group 1), 27 in the neovascular-type AMD group (group 2), and 33 in the control group (group 3) were included in the study. Mean best-corrected visual acuity (BCVA) was 76 ± 4.5, 48.4 ± 16.3, and 83.4 ± 3.09 ETDRS letters in group 1, 2, and 3, respectively. The level of serum VEGF was 44.11 ± 26.14, 56.53 ± 53.77, and 61.47 ± 41.62 pg/mL in groups 1, 2, and 3, respectively (p = 0.553, p = 0.286, and p = 0.896, respectively). The level of serum apelin-13 was 586.47 ± 167.56, 622.18 ± 324.52, and 379.31 ± 171.96 pg/mL in groups 1, 2, and 3, respectively (p = 0.847, p = 0.04, and p ≤ 0.001, respectively). There was a negative correlation between the level of serum apelin and visual acuity (VA) and choroidal thickness. CONCLUSION Serum apelin-13 levels were higher in both dry-type and neovascular-type AMD patients than in controls. Further studies demonstrating the relationship of the level of serum apelin-13 and AMD are needed.
Collapse
Affiliation(s)
- Esra Vural
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey,
| | - Leyla Hazar
- Clinic of Ophthalmology, Kızıltepe State Hospital, Mardin, Turkey
| | - Cigdem Karakukçu
- Department of Biochemistry, Kayseri City Hospital, Kayseri, Turkey
| | - M Erkam Arslan
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| | - M Raşit Sirem
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| | - Ender Sirakaya
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| | - Cemal Ozsaygılı
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| | - Ayşe Çiçek
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| |
Collapse
|
27
|
Esmaeili-Mahani S, Haghparast E, Nezhadi A, Abbasnejad M, Sheibani V. Apelin-13 prevents hippocampal synaptic plasticity impairment in Parkinsonism rats. J Chem Neuroanat 2020; 111:101884. [PMID: 33161074 DOI: 10.1016/j.jchemneu.2020.101884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
The hippocampus is involved in learning and memory for novel information and implicated within the cognitive dysfunction in Parkinson's disease. Long-term potentiation (LTP), the most type of synaptic plasticity, is the base of learning and memory. We evaluated the consequences of apelin-13 on early long-term potentiation (E-LTP) in the Cornu Ammonis (CA1) area of the hippocampus and synaptic hippocampal protein expression of postsynaptic density protein 95 (PSD-95) and dopaminergic receptor (DR1) of the rat model of Parkinsonism. 6-hydroxydopamine (6-OHDA) was infused within the right substantia nigra. Intra-nigral transfusion of apelin-13 (1, 2, and 3 μg/rat) was performed one week after the 6-OHDA injection. Using hematoxylin and eosin staining, the pathological changes in the substantia nigra neurons were examined. In Vivo field excitatory postsynaptic potentials were recorded in the CA1 region one month after the apelin injection. The PSD-95 and DR1 protein levels were assessed by western blotting. The mRNA expression level of DR1 was also measured by real-time PCR. 6-OHDA meaningfully disrupted short-term memory and LTP, and altered the expression levels of the above-mentioned proteins in the hippocampus. The results suggest that apelin-13 (especially at 3 μg/rat) significantly ameliorates the E-LTP impairment and attenuates the changes in hippocampal synaptic proteins in 6-OHDA-treated rats.
Collapse
Affiliation(s)
- Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Haghparast
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Akram Nezhadi
- Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
28
|
Acele A, Bulut A, Donmez Y, Koc M. Serum Elabela Level Significantly Increased in Patients with Complete Heart Block. Braz J Cardiovasc Surg 2020; 35:683-688. [PMID: 33118733 PMCID: PMC7598968 DOI: 10.21470/1678-9741-2019-0461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objective To investigate the change in serum Elabela level, a new apelinergic system peptide, in patients with complete atrioventricular (AV) block and healthy controls. Methods The study included 50 patients with planned cardiac pacemaker (PM) implantation due to complete AV block and 50 healthy controls with similar age and gender. Elabela level was measured in addition to routine anamnesis, physical examination, and laboratory tests. Patients were divided into two groups, with and without AV block, and then compared. Results In patients with AV block, serum Elabela level was significantly higher and heart rate and cardiac output were significantly lower than in healthy controls. Serum Elabela level was found to be positively correlated with high-sensitive C-reactive protein and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, but negatively correlated with heart rate, high-density lipoprotein cholesterol, and cardiac output. In linear regression analysis, it was found that these parameters were only closely related to heart rate and NT-proBNP. Serum Elabela level was determined in the patients with AV block independently; an Elabela level > 9.5 ng/ml determined the risk of complete AV-block with 90.2% sensitivity and 88.0% specificity. Conclusion In patients with complete AV block, the serum Elabela level increases significantly before the PM implantation procedure. According to the results of our study, it was concluded that serum Elabela level could be used in the early determination of patients with complete AV block.
Collapse
Affiliation(s)
- Armağan Acele
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Atilla Bulut
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Yurdaer Donmez
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Mevlut Koc
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| |
Collapse
|
29
|
Suriyaprom K, Pheungruang B, Tungtrongchitr R, Sroijit OUY. Relationships of apelin concentration and APLN T-1860C polymorphism with obesity in Thai children. BMC Pediatr 2020; 20:455. [PMID: 32998691 PMCID: PMC7526109 DOI: 10.1186/s12887-020-02350-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 01/22/2023] Open
Abstract
Background Childhood obesity represents a serious global health crisis. Apelin and its receptor system are widely distributed throughout the central nervous system and have been demonstrated to serve a role modulating feeding behaviour and energy homeostasis. The purposes of this study were to examine apelin concentrations and anthropometric-cardiometabolic parameters in obese and non-obese children and to identify associations of APLN T-1860C and APLNR G212A polymorphisms with apelin levels and obesity among Thai children. Methods This case-control study included an analysis of 325 Thai children: 198 children with obesity and 127 healthy non-obese children. Anthropometric-cardiometabolic variables and apelin concentration were measured. Genotyping of APLN T-1860C and APLNR G212A was performed using the polymerase chain reaction-restriction fragment length polymorphism technique. Results The obese group had significantly lower apelin and HDL-C levels but significantly higher triglycerides and glucose (TyG) index values, TG/HDL-C ratio and TC/HDL-C ratio than the non-obese group (p < 0.01). Apelin level was negatively correlated with body size phenotypes and cardiometabolic parameters (p < 0.05). The APLN T-1860C polymorphism (OR = 4.39, 95% CI = 1.25–15.28) and apelin concentration (OR = 0.45, 95% CI = 0.23–0.92) were significantly associated with obesity among female children (p < 0.05) only, after adjusting for potential covariates. However, the APLNR G212A polymorphism showed no significant relationship with apelin concentration or obesity. Conclusion These findings in Thai children suggest that apelin concentrations are related to obesity and cardiometabolic parameters. Furthermore, the APLN T-1860C polymorphism may influence susceptibility to obesity among female children.
Collapse
Affiliation(s)
- Kanjana Suriyaprom
- Faculty of Medical Technology, Rangsit University, Paholyothin Road, Mueang Pathum Thani district, Pathum Thani, 12000, Thailand.
| | - Banchamaphon Pheungruang
- Department of Tropical Nutrition & Food Science, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Rungsunn Tungtrongchitr
- Department of Tropical Nutrition & Food Science, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Orn-Uma Y Sroijit
- Faculty of Medical Technology, Rangsit University, Paholyothin Road, Mueang Pathum Thani district, Pathum Thani, 12000, Thailand
| |
Collapse
|
30
|
Bellis A, Mauro C, Barbato E, Di Gioia G, Sorriento D, Trimarco B, Morisco C. The Rationale of Neprilysin Inhibition in Prevention of Myocardial Ischemia-Reperfusion Injury during ST-Elevation Myocardial Infarction. Cells 2020; 9:cells9092134. [PMID: 32967374 PMCID: PMC7565478 DOI: 10.3390/cells9092134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
During the last three decades, timely myocardial reperfusion using either thrombolytic therapy or primary percutaneous intervention (pPCI) has allowed amazing improvements in outcomes with a more than halving in 1-year ST-elevation myocardial infarction (STEMI) mortality. However, mortality and left ventricle (LV) remodeling remain substantial in these patients. As such, novel therapeutic interventions are required to reduce myocardial infarction size, preserve LV systolic function, and improve survival in reperfused-STEMI patients. Myocardial ischemia-reperfusion injury (MIRI) prevention represents the main goal to reach in order to reduce STEMI mortality. There is currently no effective therapy for MIRI prevention in STEMI patients. A significant reason for the weak and inconsistent results obtained in this field may be the presence of multiple, partially redundant, mechanisms of cell death during ischemia-reperfusion, whose relative importance may depend on the conditions. Therefore, it is always more recognized that it is important to consider a "multi-targeted cardioprotective therapy", defined as an additive or synergistic cardioprotective agents or interventions directed to distinct targets with different timing of application (before, during, or after pPCI). Given that some neprilysin (NEP) substrates (natriuretic peptides, angiotensin II, bradykinin, apelins, substance P, and adrenomedullin) exert a cardioprotective effect against ischemia-reperfusion injury, it is conceivable that antagonism of proteolytic activity by this enzyme may be considered in a multi-targeted strategy for MIRI prevention. In this review, by starting from main pathophysiological mechanisms promoting MIRI, we discuss cardioprotective effects of NEP substrates and the potential benefit of NEP pharmacological inhibition in MIRI prevention.
Collapse
Affiliation(s)
- Alessandro Bellis
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Ciro Mauro
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Emanuele Barbato
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Giuseppe Di Gioia
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Cardiac Catheterization Laboratory, Montevergine Clinic, 83013 Mercogliano (AV), Italy
| | - Daniela Sorriento
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Bruno Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Correspondence: ; Tel.: +39-081-746-2253; Fax: +39-081-746-2256
| |
Collapse
|
31
|
Penna C, Alloatti G, Crisafulli A. Mechanisms Involved in Cardioprotection Induced by Physical Exercise. Antioxid Redox Signal 2020; 32:1115-1134. [PMID: 31892282 DOI: 10.1089/ars.2019.8009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Regular exercise training can reduce myocardial damage caused by acute ischemia/reperfusion (I/R). Exercise can reproduce the phenomenon of ischemic preconditioning, due to the capacity of brief periods of ischemia to reduce myocardial damage caused by acute I/R. In addition, exercise may also activate the multiple kinase cascade responsible for cardioprotection even in the absence of ischemia. Recent Advances: Animal and human studies highlighted the fact that, besides to reduce risk factors related to cardiovascular disease, the beneficial effects of exercise are also due to its ability to induce conditioning of the heart. Exercise behaves as a physiological stress that triggers beneficial adaptive cellular responses, inducing a protective phenotype in the heart. The factors contributing to the exercise-induced heart preconditioning include stimulation of the anti-radical defense system and nitric oxide production, opioids, myokines, and adenosine-5'-triphosphate (ATP) dependent potassium channels. They appear to be also involved in the protective effect exerted by exercise against cardiotoxicity related to chemotherapy. Critical Issues and Future Directions: Although several experimental evidences on the protective effect of exercise have been obtained, the mechanisms underlying this phenomenon have not yet been fully clarified. Further studies are warranted to define precise exercise prescriptions in patients at risk of myocardial infarction or undergoing chemotherapy.
Collapse
Affiliation(s)
- Claudia Penna
- National Institute for Cardiovascular Research (INRC), Bologna, Italy.,Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | | | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Cagliari, Italy
| |
Collapse
|
32
|
Ason B, Chen Y, Guo Q, Hoagland KM, Chui RW, Fielden M, Sutherland W, Chen R, Zhang Y, Mihardja S, Ma X, Li X, Sun Y, Liu D, Nguyen K, Wang J, Li N, Rajamani S, Qu Y, Gao B, Boden A, Chintalgattu V, Turk JR, Chan J, Hu LA, Dransfield P, Houze J, Wong J, Ma J, Pattaropong V, Véniant MM, Vargas HM, Swaminath G, Khakoo AY. Cardiovascular response to small-molecule APJ activation. JCI Insight 2020; 5:132898. [PMID: 32208384 DOI: 10.1172/jci.insight.132898] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/18/2020] [Indexed: 12/29/2022] Open
Abstract
Heart failure (HF) remains a grievous illness with poor prognosis even with optimal care. The apelin receptor (APJ) counteracts the pressor effect of angiotensin II, attenuates ischemic injury, and has the potential to be a novel target to treat HF. Intravenous administration of apelin improves cardiac function acutely in patients with HF. However, its short half-life restricts its use to infusion therapy. To identify a longer acting APJ agonist, we conducted a medicinal chemistry campaign, leading to the discovery of potent small-molecule APJ agonists with comparable activity to apelin by mimicking the C-terminal portion of apelin-13. Acute infusion increased systolic function and reduced systemic vascular resistance in 2 rat models of impaired cardiac function. Similar results were obtained in an anesthetized but not a conscious canine HF model. Chronic oral dosing in a rat myocardial infarction model reduced myocardial collagen content and improved diastolic function to a similar extent as losartan, a RAS antagonist standard-of-care therapy, but lacked additivity with coadministration. Collectively, this work demonstrates the feasibility of developing clinical, viable, potent small-molecule agonists that mimic the endogenous APJ ligand with more favorable drug-like properties and highlights potential limitations for APJ agonism for this indication.
Collapse
Affiliation(s)
- Brandon Ason
- Amgen Research, South San Francisco, California, USA
| | - Yinhong Chen
- Amgen Research, South San Francisco, California, USA
| | - Qi Guo
- Amgen Research, South San Francisco, California, USA
| | | | - Ray W Chui
- Amgen Research, Thousand Oaks, California, USA
| | | | | | - Rhonda Chen
- Amgen Research, South San Francisco, California, USA
| | - Ying Zhang
- Amgen Research, South San Francisco, California, USA
| | | | - Xiaochuan Ma
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Xun Li
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Yaping Sun
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Dongming Liu
- Amgen Research, South San Francisco, California, USA
| | - Khanh Nguyen
- Amgen Research, South San Francisco, California, USA
| | - Jinghong Wang
- Amgen Research, South San Francisco, California, USA
| | - Ning Li
- Amgen Research, South San Francisco, California, USA
| | | | - Yusheng Qu
- Amgen Research, Thousand Oaks, California, USA
| | - BaoXi Gao
- Amgen Research, Thousand Oaks, California, USA
| | | | | | - Jim R Turk
- Amgen Research, Thousand Oaks, California, USA
| | - Joyce Chan
- Amgen Research, South San Francisco, California, USA
| | - Liaoyuan A Hu
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | | | | | - Jingman Wong
- Amgen Research, South San Francisco, California, USA
| | - Ji Ma
- Amgen Research, South San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
33
|
Xu Z, Li Z. Experimental Study on the Role of Apelin-13 in Alleviating Spinal Cord Ischemia Reperfusion Injury Through Suppressing Autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1571-1581. [PMID: 32368015 PMCID: PMC7183780 DOI: 10.2147/dddt.s241066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Background This study aimed to explore the effect of Apelin-13 in protecting rats against spinal cord ischemia reperfusion injury (SCIR), as well as the related molecular mechanisms. Methods One week prior to the experiment, experimental Sprague–Dawley rats were injected with Apelin-13 and the autophagy activator rapamycin through the tail vein once a day for 7 consecutive days. The SCIR rat model was prepared through the abdominal aorta clamping method. At 72 h after injury, the spinal cord tissue water content, infarct volume, and normal neuron count were determined to evaluate the degree of spinal cord tissue injury in the rats. The Basso–Beattie–Bresnahan scoring standard was adopted for functional scoring of the rat hind leg, to reflect the post-injury motor function. At 72 h after injury, changes in mitochondrial membrane potential, reactive oxygen species content, and mitochondrial ATP were detected. ELISA was carried out to detect the malonaldehyde content, as well as catalase, superoxide dismutase, and glutathione catalase activities in spinal cord tissues at 72 h after injury. Quantitative chemistry was conducted to examine the contents of nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) in spinal cord tissues. Finally, the expression of autophagy-related proteins, Beclin1, ATG5, and LC3, in spinal cord tissues was detected through the Western blotting assay. Results Apelin-13 pretreatment alleviated SCIR, promoted motor function recovery, suppressed mitochondrial dysfunction, resisted oxidative stress, and inhibited autophagy in spinal cord tissues following ischemia reperfusion injury. Conclusion Apelin-3 exerts protection against SCIR by suppressing autophagy.
Collapse
Affiliation(s)
- Zhewei Xu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Zhiyue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
34
|
Tune JD, Baker HE, Berwick Z, Moberly SP, Casalini ED, Noblet JN, Zhen E, Kowala MC, Christe ME, Goodwill AG. Distinct hemodynamic responses to (pyr)apelin-13 in large animal models. Am J Physiol Heart Circ Physiol 2020; 318:H747-H755. [PMID: 32108522 DOI: 10.1152/ajpheart.00365.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study tested the hypothesis that (pyr)apelin-13 dose-dependently augments myocardial contractility and coronary blood flow, irrespective of changes in systemic hemodynamics. Acute effects of intravenous (pyr)apelin-13 administration (10 to 1,000 nM) on blood pressure, heart rate, left ventricular pressure and volume, and coronary parameters were measured in dogs and pigs. Administration of (pyr)apelin-13 did not influence blood pressure (P = 0.59), dP/dtmax (P = 0.26), or dP/dtmin (P = 0.85) in dogs. However, heart rate dose-dependently increased > 70% (P < 0.01), which was accompanied by a significant increase in coronary blood flow (P < 0.05) and reductions in left ventricular end-diastolic volume and stroke volume (P < 0.001). In contrast, (pyr)apelin-13 did not significantly affect hemodynamics, coronary blood flow, or indexes of contractile function in pigs. Furthermore, swine studies found no effect of intracoronary (pyr)apelin-13 administration on coronary blood flow (P = 0.83) or vasorelaxation in isolated, endothelium-intact (P = 0.89) or denuded (P = 0.38) coronary artery rings. Examination of all data across (pyr)apelin-13 concentrations revealed an exponential increase in cardiac output as peripheral resistance decreased across pigs and dogs (P < 0.001; R2 = 0.78). Assessment of the Frank-Starling relationship demonstrated a significant linear relationship between left ventricular end-diastolic volume and stroke volume across species (P < 0.001; R2 = 0.70). Taken together, these findings demonstrate that (pyr)apelin-13 does not directly influence myocardial contractility or coronary blood flow in either dogs or pigs.NEW & NOTEWORTHY Our findings provide much needed insight regarding the pharmacological cardiac and coronary effects of (pyr)apelin-13 in larger animal preparations. In particular, data highlight distinct hemodynamic responses of apelin across species, which are independent of any direct effect on myocardial contractility or perfusion.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hana E Baker
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Zachary Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven P Moberly
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eli D Casalini
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jillian N Noblet
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eugene Zhen
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Mark C Kowala
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Michael E Christe
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
35
|
Elabela as a novel marker: Well-correlated with WIfI amputation risk score in lower extremity arterial disease patients. Anatol J Cardiol 2020; 25:330-337. [PMID: 33960308 DOI: 10.14744/anatoljcardiol.2020.17329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Worldwide, over 200 million people are diagnosed with lower extremity arterial disease (LEAD). LEAD significantly increases the risk of death and amputation of the lower limb. A new classification system (WIfI) has been proposed to initially assess all patients with ischemic rest pain or wounds and also predicts 1-year amputation risk. Elabela is a bioactive peptide and a part of the apelinergic system, which has beneficial effects on body fluid homeostasis and cardiovascular health. We aimed to investigate serum Elabela levels in LEAD. METHODS A total of 119 subjects were enrolled in this cross-sectional study, 60 of whom were in the LEAD group and 59 in the control group. All participants underwent physical examination and routine biochemical tests, including serum Elabela levels. Additionally, the LEAD group was divided into subgroups according to the Rutherford classification, ankle-brachial index (ABI) values, and WIfI risk scores. RESULTS Serum low-density lipoprotein, Elabela, and high-sensitivity C-reactive protein (Hs-CRP) levels were statistically higher in the LEAD group (p=0.002, p<0.001, and p<0.001, respectively). In the Rutherford classification, as the stage increased, Elabela and Hs-CRP levels increased similarly (p<0.001). Elabela levels were statistically found to be positively correlated with Hs-CRP and WIfI amputation score but negatively correlated with ABI (p<0.001). CONCLUSION Serum Elabela level, which is known to be increased in inflammatory processes, has the potential in predicting low extremity arterial obstruction and WIfI amputation risk in LEAD patients.
Collapse
|
36
|
Abbasloo E, Najafipour H, Vakili A. Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin Exp Pharmacol Physiol 2019; 47:393-402. [PMID: 31630435 DOI: 10.1111/1440-1681.13195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 01/15/2023]
Abstract
The renin-angiotensin system (RAS) has a deleterious and apelin/APJ system has protective effect on the ischaemic heart. The collaboration between these systems in the pathophysiology of myocardial infarction is not clear. We determined the effect of chronic pretreatment with apelin, losartan and their combination on ischaemia-reperfusion (IR) injury in the isolated perfused rat heart and on the expression of apelin-13 receptor (APJ) and angiotensin type 1 receptor (AT1R) in the myocardium. During 5 days before the induction of IR, saline (vehicle), apelin-13 (Apl), F13A (apelin antagonist), losartan (Los, AT1R antagonist) and the combination of Apl and Los were administered intraperitoneally in rats. Ischaemia was induced by left anterior descending (LAD) artery occlusion for 30 minutes followed by reperfusion for 55 minutes in the Langendorff isolated heart perfusion system. Pretreatment with Apl, Los and the combination of Apl + Los significantly reduced infarct size by about 30, 33 and 48 percent respectively; and significantly improved the left ventricular function indices such as left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP) and rate pressure product (RPP). IR increased AT1R protein level but it did not change APJ significantly. AT1R expression was reduced in groups treated with Apl, Los and Apl + Los. Findings showed that chronic pretreatment with apelin along with AT1R antagonist had more protective effects against IR injury. Combination therapy may diminish the risk of IR-induced heart damage, by reducing AT1R expression, in the heart of patients with coronary artery disease that are at the risk of MI and reperfusion injury.
Collapse
Affiliation(s)
- Elham Abbasloo
- Physiology, Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Physiology, Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Abedin Vakili
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
37
|
Bae JH, Kwak SE, Lee JH, Yangjie Z, Song W. Does exercise-induced apelin affect sarcopenia? A systematic review and meta-analysis. Hormones (Athens) 2019; 18:383-393. [PMID: 31853817 DOI: 10.1007/s42000-019-00157-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 11/04/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE/OBJECTIVE There have been a number of studies on the role of the novel protein apelin, identified in 1998, in improving muscular function and structure in various human organs, as well as on how it is involved in pathological processes. The aim of this systematic review and meta-analysis was to determine the effect of exercise on serum apelin levels to provide up-to-date data for the development of an exercise intervention for older adults. METHODS We searched for articles in PubMed, Ovid MEDLINE, and EMBASE from database inception to May 31, 2019. To conduct a meta-analysis of the primary outcome (serum apelin level), we analyzed intervention effect sizes of the differences between the exercise group and control groups for the primary outcome measure at post-treatment. The outcomes were analyzed using Hedge's statistic effect size (Zr) for weight mean difference (WMD) from various statistical results, including t, F, x2, and r. A heterogeneity test was conducted using Higgin's I2 statistic and Q statistics (p > 0.10) via a forest plot. A fixed-effect model was considered if Higgin's I2 was less than 50%. If heterogeneity was high (I2 > 50%), a random-effects model with a subgroup analysis or meta-regression was used. A meta-analysis using nine studies showed that exercise could increase serum apelin levels, which was beneficial for such metabolic diseases as diabetes. RESULTS In the subgroup analysis, the 50-60-year-old group showed significant effects of exercise. However, the BMI (normal, overweight, and obesity) categories failed to show any difference in exercise-induced effect. CONCLUSION Further studies are needed to clarify in greater detail the effect of resistance exercise on apelin levels, including data on frequency, type, intensity, and time of aerobic exercise, to compare their effects on sarcopenia and cognitive disorders.
Collapse
Affiliation(s)
- Jun Hyun Bae
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, 71-1 410, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seong Eun Kwak
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, 71-1 410, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji Hyun Lee
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, 71-1 410, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Zhang Yangjie
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, 71-1 410, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Wook Song
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, 71-1 410, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Nyimanu D, Kuc RE, Williams TL, Bednarek M, Ambery P, Jermutus L, Maguire JJ, Davenport AP. Apelin-36-[L28A] and Apelin-36-[L28C(30kDa-PEG)] peptides that improve diet induced obesity are G protein biased ligands at the apelin receptor. Peptides 2019; 121:170139. [PMID: 31472173 PMCID: PMC6838674 DOI: 10.1016/j.peptides.2019.170139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Apelin signalling pathways have important cardiovascular and metabolic functions. Recently, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)], were reported to function independent of the apelin receptor in vivo to produce beneficial metabolic effects without modulating blood pressure. We aimed to show that these peptides bound to the apelin receptor and to further characterise their pharmacology in vitro at the human apelin receptor. METHODS [Pyr1]apelin-13 saturation binding experiments and competition binding experiments were performed in rat and human heart homogenates using [125I]apelin-13 (0.1 nM), and/or increasing concentrations of apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] (50pM-100μM). Apelin-36 and its analogues apelin-36-[F36A], apelin-36-[L28A], apelin-36-[L28C(30kDa-PEG)], apelin-36-[A28 A13] and [40kDa-PEG]-apelin-36 were tested in forskolin-induced cAMP inhibition and β-arrestin assays in CHO-K1 cells heterologously expressing the human apelin receptor. Bias signaling was quantified using the operational model for bias. RESULTS In both species, [Pyr1]apelin-13 had comparable subnanomolar affinity and the apelin receptor density was similar. Apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] competed for binding of [125I]apelin-13 with nanomolar affinities. Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] inhibited forskolin-induced cAMP release, with nanomolar potencies but they were less potent compared to apelin-36 at recruiting β-arrestin. Bias analysis suggested that these peptides were G protein biased. Additionally, [40kDa-PEG]-apelin-36 and apelin-36-[F36A] retained nanomolar potencies in both cAMP and β-arrestin assays whilst apelin-36-[A13 A28] exhibited a similar profile to apelin-36-[L28C(30kDa-PEG)] in the β-arrestin assay but was more potent in the cAMP assay. CONCLUSIONS Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] are G protein biased ligands of the apelin receptor, suggesting that the apelin receptor is an important therapeutic target in metabolic diseases.
Collapse
Affiliation(s)
- Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Rhoda E. Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Thomas L. Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Maria Bednarek
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Philip Ambery
- Late-stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Janet J. Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- Corresponding authors.
| | - Anthony P. Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- Corresponding authors.
| |
Collapse
|
39
|
Caccioppo A, Franchin L, Grosso A, Angelini F, D'Ascenzo F, Brizzi MF. Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. Int J Mol Sci 2019; 20:E5024. [PMID: 31614414 PMCID: PMC6834134 DOI: 10.3390/ijms20205024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.
Collapse
Affiliation(s)
- Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | | |
Collapse
|
40
|
Dönmez Y, Acele A. Increased Elabela levels in the acute ST segment elevation myocardial infarction patients. Medicine (Baltimore) 2019; 98:e17645. [PMID: 31651884 PMCID: PMC6824787 DOI: 10.1097/md.0000000000017645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Elabela is a bioactive peptide and a part of Apelinergic system. Elabela has an important role in the early embryonic stages. Elabela's beneficial effects in cardiovascular system were shown in some animal models or in vitro studies. Lately, some investigational studies in humans are started to be seen in literature. Our aims were to investigate serum Elabela levels in the first day of ST segment elevation myocardial infarction (STEMI), to compare with healthy controls, and to see if there is a correlation between other cardiac biomarkers in humans.The study was planned as cross-sectional. The patients group had 124 STEMI subjects. They were grouped as inferior (n = 59) and anterior myocardial infarction (n = 65) groups, and compared with the healthy control population (n = 77). Routine blood tests and serum Elabela levels were measured. Transthoracic echocardiography performed to all subjects.Frequency of diabetes mellitus, hypertension, smoking, and hyperlipidemia in both STEMI groups were significantly higher than control subjects. Glucose, high density lipoprotein (HDL) cholesterol, triglyceride, high sensitive C reactive protein (Hs-CRP), troponin I, N-terminal brain natriuretic peptide (NT-ProBNP), and Elabela levels were significantly higher in both STEMI groups. Other laboratory parameters were similar. Group 2 and 3 had significantly lower left ventricular ejection fraction (LVEF) than group 1. Group 3 had also significantly lower LVEF than group 2. There was a positive but moderate correlation between Elabela, troponin I, and NT-ProBNP. Elabela was negatively correlated with LVEF. This correlation was also moderate.We showed increased Elabela levels in STEMI patients in this study. Also, we observed a moderate positive correlation between troponin I, NT-ProBNP, and Elabela.
Collapse
|
41
|
Yalçınkaya Kara ZM, Serin E, Dağ İ, Serin Ö. Pre-diyabetik ve yeni tanı almış tip 2 diyabetli hastalarda serum apelin-36 düzeyleri. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.504415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
42
|
Foroughi K, Khaksari M, Rahmati M, Bitaraf FS, Shayannia A. Apelin-13 Protects PC12 Cells Against Methamphetamine-Induced Oxidative Stress, Autophagy and Apoptosis. Neurochem Res 2019; 44:2103-2112. [PMID: 31385138 DOI: 10.1007/s11064-019-02847-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 02/01/2023]
Abstract
Methamphetamine (METH) is a potent psychomotor stimulant that has a high potential for abuse in humans. In addition, it is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to METH causes psychosis and increases the risk of Parkinson's disease. Apelin-13 is a novel endogenous ligand which studies have shown that may have a neuroprotective effect. Therefore, we hypothesized that Apelin-13 might adequately prevent METH-induced neurotoxicity via the inhibition of apoptotic, autophagy, and ROS responses. In this study, PC12 cells were exposed to both METH (0.5, 1, 2, 3, 4, 6 mmol/L) and Apelin-13 (0.5, 1.0, 2.0, 4.0, 8.0 μmol/L) in vitro for 24 h to measure determined dose, and then downstream pathways were measured to investigate apoptosis, autophagy, and ROS responses. The results have indicated that Apelin-13 decreased the apoptotic response post-METH exposure in PC12 cells by increasing cell viability, reducing apoptotic rates. In addition, the study has revealed Apelin-13 decreased gene expression of Beclin-1 by Real-Time PCR and LC3-II by western blotting in METH-induced PC12 cells, which demonstrated autophagy is reduced. In addition, this study has shown that Apelin-13 reduces intracellular ROS of METH-induced PC12 cells. These results support Apelin-13 to be investigated as a potential drug for treatment of neurodegenerative diseases. It is suggested that Apelin-13 is beneficial in reducing oxidative stress, which may also play an important role in the regulation of METH-triggered apoptotic response. Hence, these data indicate that Apelin-13 could potentially alleviate METH-induced neurotoxicity via the reduction of oxidative damages, apoptotic, and autophagy cell death.
Collapse
Affiliation(s)
- Kobra Foroughi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Rahmati
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fateme Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Asghar Shayannia
- Bahar Center for Education, Research and Treatment, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
43
|
Chang HN, Yeh YC, Chueh HY, Pang JHS. The anti-angiogenic effect of tryptanthrin is mediated by the inhibition of apelin promoter activity and shortened mRNA half-life in human vascular endothelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152879. [PMID: 31005035 DOI: 10.1016/j.phymed.2019.152879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Anti-angiogenesis is an important strategy of psoriasis treatment, but the side effects of systemic agents remain difficult to overcome. Topical use of indigo naturalis ointment has been proved to improve the skin lesion of psoriasis effectively and safely and one of its major components, tryptanthrin, has been demonstrated to have anti-angiogenic effect. Apelin, which has been reported to act as an angiogenic factor that could stimulate the proliferation and migration of vascular endothelial cells and proved to be elevated in psoriasis patients, is a potential target of anti-angiogenic therapy. PURPOSE We aim to find out if tryptanthrin works on the apelin pathway and study its anti-angiogenic mechanism. STUDY DESIGN Human umbilical vein endothelial cells (HUVECs) were used as the in vitro model. METHODS The effect of tryptanthrin on the expression of apelin and its receptor, APJ, was examined. The mRNA stability, promoter activity, and bioactivity of apelin, were also investigated. Migration and tube formation assay were used to evaluate the relationship between tryptanthrin and apelin. PD98059 and wortmannin were used to study the role of ERK1/2 MAPK and PI3K in apelin signaling pathway. RESULTS We demonstrated that tryptanthrin could inhibit the expression of apelin, attenuated the stability of apelin mRNA, and significantly inhibited the apelin promoter activity. The addition of apelin-13 restored the suppression of tube formation and migration by tryptanthrin. Both PD98059 and wortmannin could down-regulate the apelin mRNA expression suggesting the important signaling role of ERK1/2 MAPK and PI3K in the gene expression of apelin. CONCLUSION The anti-angiogenic effect of tryptanthrin was mediated by down-regulating apelin gene expression through suppression of promoter activity and decrease of mRNA stability in human vascular endothelial cells.
Collapse
Affiliation(s)
- Hsin-Ning Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, Taiwan, ROC
| | - Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC; Program in Molecular Medicine, School of Life Sciences, National Yang Ming University, Taipei, Taiwan, ROC
| | - Ho-Yen Chueh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, Taiwan, ROC; Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.
| |
Collapse
|
44
|
Niknazar S, Abbaszadeh HA, Peyvandi H, Rezaei O, Forooghirad H, Khoshsirat S, Peyvandi AA. Protective effect of [Pyr1]-apelin-13 on oxidative stress-induced apoptosis in hair cell-like cells derived from bone marrow mesenchymal stem cells. Eur J Pharmacol 2019; 853:25-32. [PMID: 30876980 DOI: 10.1016/j.ejphar.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022]
Abstract
Oxidative stress plays an important role in auditory dysfunction. Exogenous cell therapy has brought new hopes for repairing mammalian inner ear hair cells. However, poor cell viability of transplanted cells under oxidative stress conditions has limited their therapeutic potential. The adipocytokine apelin-13 was isolated from a bovine stomach. Apelin-13 might protect oxidative stress-induced hair cell damage was raised considering other oxidative stress-induced injury, including brain ischemia-induced cell death. Therefore, we evaluated the protective effects of apelin- 13 on the damage induced by hydrogen peroxide (H2O2) to the hair cells-derived from bone marrow mesenchymal stem cells (BMSCs) in vitro. Stem cells were differentiated into hair cell- like cells with B27, FGF, EGF and IGF-1. Expression of neuron specific markers including β tubulin III, Nestin, MAP2, Neurofilament 68 and GFAP was tested by flow cytometry. As well, inner ear hair cell markers such as Myosin VIIA, Sox2 and TrkB expression were assayed by immunocytochemistry (ICC) method. We designed an in vitro model of oxidative stress by exposing hair cell- like cells to H2O2. Protein expression levels of caspase-3, Bax and Bcl-2 were detected by western blot. Apoptotic cells were also detected by acridin-orange staining and TUNEL assay. Protein expression of caspase-3 and Bax/Bcl-2 ratio was significantly lower in the apelin-13-pretreated group than only H2O2 treated group. In addition, apoptotic cells were significantly decreased in the apelin-13+H2O2 co-treated cells compared to the H2O2-treated group. Treating hair cells-like cells with apelin13 increases their survival against oxidative stress damage by inhibition of apoptosis signaling pathway.
Collapse
Affiliation(s)
- Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosna Forooghirad
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Aminyavari S, Zahmatkesh M, Farahmandfar M, Khodagholi F, Dargahi L, Zarrindast MR. Protective role of Apelin-13 on amyloid β25-35-induced memory deficit; Involvement of autophagy and apoptosis process. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:322-334. [PMID: 30296470 DOI: 10.1016/j.pnpbp.2018.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/05/2018] [Accepted: 10/04/2018] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD) by progressive neurodegenerative pattern is associated with autophagy stress which is suggested as a potential cause of amyloid β (Aβ) aggregation and neural loss. Apelin-13, a neuropeptide with modulatory effect on autophagy, has been shown the beneficial effects on neural cell injuries. We investigated the effect of Apelin-13 on Aβ-induced memory deficit as well as autophagy and apoptosis processes. We performed bilateral intra-CA1 injection of Aβ25-35 alone or in combination with Apelin-13. Spatial reference and working memory was evaluated using the Morris water maze (MWM) and Y-maze tests. Hippocampus was harvested on 2, 5, 10 and 21 days after Aβ injection. The light chain 3 (LC3II/I) ratio, histone deacetylase 6 (HDAC6) level, Caspase-3 cleavage, and mTOR phosphorylation were assessed using western blot technique. Intra-CA1 injection of Aβ caused impairment of working and spatial memory. We observed higher LC3II/I ratio, cleaved caspase-3 and lower HDAC6, and p-mTOR/mTOR ratio in Aβ-treated animals. Apelin-13 provided significant protection against the destructive effects of Aβ on working and spatial memory. Apelin-13 prevented the increase of LC3II/I ratio and cleaved caspase-3 on days 10 and 21 after injection of Aβ. It also limited the Aβ-induced reduction in HDAC6 expression. This implies that Apelin-13 has suppressed both autophagy and apoptosis. Our findings suggested that the neuroprotection of Apelin-13 may be in part related to autophagy and apoptosis inhibition via the mTOR signaling pathway. Apelin-13 may be a promising approach to improve memory impairment and potentially pave the way for new therapeutic plans in AD.
Collapse
Affiliation(s)
- Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cognitive Sciences and Behavior Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Duan J, Cui J, Yang Z, Guo C, Cao J, Xi M, Weng Y, Yin Y, Wang Y, Wei G, Qiao B, Wen A. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling. J Neuroinflammation 2019; 16:24. [PMID: 30709405 PMCID: PMC6357442 DOI: 10.1186/s12974-019-1406-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background Previous studies had showed that Apelin 13 could protect against apoptosis induced by ischemic/reperfusion (I/R). However, the mechanisms whereby Apelin 13 protected brain I/R remained to be elucidated. The present study was designed to determine whether Apelin 13 provided protection through AMPK/GSK-3β/Nrf2 pathway. Methods In vivo, the I/R model was induced and Apelin 13 was given intracerebroventricularly 15 min before reperfusion. The neurobehavioral scores, infarction volumes, and some cytokines in the brain were measured. For in vitro study, PC12 cells were used. To clarify the mechanisms, proteases inhibitors or siRNA were used. Protein levels were investigated by western blotting. Results The results showed that Apelin 13 treatment significantly reduced infarct size, improved neurological outcomes, decreased brain edema, and inhibited cell apoptosis, oxidative stress, and neuroinflammation after I/R. Apelin 13 significantly increased the expression of Nrf2 and the phosphorylation levels of AMPK and GSK-3β. Furthermore, in cultured PC12 cells, the same protective effects were also observed. Silencing Nrf2 gene with its siRNA abolished the Apelin 13’s prevention of I/R-induced PC12 cell injury, oxidative stress, and inflammation. Inhibition of AMPK by its siRNA decreased the level of Apelin 13-induced Nrf2 expression and diminished the protective effects of Apelin 13. The interplay relationship between GSK-3β and Nrf2 was also verified with relative overexpression. Using selective inhibitors, we further identified the upstream of AMPK/GSK-3β/Nrf2 is AR/Gα/PLC/IP3/CaMKK. Conclusions In conclusion, the previous results showed that Apelin 13 protected against I/R-induced ROS-mediated inflammation and oxidative stress through activating the AMPK/GSK-3β pathway by AR/Gα/PLC/IP3/CaMKK signaling, and further upregulated the expression of Nrf2-regulated antioxidant enzymes.
Collapse
Affiliation(s)
- Jialin Duan
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China.,Department of Chinese Medicine, School of Life Science, Northwestern University, No. 229, Taibai Road, Xi'an, Shaanxi, China
| | - Jia Cui
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Boling Qiao
- Department of Chinese Medicine, School of Life Science, Northwestern University, No. 229, Taibai Road, Xi'an, Shaanxi, China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
47
|
Zhang Y, Wang Y, Lou Y, Luo M, Lu Y, Li Z, Wang Y, Miao L. Elabela, a newly discovered APJ ligand: Similarities and differences with Apelin. Peptides 2018; 109:23-32. [PMID: 30267732 DOI: 10.1016/j.peptides.2018.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
The Apelin/APJ system is involved in a wide range of biological functions. For a long time, Apelin was thought to be the only ligand for APJ. Recently, a new peptide that acts via APJ and has similar functions, called Elabela, was identified. Elabela has beneficial effects on body fluid homeostasis, cardiovascular health, and renal insufficiency, as well as potential benefits for metabolism and diabetes. In this review, the properties and biological functions of this new peptide are discussed in comparison with those of Apelin. Important areas for future study are also discussed, with the consideration that research on Apelin could guide future research on Elabela.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Yonggang Wang
- Cardiovascular Center, First Hospital of Jilin University, Changchun 130021, China
| | - Yan Lou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Lu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Zhuo Li
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
48
|
Grisanti LA, Schumacher SM, Tilley DG, Koch WJ. Designer Approaches for G Protein-Coupled Receptor Modulation for Cardiovascular Disease. JACC Basic Transl Sci 2018; 3:550-562. [PMID: 30175279 PMCID: PMC6115700 DOI: 10.1016/j.jacbts.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022]
Abstract
The new horizon for cardiac therapy may lie beneath the surface, with the downstream mediators of G protein–coupled receptor (GPCR) activity. Targeted approaches have shown that receptor activation may be biased toward signaling through G proteins or through GPCR kinases (GRKs) and β-arrestins, with divergent functional outcomes. In addition to these canonical roles, numerous noncanonical activities of GRKs and β-arrestins have been demonstrated to modulate GPCR signaling at all levels of receptor activation and regulation. Further, research continues to identify novel GRK/effector and β-arrestin/effector complexes with distinct impacts on cardiac function in the normal heart and the diseased heart. Coupled with the identification of once orphan receptors and endogenous ligands with beneficial cardiovascular effects, this expands the repertoire of GPCR targets. Together, this research highlights the potential for focused therapeutic activation of beneficial pathways, with simultaneous exclusion or inhibition of detrimental signaling, and represents a new wave of therapeutic development.
Collapse
Key Words
- AR, adrenergic receptor
- AT1R, angiotensin II type 1A receptor
- CRF, corticotropin-releasing factor
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase
- G protein–coupled receptor kinases
- G protein–coupled receptors
- GPCR, G protein–coupled receptor
- GRK, G protein–coupled receptor kinase
- HF, heart failure
- ICL, intracellular loop
- PI3K, phosphoinositide 3-kinase
- SERCA2a, sarco(endo)plasmic reticulum Ca2+-ATPase
- SII, [Sar(1), Ile (4), Ile(8)]-angiotensin II
- biased ligands
Collapse
Affiliation(s)
- Laurel A Grisanti
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Sarah M Schumacher
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Douglas G Tilley
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Nazari A, Zahabi K, Azizi Y, Moghimian M. EFFECTS OF EXERCISE COMBINED WITH APELIN-13 ON CARDIAC FUNCTION IN THE ISOLATED RAT HEART. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182404175002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Exercise and apelin have been shown to increase cardiac function and elicit tolerance to ischemia/reperfusion (IR) injuries. This study aimed at determining whether the combination of exercise training and apelin pretreatment could integrate the protective effects of each of them in the heart against IR injury. Male rats were divided into four experimental groups: 1: Rats with ischemia/reperfusion (IR), 2: subjected to exercise training for 8 weeks (EX+IR), 3: apelin-13 (10 nmol/kg/day) for 7 days (Apel+IR) in the last week of training, and 4: exercise training plus apelin-13 (EX+Apel+IR). Isolated hearts were perfused using the Langendorff method and subjected to 30 min of regional ischemia followed by 60 min of reperfusion. Treadmill exercise training was conducted for 8 weeks. Hemodynamic parameters were recorded throughout the experiment. Ischemia-induced arrhythmias, myocardial infarct size (IS), creatine kinase-MB (CK-MB) isoenzyme and plasma lactate dehydrogenase (LDH) activity was measured in all animals. Administration of apelin-13 plus exercise increased left ventricular developed pressure (LVDP) at the end of ischemia and reperfusion compared with other groups. After 30 min of ischemia, dP/dtmax was higher in EX+Apel+IR than in Apel+IR and EX+IR groups. During 30 min ischemia, exercise training, apelin-13 and combined treatment produced a significant reduction in the numbers of premature ventricular complexes. A combination of exercise and apelin-13 also reduced infarct size, CK-MB, LDH and severity of arrhythmia. These results suggest that combined therapies with apelin-13 and exercise training may integrate the beneficial effects of each of them alone on cardiac contractility, arrhythmia and limiting of infarct size. Level of evidence I; Therapeutic Studies - Investigating the Results of Treatment.
Collapse
Affiliation(s)
- Afshin Nazari
- Lorestan University of Medical Sciences, Iran; Lorestan University of Medical, Iran
| | | | | | | |
Collapse
|
50
|
Jiang Y, Liu H, Ji B, Wang Z, Wang C, Yang C, Pan Y, Chen J, Cheng B, Bai B. Apelin‑13 attenuates ER stress‑associated apoptosis induced by MPP+ in SH‑SY5Y cells. Int J Mol Med 2018; 42:1732-1740. [PMID: 29901077 DOI: 10.3892/ijmm.2018.3719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Apelin‑13, a neuropeptide that acts as a ligand for a putative receptor related to the angiotensin II type receptor, elicits neuroprotective effects in numerous neurological conditions, such as Huntington's disease and cerebral ischemia. Parkinson's disease (PD), one of the most prevalent neurodegenerative diseases, is caused by damage to neurons in the brain; however, the underlying mechanism remains unclear. The present study explored the effects of apelin‑13 on SH‑SY5Y human neuroblastoma cells treated with 1‑methyl‑4‑phenylpyridine (MPP+). Cell growth, cell viability, and apoptosis were measured by real‑time cell analysis, the Cell Counting Kit‑8 assay, and flow cytometry, respectively. In addition, the expression levels of extracellular signal‑regulated kinase (ERK) 1/2, p38 mitogen‑activated protein kinase (MAPK), glucose‑regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase‑12 were assessed by western blotting. MPP+ treatment decreased the viability of SH‑SY5Y cells and increased their apoptosis; however, these changes were attenuated by pretreatment with apelin‑13. Treatment with MPP+ for 24 h significantly increased the expression levels of phospho‑ERK1/2, phospho‑p38, GRP78, CHOP, and cleaved caspase‑12 in SH‑SY5Y cells. Pretreatment with apelin‑13 significantly attenuated the upregulation of GRP78, CHOP and cleaved caspase‑12 in MPP+‑treated SH‑SY5Y cells, and significantly enhanced the expression levels of phospho‑ERK1/2. Taken together, the present results support a model in which apelin‑13 inhibits MPP+‑induced apoptosis of SH‑SY5Y cells by decreasing the expression of GRP78, CHOP, and cleaved caspase‑12, and by increasing the expression of phospho‑ERK1/2. The present findings suggest that apelin‑13 may be useful for the treatment of PD.
Collapse
Affiliation(s)
- Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Haiqing Liu
- Department of Physiology, Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Bingyuan Ji
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhengwen Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chunqing Yang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jing Chen
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|