1
|
Evangelina R, Ganesan S, George M. The Epigenetic Landscape: From Molecular Mechanisms to Biological Aging. Rejuvenation Res 2025. [PMID: 40094262 DOI: 10.1089/rej.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Epigenetics, the study of heritable changes in gene expression that do not involve alterations to the deoxyribonucleic acid (DNA) sequence, plays a pivotal role in cellular function, development, and aging. This review explores key epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, chromatin remodeling, RNA-based regulation, and long-distance chromosomal interactions. These modifications contribute to cellular differentiation and function, mediating the dynamic interplay between the genome and environmental factors. Epigenetic clocks, biomarkers based on DNAm patterns, have emerged as powerful tools to measure biological age and predict health span. This article highlights the evolution of epigenetic clocks, from first-generation models such as Horvath's multi-tissue clock to advanced second- and third-generation clocks such as DNAGrimAge and DunedinPACE, which incorporate biological parameters and clinical biomarkers for precise age estimation. Moreover, the role of epigenetics in aging and age-related diseases is discussed, emphasizing its impact on genomic stability, transcriptional regulation, and cellular senescence. Epigenetic dysregulation is implicated in cancer, genetic disorders, and neurodegenerative diseases, making it a promising target for therapeutic interventions. The reversibility of epigenetic modifications offers hope for mitigating age acceleration and enhancing health span through lifestyle changes and pharmacological approaches.
Collapse
Affiliation(s)
- Rachel Evangelina
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| | - Subhashree Ganesan
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| | - Melvin George
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
2
|
Peng TY, Lu JM, Zheng XL, Zeng C, He YH. The role of lactate metabolism and lactylation in pulmonary arterial hypertension. Respir Res 2025; 26:99. [PMID: 40075458 PMCID: PMC11905457 DOI: 10.1186/s12931-025-03163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by elevated pulmonary artery pressure and vascular remodeling. Recent studies have underscored the pivotal role of metabolic dysregulation and epigenetic modifications in the pathogenesis of PAH. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that links cellular metabolism with activity regulation. Recent findings indicate that, in addition to altered glycolytic activity and dysregulated. Lactate homeostasis and lactylation-a novel epigenetic modification-also play a significant role in the development of PAH. This review synthesizes current knowledge regarding the relationship between altered glycolytic activity and PAH, with a particular focus on the cumulative effects of lactate in pulmonary vascular cells. Furthermore, lactylation, an emerging epigenetic modification, is discussed in the context of PAH. By elucidating the complex interplay between lactate metabolism and lactylation in PAH, this review aims to provide insights into potential therapeutic targets. Understanding these metabolic pathways may lead to innovative strategies for managing PAH and improving patient outcomes. Future research should focus on the underlying mechanisms through which lactylation influences the pathophysiology of PAH, thereby aiding in the development of targeted interventions.
Collapse
Affiliation(s)
- Tong-Yu Peng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jun-Mi Lu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xia-Lei Zheng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu-Hu He
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
4
|
Martino F, Niglio T, Martino E, Barilla' F, Guardamagna O, Paravati V, Bassareo PP. Awareness of cholesterol levels in 46,309 Italian children and adolescents unveils the tip of the iceberg. Eur J Pediatr 2024; 183:4747-4754. [PMID: 39207459 DOI: 10.1007/s00431-024-05745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Cardiovascular diseases (CVD) risk factors include high cholesterol. Children with total cholesterol (TC) levels ≥ 170 mg/dL are usually considered hypercholesterolemic. This study aimed at investigating the awareness of TC levels in a large Italian paediatric population and at looking for a possible correlation between their TC and TC in their parents' blood. METHODS AND RESULTS A survey was carried out in 46,309 subjects (mean age 9.7 ± 2.3 years; age range 6-14 years) to check the awareness of their own TC levels by using a personal and family medical history questionnaire. In 95.67% of the sample TC value was unknown. In 2.69% TC was < 170 mg/dL, whereas 1.64% were hypercholesterolemic (TC ≥ 170 mg/dL). A statistically significant correlation was found between children with normal TC values and physiological TC values in both parents (p < 0.0001). Again, a significant association between children with high TC and their parents with high TC was detected when parents were analysed separately (i.e. children with TC ≥ 170 mg/dl vs maternal TC ≥ 200 mg/dL: OR 2.01 (95% CI 1.61-2.49, p < 0.001); children with TC ≥ 200 mg/dl vs maternal TC ≥ 240 mg/dL: OR 3.14 (95% CI 2.14-4.6, p < 0.001); children with TC ≥ 170 mg/dl vs paternal TC ≥ 200 mg/dL: OR 2.39 (95% CI 1.91-2.98, p < 0.001); children with TC ≥ 200 mg/dl vs paternal TC ≥ 240 mg/dL: OR 3.85 (95% CI 2.70-5,.50, p < 0.001). CONCLUSION Just a minority of the investigated young patients knew their TC. This is worrisome. Children with normal TC values are more likely to be born from healthy parents with physiological TC. In addition, high TC in the enrolled subjects is significantly associated with high TC in their parents. Overall, these findings seem to highlight the importance of health education and genetics in TC pathogenesis.
Collapse
Affiliation(s)
- Francesco Martino
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | | | - Eliana Martino
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Barilla'
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Ornella Guardamagna
- Department of Public Health and Paediatric Sciences, University of Turin, Turin, Italy
| | - Vincenzo Paravati
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Pier Paolo Bassareo
- School of Medicine, University College of Dublin, Mater Misericordiae University Hospital and Children's Health Ireland at Crumlin, Dublin, Ireland.
| |
Collapse
|
5
|
Zhu C, Miao L, Wei K, Shi D, Gao J. Coronary microvascular dysfunction. Microvasc Res 2024; 153:104652. [PMID: 38211894 DOI: 10.1016/j.mvr.2024.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Coronary microvascular dysfunction (CMD) is a key mechanism underlying ischemic heart disease (IHD), yet its diagnosis and treatment remain challenging. This article presents a comprehensive overview of CMD research, covering its pathogenesis, diagnostic criteria, assessment techniques, risk factors, and therapeutic strategies. Additionally, it highlights the prospects for future CMD research. The article aims at advocating early and effective intervention for CMD and improving the prognosis of IHD.
Collapse
Affiliation(s)
- Chunlin Zhu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kangkang Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Sengupta D, Sengupta K. Lamin A K97E leads to NF-κB-mediated dysfunction of inflammatory responses in dilated cardiomyopathy. Biol Cell 2024; 116:e2300094. [PMID: 38404031 DOI: 10.1111/boc.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND INFORMATION Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A CONCLUSIONS We report here for the first time that there is a significant downregulation of the NF-κB pathway, which has been implicated in cardio-protection elsewhere. SIGNIFICANCE This provides a new pathophysiological explanation that correlates an LMNA mutation and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Duhita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
8
|
Farahmand Y, Nabiuni M, Vafaei Mastanabad M, Sheibani M, Mahmood BS, Obayes AM, Asadi F, Davallou R. The exo-microRNA (miRNA) signaling pathways in pathogenesis and treatment of stroke diseases: Emphasize on mesenchymal stem cells (MSCs). Cell Biochem Funct 2024; 42:e3917. [PMID: 38379232 DOI: 10.1002/cbf.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 02/22/2024]
Abstract
A major factor in long-term impairment is stroke. Patients with persistent stroke and severe functional disabilities have few therapy choices. Long noncoding RNAs (lncRNAs) may contribute to the regulation of the pathophysiologic processes of ischemic stroke as shown by altered expression of lncRNAs and microRNA (miRNAs) in blood samples of acute ischemic stroke patients. On the other hand, multipotent mesenchymal stem cells (MSCs) increase neurogenesis, and angiogenesis, dampen neuroinflammation, and boost brain plasticity to improve functional recovery in experimental stroke models. MSCs can be procured from various sources such as the bone marrow, adipose tissue, and peripheral blood. Under the proper circumstances, MSCs can differentiate into a variety of mature cells, including neurons, astrocytes, and oligodendrocytes. Accordingly, the capability of MSCs to exert neuroprotection and also neurogenesis has recently attracted more attention. Nowadays, lncRNAs and miRNAs derived from MSCs have opened new avenues to alleviate stroke symptoms. Accordingly, in this review article, we examined various studies concerning the lncRNAs and miRNAs' role in stroke pathogenesis and delivered an overview of the therapeutic role of MSC-derived miRNAs and lncRNAs in stroke conditions.
Collapse
Affiliation(s)
- Yalda Farahmand
- School of Medicine, Terhan University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabiuni
- Neurosurgery Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ali Mohammed Obayes
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Fatemeh Asadi
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Rosa Davallou
- Department of Neurology, Sayyad Shirazi Hospital, Golestan University of Medical Siences, Gorgan, Iran
| |
Collapse
|
9
|
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y, Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2024; 14:157-176. [PMID: 38464786 PMCID: PMC10921247 DOI: 10.1016/j.jpha.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 03/12/2024] Open
Abstract
Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
10
|
Motawi TK, Sadik NAH, Shaker OG, Ghaleb MMH, Elbaz EM. Expression, Functional Polymorphism, and Diagnostic Values of MIAT rs2331291 and H19 rs217727 Long Non-Coding RNAs in Cerebral Ischemic Stroke Egyptian Patients. Int J Mol Sci 2024; 25:842. [PMID: 38255915 PMCID: PMC10815378 DOI: 10.3390/ijms25020842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral ischemic stroke (CIS) is a severe cerebral vascular event. This research aimed to evaluate the role of single-nucleotide polymorphisms (SNPs) of the lncRNAs MIAT rs2331291 and H19 rs217727 and epigenetic methylation in the expression patterns of serum lncRNA H19 in CIS Egyptian patients. It included 80 CIS cases and 40 healthy subjects. Serum MIAT expression levels decreased, whereas serum H19 expression levels increased among CIS compared to controls. For MIAT rs2331291, there were significant differences in the genotypic and allelic frequencies between the CIS and healthy subjects at p = 0.02 and p = 0.0001, respectively. Our findings illustrated a significantly increased MIAT T/T genotype frequency in hypertensive CIS compared to non-hypertensive CIS at p = 0.004. However, H19 rs217727 gene frequency C/C was not significantly higher in non-hypertensive CIS than in hypertensive CIS. The methylation of the H19 gene promoter was significantly higher in CIS patients compared to healthy subjects. The level of MIAT was positively correlated with serum H19 in CIS. Receiver operating characteristics (ROC) analysis revealed that serum MIAT and H19 have a high diagnostic potential for distinguishing CIS subjects from healthy ones. In conclusion, the MIAT-rs2331291 polymorphism might serve as a novel potential indicator of CIS.
Collapse
Affiliation(s)
- Tarek K. Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | | | - Eman M. Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
11
|
Hu B, Chen W, Zhong Y, Tuo Q. The role of lncRNA-mediated pyroptosis in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1217985. [PMID: 37396588 PMCID: PMC10313127 DOI: 10.3389/fcvm.2023.1217985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. Pyroptosis is a unique kind of programmed cell death that varies from apoptosis and necrosis morphologically, mechanistically, and pathophysiologically. Long non-coding RNAs (LncRNAs) are thought to be promising biomarkers and therapeutic targets for the diagnosis and treatment of a variety of diseases, including cardiovascular disease. Recent research has demonstrated that lncRNA-mediated pyroptosis has significance in CVD and that pyroptosis-related lncRNAs may be potential targets for the prevention and treatment of specific CVDs such as diabetic cardiomyopathy (DCM), atherosclerosis (AS), and myocardial infarction (MI). In this paper, we collected previous research on lncRNA-mediated pyroptosis and investigated its pathophysiological significance in several cardiovascular illnesses. Interestingly, certain cardiovascular disease models and therapeutic medications are also under the control of lncRNa-mediated pyroptosis regulation, which may aid in the identification of new diagnostic and therapy targets. The discovery of pyroptosis-related lncRNAs is critical for understanding the etiology of CVD and may lead to novel targets and strategies for prevention and therapy.
Collapse
Affiliation(s)
| | | | | | - Qinhui Tuo
- Correspondence: Yancheng Zhong Qinhui Tuo
| |
Collapse
|
12
|
Johansson SE, Jansåker F, Sundquist K, Bygren LO. A longitudinal study of the association between attending cultural events and coronary heart disease. COMMUNICATIONS MEDICINE 2023; 3:72. [PMID: 37225790 DOI: 10.1038/s43856-023-00301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The experiences of art and music are an essential part of human life and this study aimed to examine the longitudinal association between cultural participation and coronary heart disease. METHODS This was a longitudinal study on a randomly selected representative adult cohort (n = 3296) of the Swedish population. The study period was over 36 years (1982-2017) with three separate eight-year interval measurements of cultural exposure (for example, visiting theatres and museums) starting in 1982/83. The outcome was coronary heart disease during the study period. Marginal structural Cox models with inverse probability weighting were used to account for time-varying weights of the exposure and potential confounders during the follow-up. The associations were also examined through a time-varying Cox proportional hazard regression model. RESULTS Cultural participation shows a graded association, the higher the exposure the lower the risk of coronary heart disease; the hazard ratio was 0.66 (95% confidence interval, 0.50 to 0.86) for coronary heart disease in participants with the highest level of cultural exposure compared with the lowest level. CONCLUSION Although causality cannot be determined due to the remaining risk of residual confounding and bias, the use of marginal structural Cox models with inverse probability weighting strengthens the evidence for a potentially causal association with cardiovascular health, which warrants further studies.
Collapse
Affiliation(s)
- Sven-Erik Johansson
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Filip Jansåker
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Shimane, Japan
| | - Lars Olov Bygren
- Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
13
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
14
|
Bygren LO, Jansåker F, Sundquist K, Johansson SE. Association between attending cultural events and all-cause mortality: a longitudinal study with three measurements (1982-2017). BMJ Open 2023; 13:e065714. [PMID: 36810171 PMCID: PMC9945101 DOI: 10.1136/bmjopen-2022-065714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES To examine the association between cultural attendance and all-cause mortality. DESIGN A longitudinal cohort study over 36 years (1982-2017) with three 8-year interval measurements of exposure (1982/1983, 1990/1991 and 1998/1999) to cultural attendance and a follow-up period to 31 December 2017. SETTING Sweden. PARTICIPANTS The study included 3311 randomly selected individuals from the Swedish population with complete data for all three measurements. PRIMARY OUTCOME MEASUREMENTS All-cause mortality during the study period in relation to level of cultural attendance. Cox regression models with time-varying covariates were used to estimate HRs adjusted for potential confounders. RESULTS The HRs of cultural attendance in the lowest and middle levels compared with the highest level (reference; HR=1) were 1.63 (95% CI 1.34 to 2.00) and 1.25 (95% CI 1.03 to 1.51), respectively. CONCLUSION Attending cultural events has a suggested gradient, the lesser cultural exposure the higher all-cause mortality during the follow-up.
Collapse
Affiliation(s)
- Lars Olov Bygren
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Filip Jansåker
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Clinical Microbiology, Rigshospitalet, Kobenhavn, Denmark
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Sven-Erik Johansson
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
15
|
Jafari-Raddani F, Davoodi-Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochem Funct 2022; 40:800-825. [PMID: 36111699 DOI: 10.1002/cbf.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs whose functions are widespread in all branches of life and have been the focus of attention in the last decade. While a huge number of lncRNAs have been identified, there is still much work to be done and plenty to be learned. In the current review, we begin with the biogenesis and function of lncRNAs as they are involved in the different cellular processes from regulating the architecture of chromosomes to controlling translation and post-translation modifications. Questions on how overexpression, mutations, or deficiency of lncRNAs can affect the cellular status and result in the pathogenesis of various human diseases are responded to. Besides, we allocate an overview of several studies, concerning the application of lncRNAs either as diagnostic and prognostic biomarkers or novel therapeutics. We also introduce the currently available techniques to explore details of lncRNAs such as their function, cellular localization, and structure. In the last section, as exponentially growing data in this area need to be gathered and organized in comprehensive databases, we have a particular focus on presenting general and specialized databases. Taken together, with this review, we aim to provide the latest information on different aspects of lncRNAs to highlight their importance in physiopathologic states and take a step towards helping future studies.
Collapse
Affiliation(s)
- Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Daredia S, Huen K, Van Der Laan L, Collender PA, Nwanaji-Enwerem JC, Harley K, Deardorff J, Eskenazi B, Holland N, Cardenas A. Prenatal and birth associations of epigenetic gestational age acceleration in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort. Epigenetics 2022; 17:2006-2021. [PMID: 35912433 PMCID: PMC9665122 DOI: 10.1080/15592294.2022.2102846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022] Open
Abstract
Gestational age (GA) is an important determinant of child health and disease risk. Two epigenetic GA clocks have been developed using DNA methylation (DNAm) patterns in cord blood. We investigate the accuracy of GA clocks and determinants of epigenetic GA acceleration (GAA), a biomarker of biological ageing. We hypothesize that prenatal and birth characteristics are associated with altered GAA, thereby disrupting foetal biological ageing. We examined 372 mother-child pairs from the Center for the Health Assessment of Mothers and Children of Salinas study of primarily Latino farmworkers in California. Chronological GA was robustly correlated with epigenetic GA (DNAm GA) estimated by the Knight (r = 0.48, p < 2.2x10-16) and Bohlin clocks (r = 0.67, p < 2.2x10-16) using the Illumina 450K array in cord blood samples collected at birth. GA clock performance was robust, though slightly lower, using DNAm profiles from the Illumina EPIC array in a smaller subsample (Knight: r = 0.39, p < 3.5x10-5; Bohlin: r = 0.60, p < 7.7x10-12). After adjusting for confounders, high maternal serum triglyceride levels (Bohlin: β = -0.01 days per mg/dL, p = 0.03), high maternal serum lipid levels (Bohlin: β = -4.31x10-3 days per mg/dL, p = 0.04), preterm delivery (Bohlin: β = -4.03 days, p = 9.64x10-4), greater maternal parity (Knight: β = -4.07 days, p = 0.01; Bohlin: β = -2.43 days, p = 0.01), and male infant sex (Knight: β = -3.15 days, p = 3.10x10-3) were associated with decreased GAA.Prenatal and birth characteristics affect GAA in newborns. Understanding factors that accelerate or delay biological ageing at birth may identify early-life targets for disease prevention and improve ageing across the life-course. Future research should test the impact of altered GAA on the long-term burden of age-related diseases.
Collapse
Affiliation(s)
- Saher Daredia
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Karen Huen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Lars Van Der Laan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Philip A. Collender
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Jamaji C. Nwanaji-Enwerem
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Kim Harley
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Andres Cardenas
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
17
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
18
|
Pogribna M, Word B, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines. Nanotoxicology 2022; 16:409-424. [DOI: 10.1080/17435390.2022.2085206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| |
Collapse
|
19
|
Ruan W, Wu J, Su J, Jiang Y, Pang T, Li J. Altered lncRNAs Transcriptomic Profiles in Atherosclerosis-Induced Ischemic Stroke. Cell Mol Neurobiol 2022; 42:265-278. [PMID: 32653974 PMCID: PMC11441192 DOI: 10.1007/s10571-020-00918-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
Abstract
Long non-coding RNAs (lncRNAs) can not only regulate gene transcription and translation, but also participate in the development of central nervous system diseases as epigenetic modification factors. However, their functional significance in atherosclerosis-induced ischemic stroke (AIIS) is unclear. The study aimed to screen out differentially expressed lncRNAs (delncRNAs), and to elucidate their potential regulatory mechanisms in the pathophysiology of AIIS. Based on the clinicopathological features and clinical images, we screened out 10 patients with AIIS and recruited 10 healthy volunteers. Then we used microarray to detect the whole blood RNA of subjects, and explored the biological functions of delncRNAs by GO and KEGG analysis. After further analyzing the delncRNAs of THP-1 stimulated with ox-LDL, selective lncRNAs were screened and a corresponding lncRNA-mRNA interaction network was constructed through co-expression analysis. We yielded 180 delncRNAs (44 up-regulated and 136 down-regulated) and 218 demRNAs (45 up-regulated and 173 down-regulated). Lnc-SCARNA8 and lnc-SNRPN-2 are the most significant elevated and decreased lncRNA in AIIS, respectively. The delncRNAs may play a significant role in ubiquitination-mediated protein degradation signaling pathways. According to lncRNA-mRNA network, the expression of vacuolar protein sorting 13 homolog B (VPS13B) and biliverdin reductase B (BLVRB) were significantly regulated. Our findings suggest that the ubiquitinated proteasome pathway, VPS13B and BLVRB may play a fundamental role in the pathological process of AIIS.
Collapse
Affiliation(s)
- Wenchen Ruan
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jiayang Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jingjing Su
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, People's Republic of China
| | - Yongcheng Jiang
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| | - Jingwei Li
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
20
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
21
|
Fathy N, Kortam MA, Shaker OG, Sayed NH. Long Noncoding RNAs MALAT1 and ANRIL Gene Variants and the Risk of Cerebral Ischemic Stroke: An Association Study. ACS Chem Neurosci 2021; 12:1351-1362. [PMID: 33818067 DOI: 10.1021/acschemneuro.0c00822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cerebral ischemic stroke (CIS) is one of the primary causes of death worldwide and a major cause of long-term disability. Long noncoding RNAs (lncRNAs) have emerged as crucial mediators in the pathology of CIS; however, their potential importance is yet to be discovered. Herein, we examined the association of four single-nucleotide polymorphisms (SNPs) with the risk of CIS, their correlation with the lncRNAs, MALAT1 and ANRIL, expression, and the potential of serum MALAT1 and ANRIL as biomarkers for CIS. A total of 100 CIS patients and 100 healthy controls were recruited in the study. Genotyping and expression analysis of MALAT1 and ANRIL SNPs were carried out by qPCR. The present results showed that serum MALAT1 was downregulated, while serum ANRIL was overexpressed in CIS patients, relative to controls. MALAT1 downregulation discriminated CIS patients from controls by receiver-operating-characteristic analysis. Moreover, serum ANRIL denoted good diagnostic accuracy. MALAT1 rs619586 AA and rs3200401 CT, TT were associated with increased CIS risk, whereas ANRIL rs10965215 GG was found to be protective. The studied ANRIL rs10738605 polymorphism was not associated with CIS susceptibility. Notably, the G variant of MALAT1 rs619586 demonstrated a higher serum MALAT1 expression level. Multivariate logistic regression analysis revealed serum MALAT1 as well as MALAT1 rs3200401 CT + TT as independent predictors of CIS. Additionally, a negative association was found between the serum MALAT1 level and the National Institutes of Health Stroke Scale score. In conclusion, MALAT1 rs619586 and rs3200401 and ANRIL rs10965215 are novel prospective noninvasive diagnostic biomarkers for CIS predisposition.
Collapse
Affiliation(s)
- Nevine Fathy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona A. Kortam
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
22
|
Jayalekshmi VS, Ramachandran S. Maternal cholesterol levels during gestation: boon or bane for the offspring? Mol Cell Biochem 2021; 476:401-416. [PMID: 32964393 DOI: 10.1007/s11010-020-03916-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
An increase in cholesterol levels is perceived during pregnancy and is considered as a normal adaptive response to the development of the fetus. In some pregnancies, excessive increase in total cholesterol with high levels of Low-Density Lipoprotein leads to maladaptation by the fetus to cholesterol demands, resulting in a pathological condition termed as maternal hypercholesterolemia (MH). MH is considered clinically irrelevant and therefore cholesterol levels are not routinely checked during pregnancy, as a consequence of which there is scarce information on its global prevalence in pregnant women. Studies have reported that MH during pregnancy can cause atherogenesis in adults emphasizing the concept of in utero programming of fetus. Moreover, Gestational Diabetes Mellitus, obesity and Polycystic Ovary Syndrome are potential risk factors which strengthen combined pathologies in placenta and fetuses of mothers with MH. However, lack of conclusive evidence on cholesterol transport and underlying programming demand substantial research to develop population-based life style strategies for women in their childbearing years. The current review focuses on the mechanisms and outcomes of MH from existing epidemiological as well as experimental data and presents a detailed insight on this novel risk factor of cardiovascular diseases.
Collapse
Affiliation(s)
- V S Jayalekshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- PhD Program in Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
23
|
Zhang C, Han B, Xu T, Li D. The biological function and potential mechanism of long non-coding RNAs in cardiovascular disease. J Cell Mol Med 2020; 24:12900-12909. [PMID: 33052009 PMCID: PMC7701533 DOI: 10.1111/jcmm.15968] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), as part of the family of non-protein-coding transcripts, are implicated in the occurrence and progression of several cardiovascular diseases (CVDs). With recent advances in lncRNA research, these molecules are purported to regulate gene expression at multiple levels, thereby producing beneficial or detrimental biological effects during CVD pathogenesis. At the transcriptional level, lncRNAs affect gene expression by interacting with DNA and proteins, for example, components of chromatin-modifying complexes, or transcription factors affecting chromatin status. These potential mechanisms suggest that lncRNAs guide proteins to specific gene loci (eg promoter regions), or forestall proteins to specific genomic sites via DNA binding. Additionally, some lncRNAs are required for correct chromatin conformation, which occurs via chromatin looping in enhancer-like models. At the post-transcriptional level, lncRNAs interact with RNA molecules, mainly microRNAs (miRNAs) and mRNAs, potentially regulating CVD pathophysiological processes. Moreover, lncRNAs appear to post-transcriptionally modulate gene expression by participating in mRNA splicing, stability, degradation and translation. Thus, the purpose of this review is to provide a comprehensive summary of lncRNAs implicated in CVD biological processes, with an emphasis on potential mechanisms of action.
Collapse
Affiliation(s)
- Chengmeng Zhang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Bing Han
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Chen H, Fan Y, Jing H, Tang S, Zhou J. Emerging role of lncRNAs in renal fibrosis. Arch Biochem Biophys 2020; 692:108530. [PMID: 32768395 DOI: 10.1016/j.abb.2020.108530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final common pathological feature of a wide variety of chronic kidney disease (CKD). However, an understanding of the mechanisms underlying the development of renal fibrosis remains challenging and controversial. As the current focus of molecular research, noncoding RNAs (ncRNAs), mainly microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular noncoding RNAs (circRNAs), have powerful and abundant biological functions, which essentially makes them mediators of the physiological and pathological processes of various system diseases. The role of ncRNAs in renal fibrosis has also received great attention in recent years, but most research has mainly focused on miRNAs. In fact, although a large number of studies of lncRNAs have emerged recently, the role these molecules play in renal fibrosis haven't been fully understood till now. Thus, this review discusses the discovery of lncRNAs and their biological functions in different types of renal fibrosis, as well as the imminent applications of these findings in clinical use. Undoubtedly, in the future, further understanding of the function of all types of lncRNAs will reveal large breakthroughs in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, 511400, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
25
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
26
|
Sirtuin 3, Endothelial Metabolic Reprogramming, and Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol 2020; 74:315-323. [PMID: 31425381 DOI: 10.1097/fjc.0000000000000719] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The incidences of heart failure with preserved ejection fraction (HFpEF) are increased in aged populations as well as diabetes and hypertension. Coronary microvascular dysfunction has contributed to the development of HFpEF. Endothelial cells (ECs) depend on glycolysis rather than oxidative phosphorylation for generating adenosine triphosphate to maintain vascular homeostasis. Glycolytic metabolism has a critical role in the process of angiogenesis, because ECs rely on the energy produced predominantly from glycolysis for migration and proliferation. Sirtuin 3 (SIRT3) is found predominantly in mitochondria and its expression declines progressively with aging, diabetes, obesity, and hypertension. Emerging evidence indicates that endothelial SIRT3 regulates a metabolic switch between glycolysis and mitochondrial respiration. SIRT3 deficiency in EC resulted in a significant decrease in glycolysis, whereas, it exhibited higher mitochondrial respiration and more prominent production of reactive oxygen species. SIRT3 deficiency also displayed striking increases in acetylation of p53, EC apoptosis, and senescence. Impairment of SIRT3-mediated EC metabolism may lead to a disruption of EC/pericyte/cardiomyocyte communications and coronary microvascular rarefaction, which promotes cardiomyocyte hypoxia, Titin-based cardiomyocyte stiffness, and myocardial fibrosis, thus leading to a diastolic dysfunction and HFpEF. This review summarizes current knowledge of SIRT3 in EC metabolic reprograming, EC/pericyte interactions, coronary microvascular dysfunction, and HFpEF.
Collapse
|
27
|
Treesaranuwattana T, Wong KYH, Brooks DL, Tay CS, Williams GH, Williams JS, Pojoga LH. Lysine-Specific Demethylase-1 Deficiency Increases Agonist Signaling Via the Mineralocorticoid Receptor. Hypertension 2020; 75:1045-1053. [PMID: 32160100 DOI: 10.1161/hypertensionaha.119.13821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
LSD1 (lysine-specific demethylase-1) is an epigenetic regulator of gene transcription. LSD1 risk allele in humans and LSD1 deficiency (LSD1+/-) in mice confer increasing salt-sensitivity of blood pressure with age, which evolves into salt-sensitive hypertension in older individuals. However, the mechanism underlying the relationship between LSD1 and salt-sensitivity of blood pressure remains elusive. Here, we show that LSD1 genotype (in humans) and LSD1 deficiency (in mice) lead to similar associations with increased blood pressure and urine potassium levels but with decreased aldosterone levels during a liberal salt diet. Thus, we hypothesized that LSD1 deficiency leads to an MR (mineralocorticoid receptor)-dependent hypertensive state. Yet, further studies in LSD1+/- mice treated with the MR antagonist eplerenone demonstrate that hypertension, kaliuria, and albuminuria are substantially improved, suggesting that the ligand-independent activation of the MR is the underlying cause of this LSD1 deficiency-mediated phenotype. Indeed, while MR and epithelial sodium channel expression levels were increased in LSD1+/- mouse kidney tissues, aldosterone secretion from LSD1+/- glomerulosa cells was significantly lower. Collectively, these data establish that LSD1 deficiency leads to an inappropriate activation and increased levels of the MR during a liberal salt regimen and suggest that inhibiting the MR pathway is a useful strategy for treatment of hypertension in human LSD1 risk allele carriers.
Collapse
Affiliation(s)
- Thitinan Treesaranuwattana
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.).,Division of Endocrinology and Metabolism, Rajavithi Hospital, Rangsit University, Bangkok, Thailand (T.T.)
| | - Kelly Yin Han Wong
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.).,Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia (K.Y.H.W., C.S.T.)
| | - Danielle L Brooks
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| | - Chee Sin Tay
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.).,Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia (K.Y.H.W., C.S.T.)
| | - Gordon H Williams
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| | - Jonathan S Williams
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| | - Luminita H Pojoga
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| |
Collapse
|
28
|
Guarner-Lans V, Ramírez-Higuera A, Rubio-Ruiz ME, Castrejón-Téllez V, Soto ME, Pérez-Torres I. Early Programming of Adult Systemic Essential Hypertension. Int J Mol Sci 2020; 21:E1203. [PMID: 32054074 PMCID: PMC7072742 DOI: 10.3390/ijms21041203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are being included in the study of developmental origins of health and disease (DOHaD) and essential systemic hypertension has also been added to this field. Epigenetic modifications are one of the main mechanisms leading to early programming of disease. Different environmental factors occurring during critical windows in the early stages of life may leave epigenetic cues, which may be involved in the programming of hypertension when individuals reach adulthood. Such environmental factors include pre-term birth, low weight at birth, altered programming of different organs such as the blood vessels and the kidney, and living in disadvantageous conditions in the programming of hypertension. Mechanisms behind these factors that impact on the programming include undernutrition, oxidative stress, inflammation, emotional stress, and changes in the microbiota. These factors and their underlying causes acting at the vascular level will be discussed in this paper. We also explore the establishment of epigenetic cues that may lead to hypertension at the vascular level such as DNA methylation, histone modifications (methylation and acetylation), and the role of microRNAs in the endothelial cells and blood vessel smooth muscle which participate in hypertension. Since epigenetic changes are reversible, the knowledge of this type of markers could be useful in the field of prevention, diagnosis or epigenetic drugs as a therapeutic approach to hypertension.
Collapse
Affiliation(s)
- Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.E.R.-R.); (V.C.-T.)
| | - Abril Ramírez-Higuera
- Nutrition Biochemistry Laboratory, Research and Food Development Unit. Veracruz Technological Institute, National Technological of Mexico, Veracruz 91897, Mexico;
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.E.R.-R.); (V.C.-T.)
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.E.R.-R.); (V.C.-T.)
| | - María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico 14080, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico 14080, Mexico;
| |
Collapse
|
29
|
Abstract
Epigenetic regulatory mechanisms, encompassing diverse molecular processes including DNA methylation, histone post-translational modifications, and noncoding RNAs, are essential to numerous processes such as cell differentiation, growth and development, environmental adaptation, aging, and disease states. In many cases, epigenetic changes occur in response to environmental cues and lifestyle factors, resulting in persistent changes in gene expression that affect vascular disease risk during the lifetime of the individual. Biological aging-a powerful cardiovascular risk factor-is partly genetically determined yet strongly influenced by traditional risk factors, reflecting epigenetic modulation. Quantification of specific DNA methylation patterns may serve as an accurate predictor of biological age-a concept known as the epigenetic clock, which could help to refine cardiovascular risk assessment. Epigenetic reprogramming of monocytes rewires cellular immune signaling and induces a metabolic shift toward aerobic glycolysis, thereby increasing innate immune responses. This form of trained epigenetic memory can be maladaptive, thus augmenting vascular inflammation. Somatic mutations in epigenetic regulatory enzymes lead to clonal hematopoiesis of indeterminate potential, a precursor of hematologic malignancies and a recently recognized cardiovascular risk factor; moreover, epigenetic regulators are increasingly being targeted in cancer therapeutics. Thus, understanding epigenetic regulatory mechanisms lies at the intersection between cancer and cardiovascular disease and is of paramount importance to the burgeoning field of cardio-oncology (Graphic Abstract).
Collapse
Affiliation(s)
- Abdalrahman Zarzour
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Ha Won Kim
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Neal L Weintraub
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| |
Collapse
|
30
|
Dasinger JH, Alsheikh AJ, Abais-Battad JM, Pan X, Fehrenbach DJ, Lund H, Roberts ML, Cowley AW, Kidambi S, Kotchen TA, Liu P, Liang M, Mattson DL. Epigenetic Modifications in T Cells: The Role of DNA Methylation in Salt-Sensitive Hypertension. Hypertension 2019; 75:372-382. [PMID: 31838911 DOI: 10.1161/hypertensionaha.119.13716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The SS (Dahl salt sensitive) rat is an established model of hypertension and renal damage that is accompanied with immune system activation in response to a high-salt diet. Investigations into the effects of sodium-independent and dependent components of the diet were shown to affect the disease phenotype with SS/MCW (JrHsdMcwi) rats maintained on a purified diet (AIN-76A) presenting with a more severe phenotype relative to grain-fed SS/CRL (JrHsdMcwiCrl) rats. Since contributions of the immune system, environment, and diet are documented to alter this phenotype, this present study examined the epigenetic profile of T cells isolated from the periphery and the kidney from these colonies. T cells isolated from kidneys of the 2 colonies revealed that transcriptomic and functional differences may contribute to the susceptibility of hypertension and renal damage. In response to high-salt challenge, the methylome of T cells isolated from the kidney of SS/MCW exhibit a significant increase in differentially methylated regions with a preference for hypermethylation compared with the SS/CRL kidney T cells. Circulating T cells exhibited similar methylation profiles between colonies. Utilizing transcriptomic data from T cells isolated from the same animals upon which the DNA methylation analysis was performed, a predominant negative correlation was observed between gene expression and DNA methylation in all groups. Lastly, inhibition of DNA methyltransferases blunted salt-induced hypertension and renal damage in the SS/MCW rats providing a functional role for methylation. This study demonstrated the influence of epigenetic modifications to immune cell function, highlighting the need for further investigations.
Collapse
Affiliation(s)
- John Henry Dasinger
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Ammar J Alsheikh
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Justine M Abais-Battad
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Xiaoqing Pan
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Daniel J Fehrenbach
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Hayley Lund
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Michelle L Roberts
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Allen W Cowley
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Srividya Kidambi
- Medicine (S.K., T.A.K.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Theodore A Kotchen
- Medicine (S.K., T.A.K.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Pengyuan Liu
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Mingyu Liang
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - David L Mattson
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| |
Collapse
|
31
|
Alishahi M, Ghaedrahmati F, Kolagar TA, Winlow W, Nikkar N, Farzaneh M, Khoshnam SE. Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis 2019; 34:1243-1251. [PMID: 31055786 DOI: 10.1007/s11011-019-00423-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/21/2019] [Indexed: 01/02/2023]
Abstract
Stroke is a major cause of morbidity and mortality worldwide, and extensive efforts have focused on the improvement of therapeutic strategies to reduce cell death following ischemic stroke. Uncovering the cellular and molecular pathophysiological processes in ischemic stroke have been a top priority. Long noncoding RNAs (lncRNAs) are endogenous molecules that play key roles in the pathophysiology of cerebral ischemia, and involved in the neuronal cell death during ischemic stroke. In recent years, a bulk of aberrantly expressed lncRNAs have been screened out in ischemic stroke insulted animals. LncRNAs along with their targets could affect the genetic machinery at molecular levels, and exploring their functions and mechanisms may be a promising option for ischemic stroke treatment. In this review, we summarize the current knowledge for lncRNAs in ischemic stroke, focusing on the role of specific lncRNAs that may underlie cell death to find possible therapeutic targets.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Via Cintia 26, 80126, Naples, Italy
- Honorary Research Fellow, Institute of Ageing and Chronic Diseases, University of Liverpool, The APEX building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Negin Nikkar
- Department of Biology, Faculty of Sciences, Alzahra University, Tehran, Iran
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
32
|
The anti-cancer drug doxorubicin induces substantial epigenetic changes in cultured cardiomyocytes. Chem Biol Interact 2019; 313:108834. [PMID: 31545955 DOI: 10.1016/j.cbi.2019.108834] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
The anthracycline doxorubicin (DOX) is widely used in cancer therapy with the limitation of cardiotoxicity leading to the development of congestive heart failure. DOX-induced oxidative stress and changes of the phosphoproteome as well as epigenome were described but the exact mechanisms of the adverse long-term effects are still elusive. Here, we tested the impact of DOX treatment on cell death, oxidative stress parameters and expression profiles of proteins involved in epigenetic pathways in a cardiomyocyte cell culture model. Markers of oxidative stress, apoptosis and expression of proteins involved in epigenetic processes were assessed by immunoblotting in cultured rat myoblasts (H9c2) upon treatment with DOX (1 or 5 μM for 24 or 48 h) in adherent viable and detached apoptotic cells. The apoptosis markers cleaved caspase-3 and fractin as well as oxidative stress markers 3-nitrotyrosine and malondialdehyde were dose-dependently increased by DOX treatment. Histone deacetylases (SIRT1 and HDAC2), histone lysine demethylases (KDM3A and LSD1) and histone lysine methyltransferases (SET7 and SMYD1) were significantly regulated by DOX treatment with generation of cleaved protein fragments and posttranslational modifications. Overall, we found significant decrease in histone 3 acetylation in DOX-treated cells. DOX treatment of cultured cardiomyocyte precursor cells causes severe cell death by apoptosis associated with cellular oxidative stress. In addition, significant regulation of proteins involved in epigenetic processes and changes in global histone 3 acetylation were observed. However, the significance and clinical impact of these changes remain elusive.
Collapse
|
33
|
Effects of Physical Exercise on Endothelial Function and DNA Methylation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142530. [PMID: 31315170 PMCID: PMC6678332 DOI: 10.3390/ijerph16142530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/22/2022]
Abstract
Essential hypertension is the leading preventable cause of death in the world. Epidemiological studies have shown that physical training can reduce blood pressure (BP), both in hypertensive and healthy individuals. Increasing evidence is emerging that DNA methylation is involved in alteration of the phenotype and of vascular function in response to environmental stimuli. We evaluated repetitive element and gene-specific DNA methylation in peripheral blood leukocytes of 68 volunteers, taken before (T0) and after (T1) a three-month intervention protocol of continuative aerobic physical exercise. DNA methylation was assessed by bisulfite-PCR and pyrosequencing. Comparing T0 and T1 measurements, we found an increase in oxygen consumption at peak of exercise (VO2peak) and a decrease in diastolic BP at rest. Exercise increased the levels of ALU and Long Interspersed Nuclear Element 1 (LINE-1) repetitive elements methylation, and of Endothelin-1 (EDN1), Inducible Nitric Oxide Synthase (NOS2), and Tumour Necrosis Factor Alpha (TNF) gene-specific methylation. VO2peak was positively associated with methylation of ALU, EDN1, NOS2, and TNF; systolic BP at rest was inversely associated with LINE-1, EDN1, and NOS2 methylation; diastolic BP was inversely associated with EDN1 and NOS2 methylation. Our findings suggest a possible role of DNA methylation for lowering systemic BP induced by the continuative aerobic physical training program.
Collapse
|
34
|
Brandenburger T, Salgado Somoza A, Devaux Y, Lorenzen JM. Noncoding RNAs in acute kidney injury. Kidney Int 2019; 94:870-881. [PMID: 30348304 DOI: 10.1016/j.kint.2018.06.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 02/09/2023]
Abstract
Acute kidney injury (AKI) is an important health issue concerning ∼50% of patients treated in intensive care units. AKI mainly occurs after sepsis, acute ischemia, nephrotoxicity, or hypoxia and leads to severe damage of the kidney and to an increased risk of mortality. The diagnosis of AKI is currently based on creatinine urea levels and diuresis. Yet, novel markers may improve the accuracy of this diagnosis at an early stage of the disease, thereby allowing early prevention and therapy, ultimately leading to a reduction in the need for renal replacement therapy and decreased mortality. Non-protein-coding RNAs or noncoding RNAs are central players in development and disease. They are important regulatory molecules that allow a fine-tuning of gene expression and protein synthesis. This regulation is necessary to maintain homeostasis, and its dysregulation is often associated with disease development. Noncoding RNAs are present in the kidney and in body fluids and their expression is modulated during AKI. This review article assembles the current knowledge of the role of noncoding RNAs, including microRNAs, long noncoding RNAs and circular RNAs, in the pathogenesis of AKI. Their potential as biomarkers and therapeutic targets as well as the challenges to translate research findings to clinical application are discussed. Although microRNAs have entered clinical testing, preclinical and clinical trials are needed before long noncoding RNAs and circular RNAs may be considered as useful biomarkers or therapeutic targets of AKI.
Collapse
Affiliation(s)
- Timo Brandenburger
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.
| | - Antonio Salgado Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Johan M Lorenzen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Klimanova EA, Sidorenko SV, Smolyaninova LV, Kapilevich LV, Gusakova SV, Lopina OD, Orlov SN. Ubiquitous and cell type-specific transcriptomic changes triggered by dissipation of monovalent cation gradients in rodent cells: Physiological and pathophysiological implications. CURRENT TOPICS IN MEMBRANES 2019; 83:107-149. [PMID: 31196602 DOI: 10.1016/bs.ctm.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevation of [Na+]i/[K+]i-ratio is considered as one of the major signals triggering transcriptomic changes in various cells types. In this study, we identified ubiquitous and cell type-specific [Formula: see text] -sensitive genes by comparative analysis of transcriptomic changes in ouabain-treated rat aorta smooth muscle cells and rat aorta endothelial cells (RASMC and RAEC, respectively), rat cerebellar granule cells (RCGC), and mouse C2C12 myoblasts. Exposure of the cells to ouabain increased intracellular Na+ content by ~14, 8, 7, and 6-fold and resulted in appearance of 7577, 2698, 2120, and 1146 differentially expressed transcripts in RAEC, RASMC, C2C12, and RCGC, respectively. Eighty-three genes were found as the intersection of the four sets of identified transcripts corresponding to each cell type and are classified as ubiquitous. Among the 10 top upregulated ubiquitous transcripts are the following: Dusp6, Plk3, Trib1, Ccl7, Mafk, Atf3, Ptgs2, Cxcl1, Spry4, and Coq10b. Unique transcripts whose expression is cell-specific include 4897, 1523, 789, and 494 transcripts for RAEC, RASMC, C2C12, and RCGC, respectively. The role of gene expression and signal pathways induced by dissipation of transmembrane gradient of monovalent cations in the development of various diseases is discussed with special attention to cardiovascular and pulmonary illnesses.
Collapse
Affiliation(s)
- Elizaveta A Klimanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia.
| | - Svetlana V Sidorenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Larisa V Smolyaninova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia
| | | | | | - Olga D Lopina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei N Orlov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
36
|
Barangi S, Hayes AW, Reiter R, Karimi G. The therapeutic role of long non-coding RNAs in human diseases: A focus on the recent insights into autophagy. Pharmacol Res 2019; 142:22-29. [PMID: 30742900 DOI: 10.1016/j.phrs.2019.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Long non-coding RNA (lncRNA) is a class of non-coding RNA with ≥200 nucleotides in length which are involved as critical regulators in various cellular processes. LncRNAs contribute to the development and progression of many human diseases. Autophagy is a key catabolic process which helps to maintain the cellular homeostasis through the decay of damaged or unwanted proteins and dysfunctional cytoplasmic organelles. The impairment of the autophagy process has been described in numerous diseases. The autophagy possess can have either a protective or a detrimental role in cells depending on its activation status and other cellular conditions. LncRNAs have been shown to have an important function in the regulation of important biological processes such as autophagy. The relationship between lncRNAs and autophagy has been shown to be involved in the progression and possibly in the prevention of many diseases. In this review, recent findings on the regulatory roles of lncRNAs in the cell autophagy pathway, as well as their relevance to different diseases such as cardiovascular disease, cerebral ischemic stroke and cancer are highlighted.
Collapse
Affiliation(s)
- Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, USA; Michigan State University, East Lansing, MI, USA
| | - Russel Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Huang G, Liu J, Yang C, Xiang Y, Wang Y, Wang J, Cao M, Yang W. RNA sequencing discloses the genome‑wide profile of long noncoding RNAs in dilated cardiomyopathy. Mol Med Rep 2019; 19:2569-2580. [PMID: 30720098 PMCID: PMC6423559 DOI: 10.3892/mmr.2019.9937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a common type of non‑ischemic cardiomyopathy, of which the underlying mechanisms have not yet been fully elucidated. Long noncoding RNAs (lncRNAs) have been reported to serve crucial physiological roles in various cardiac diseases. However, the genome‑wide expression profile of lncRNAs remains to be elucidated in DCM. In the present study, a case‑control study was performed to identify expression deviations in circulating lncRNAs between patients with DCM and controls by RNA sequencing. Partial dysregulated lncRNAs were validated by reverse transcription‑polymerase chain reaction. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and lncRNA‑messenger RNA (mRNA) co‑expression network analyses were employed to probe potential functions of these dysregulated lncRNAs in DCM. Comparison between 8 DCM and 8 control samples demonstrated that there were alterations in the expression levels of 988 lncRNAs and 1,418 mRNAs in total. The dysregulated lncRNAs were found to be mainly associated with system development, organ morphogenesis and metabolic regulation in terms of 'biological processes'. Furthermore, the analysis revealed that the gap junction pathway, phagosome, and dilated and hypertrophic cardiomyopathy pathways may serve crucial roles in the development of DCM. The lncRNA‑mRNA co‑expression network also suggested that the target genes of the lncRNAs were different in patients with DCM as compared with those in the controls. In conclusion, the present study revealed the genome‑wide profile of circulating lncRNAs in DCM by RNA sequencing, and explored the potential functions of these lncRNAs in DCM using bioinformatics analysis. These findings provide a theoretical foundation for future studies of lncRNAs in DCM.
Collapse
Affiliation(s)
- Guangyong Huang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Jingwen Liu
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Chuansheng Yang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Youzhang Xiang
- Shandong Institute for Endemic Disease Control, Jinan, Shandong 250014, P.R. China
| | - Yuehai Wang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Jing Wang
- Shandong Institute for Endemic Disease Control, Jinan, Shandong 250014, P.R. China
| | - Miaomiao Cao
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Wenbo Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
38
|
Ren W, Gao L, Qiang C, Li S, Zheng J, Wang Q, Zhi Y, Cai G, Kong X, Zhou M, Qu Z, Zhi K. Kindlin-2-mediated upregulation of ZEB2 facilitates migration and invasion of oral squamous cell carcinoma in a miR-200b-dependent manner. Am J Transl Res 2018; 10:2529-2541. [PMID: 30210690 PMCID: PMC6129550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The miR-200 family suppresses epithelial-mesenchymal transition by inhibiting ZEB1 and ZEB2 mRNA translation in several types of cancers. Kindlin-2 is a target gene of miR-200b and its expression level correlates positively to ZEB2 in oral squamous cell carcinoma (OSCC). Whether Kindlin-2 and ZEB2 share a competitive endogenous RNAs regulatory network in OSCC remains unclear. Here, we studied the expression levels of miR-200b, Kindlin-2, and ZEB2 and found direct interaction between miR-200b, ZEB2, and Kindlin-2 mRNA in OSCC. A series of experiments was performed to elucidate the role of miR-200b and Kindlin-2 in OSCC cells. To further investigate whether Kindlin-2 regulates ZEB2 as a "ceRNA", we utilized pools of siRNAs to deplete Kindlin-2 or ZEB2 in Tca-8113 cells. Significantly elevated expression levels of Kindlin-2 and ZEB2, down-regulated mRNA levels of miR-200b, and a positive correlation between Kindlin-2 and ZEB2 were found in OSCC cells. Additional results suggest that miR-200b directly targets ZEB2 and that Kindlin-2 3'UTR miR-200b repressed both the migration and invasive functionality of Tca-8113. Kindlin-2 and ZEB2 are involved in accelerated migration and invasion of Tca-113 cells in vitro and Kindlin-2 controlled ZEB2 expression. However, Kindlin-2-mediated ZEB2 regulation did not depend on miRNAs. These results indicate that Kindlin-2 does not act as ZEB2 ceRNA and modify the migration of Tca-8113 cells. Our results improve our understanding of the underlying molecular and cellular mechanisms of oral cancer metastasis.
Collapse
Affiliation(s)
- Wenhao Ren
- Department of Oral Maxillofacial Surgery, Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
- Department of Oral Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong UniversityXi’an, Shaanxi, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an, Shaanxi, P. R. China
| | - Ling Gao
- Department of Oral Maxillofacial Surgery, Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
- Department of Oral Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong UniversityXi’an, Shaanxi, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an, Shaanxi, P. R. China
| | - Cui Qiang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an, Shaanxi, P. R. China
| | - Shaoming Li
- Department of Oral Maxillofacial Surgery, Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Jingjing Zheng
- Department of Endodontics, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Qibo Wang
- Department of Oral Maxillofacial Surgery, Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Yuan Zhi
- Xiangya School of Stomatology, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Guangfeng Cai
- Department of Oral and Maxillofacial Surgery, Shandong Jining No. 1 People’s HospitalJining, Shandong, P. R. China
| | - Xinjuan Kong
- Department of Gastroenterology, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Minzhan Zhou
- Department of Oral Maxillofacial Surgery, Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Zhigang Qu
- Department of Hand and Foot Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Keqian Zhi
- Department of Oral Maxillofacial Surgery, Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
- Department of Oral Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong UniversityXi’an, Shaanxi, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an, Shaanxi, P. R. China
| |
Collapse
|
39
|
Song L, Qiao G, Xu Y, Ma L, Jiang W. Role of non-coding RNAs in cardiotoxicity of chemotherapy. Surg Oncol 2018; 27:526-538. [PMID: 30217315 DOI: 10.1016/j.suronc.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023]
Abstract
The long-time paradoxical situation of non-coding RNAs (ncRNAs) has been terminated for they emerge as executive at full spectrum of gene expression and translation. More recently, it has been demonstrated that some ncRNAs apparently are associated with chemotherapy, causing cardiotoxicity, which taint long-term recovery of patients in growing body of evidence. The current review focused on up-to-date knowledge on regulation change and molecular signaling of ncRNAs, at mean time evaluate their potentials as diagnostic biomarkers or therapeutic targets to monitor and protect cardio function.
Collapse
Affiliation(s)
- Lina Song
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanglei Qiao
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingjie Xu
- Department of Cardiology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lijun Ma
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weihua Jiang
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Ren W, Yang X. Pathophysiology of Long Non-coding RNAs in Ischemic Stroke. Front Mol Neurosci 2018; 11:96. [PMID: 29651234 PMCID: PMC5884949 DOI: 10.3389/fnmol.2018.00096] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Stroke is a neurological disease with high disability and fatality rates, and ischemic stroke accounts for 75% of all stroke cases. The underlying pathophysiologic processes of ischemic stroke include oxidative stress, toxicity of excitatory amino acids, excess calcium ions, increased apoptosis and inflammation. Long non-coding RNAs (lncRNAs) may participate in the regulation of the pathophysiologic processes of ischemic stroke as indicated by altered expression of lncRNAs in blood samples of acute ischemic stroke patients, animal models of focal cerebral ischemia and oxygen-glucose deprivation (OGD) cell models. Because of the potentially important role, lncRNAs might be useful as biomarkers for the diagnosis, treatment and prognosis of ischemic stroke. This article reviews the functions of lncRNAs in different pathophysiology events of ischemic stroke with a focus on specific lncRNAs that may underlie ischemic stroke pathophysiology and that could therefore serve as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Yang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Long Noncoding RNAs: New Players in Ischaemia-Reperfusion Injury. Heart Lung Circ 2018; 27:322-332. [DOI: 10.1016/j.hlc.2017.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
|
42
|
Kölling M, Genschel C, Kaucsar T, Hübner A, Rong S, Schmitt R, Sörensen-Zender I, Haddad G, Kistler A, Seeger H, Kielstein JT, Fliser D, Haller H, Wüthrich R, Zörnig M, Thum T, Lorenzen J. Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury. Sci Rep 2018; 8:3438. [PMID: 29467431 PMCID: PMC5821887 DOI: 10.1038/s41598-018-21720-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Non-coding RNAs are crucially involved in its pathophysiology. We identified hypoxia-induced long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) to be upregulated in renal I/R injury. We here elucidated the functional role of Malat1 in vitro and its potential contribution to kidney injury in vivo. Malat1 was upregulated in kidney biopsies and plasma of patients with AKI, in murine hypoxic kidney tissue as well as in cultured and ex vivo sorted hypoxic endothelial cells and tubular epithelial cells. Malat1 was transcriptionally activated by hypoxia-inducible factor 1-α. In vitro, Malat1 inhibition reduced proliferation and the number of endothelial cells in the S-phase of the cell cycle. In vivo, Malat1 knockout and wildtype mice showed similar degrees of outer medullary tubular epithelial injury, proliferation, capillary rarefaction, inflammation and fibrosis, survival and kidney function. Small-RNA sequencing and whole genome expression analysis revealed only minor changes between ischemic Malat1 knockout and wildtype mice. Contrary to previous studies, which suggested a prominent role of Malat1 in the induction of disease, we did not confirm an in vivo role of Malat1 concerning renal I/R-injury.
Collapse
Affiliation(s)
- Malte Kölling
- Department of Nephrology, University Hospital, Zürich, Switzerland.,Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Celina Genschel
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - Anika Hübner
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | - George Haddad
- Department of Nephrology, University Hospital, Zürich, Switzerland
| | - Andreas Kistler
- Department of Internal Medicine, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
| | - Harald Seeger
- Department of Nephrology, University Hospital, Zürich, Switzerland
| | - Jan T Kielstein
- Department of Nephrology, Städtisches Klinikum Braunschweig GmbH, Braunschweig, Germany
| | - Danilo Fliser
- Saarland University Medical Centre, Homburg/Saar, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Rudolf Wüthrich
- Department of Nephrology, University Hospital, Zürich, Switzerland
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Johan Lorenzen
- Department of Nephrology, University Hospital, Zürich, Switzerland.
| |
Collapse
|
43
|
Sex-specific cardiovascular susceptibility to ischaemic myocardial injury following exposure to prenatal hypoxia. Clin Sci (Lond) 2017; 131:2791-2794. [DOI: 10.1042/cs20171255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 11/17/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and hypertension contributes substantially to the incidence of stroke, coronary artery disease, heart failure, atrial fibrillation and peripheral vascular disease. The origin of hypertension is clearly multifactorial, and a complex and multifaceted approach is necessary to decrease its incidence. The most recognizable factors involved in reducing the incidence of hypertension are prevention, early diagnosis and treatment; however, the importance of the foetal environment and early postnatal development has recently been considered. In clinical practice, these factors are still frequently overlooked, probably because of a lack of knowledge about the underlying mechanisms and effective treatment or prevention. Pathophysiological mechanisms underlying the prenatal programming of CVDs were investigated in the study by Shah et al. published recently in Clinical Science (2017) 131(17), 2303–2317. The study explored cardiac susceptibility of adult male and female rat offspring to ischaemic myocardial injury due to prenatal exposure to hypoxia. The results demonstrated significant changes in global cardiac function and left ventricular dilatation following myocardial infarction in rat offspring prenatally exposed to hypoxia. The effects were gender specific and occurred only in males, whereas females were protected. These findings are important from several perspectives. First, they point to the fact that an inadequate foetal environment can increase susceptibility to death from myocardial infarction. Second, during their reproductive life, females are better protected from cardiovascular insult than males, but it is not known if they lose this advantage after menopause, and can be equally at risk as males.
Collapse
|
44
|
Spearman AD. Epigenetics for the pediatric cardiologist. CONGENIT HEART DIS 2017; 12:828-833. [PMID: 28984030 DOI: 10.1111/chd.12543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
A genetic basis of congenital heart disease (CHD) has been known for decades. In addition to the sequence of the genome, the contribution of epigenetics to pediatric cardiology is increasingly recognized. Multiple epigenetic mechanisms, including DNA methylation, histone modification, and RNA-based regulation, are known mediators of cardiovascular disease, including both development and progression of CHD and its sequelae. Basic understanding of the concepts of epigenetics will be essential to all pediatric cardiologists in order to understand mechanisms of pathophysiology, pharmacotherapeutic concepts, and to understand the role of epigenetics in precision medicine.
Collapse
Affiliation(s)
- Andrew D Spearman
- Medical College of Wisconsin, 9000 Wisconsin Avenue, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
45
|
Tapia-Vieyra JV, Delgado-Coello B, Mas-Oliva J. Atherosclerosis and Cancer; A Resemblance with Far-reaching Implications. Arch Med Res 2017; 48:12-26. [PMID: 28577865 DOI: 10.1016/j.arcmed.2017.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis and cancer are chronic diseases considered two of the main causes of death all over the world. Taking into account that both diseases are multifactorial, they share not only several important molecular pathways but also many ethiological and mechanistical processes from the very early stages of development up to the advanced forms in both pathologies. Factors involved in their progression comprise genetic alterations, inflammatory processes, uncontrolled cell proliferation and oxidative stress, as the most important ones. The fact that external effectors such as an infective process or a chemical insult have been proposed to initiate the transformation of cells in the artery wall and the process of atherogenesis, emphasizes many similarities with the progression of the neoplastic process in cancer. Deregulation of cell proliferation and therefore cell cycle progression, changes in the synthesis of important transcription factors as well as adhesion molecules, an alteration in the control of angiogenesis and the molecular similarities that follow chronic inflammation, are just a few of the processes that become part of the phenomena that closely correlates atherosclerosis and cancer. The aim of the present study is therefore, to provide new evidence as well as to discuss new approaches that might promote the identification of closer molecular ties between these two pathologies that would permit the recognition of atherosclerosis as a pathological process with a very close resemblance to the way a neoplastic process develops, that might eventually lead to novel ways of treatment.
Collapse
Affiliation(s)
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
46
|
Alipour S, Nouri M, Sakhinia E, Samadi N, Roshanravan N, Ghavami A, Khabbazi A. Epigenetic alterations in chronic disease focusing on Behçet's disease: Review. Biomed Pharmacother 2017; 91:526-533. [PMID: 28482290 DOI: 10.1016/j.biopha.2017.04.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE 'Epigenetics' is specified as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly overspreading scientific field, and the study of epigenetic regulation in chronic disease is emerging. This study aims to evaluate epigenetic changes including DNA methylation, histone modification, and non-coding RNAs (ncRNAs) in inflammatory disease, with focus on Behçet's disease. In this review, first we describe the history and classification of epigenetic changes, and then the role of epigenetic alterations in chronic diseases is explained. METHODS Systematic search of MEDLINE, Embase, and Cochrane Library was conducted for all comparative studies since 2000 to 2015 with the limitations of the English language. RESULTS For a notable period of time, researchers have mainly focused on the epigenetic pathways that are involved in the modulation of inflammatory and anti-inflammatory genes. Recent studies have proposed a central role for chronic inflammation in the pathogenesis of chronic disease, including Behçet's disease. CONCLUSION Studies have been reported on the epigenetic of BD showed the role of alterations in the methylation level of IRS elements; histone modifications such as H3K4me27 and H3K4me3; up regulation of miR-182 and miR-3591-3p; down regulation of miR-155, miR-638 and miR-4488 in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Shahriar Alipour
- Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Iran
| | - Mohammad Nouri
- Dept. of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Dept. of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Dept. of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Nutrition Research Center, School of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abed Ghavami
- Nutrition Research Center, School of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
47
|
Endothelial dysfunction in individuals born after fetal growth restriction: cardiovascular and renal consequences and preventive approaches. J Dev Orig Health Dis 2017; 8:448-464. [PMID: 28460648 DOI: 10.1017/s2040174417000265] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individuals born after intrauterine growth restriction (IUGR) have an increased risk of perinatal morbidity/mortality, and those who survive face long-term consequences such as cardiovascular-related diseases, including systemic hypertension, atherosclerosis, coronary heart disease and chronic kidney disease. In addition to the demonstrated long-term effects of decreased nephron endowment and hyperactivity of the hypothalamic-pituitary-adrenal axis, individuals born after IUGR also exhibit early alterations in vascular structure and function, which have been identified as key factors of the development of cardiovascular-related diseases. The endothelium plays a major role in maintaining vascular function and homeostasis. Therefore, it is not surprising that impaired endothelial function can lead to the long-term development of vascular-related diseases. Endothelial dysfunction, particularly impaired endothelium-dependent vasodilation and vascular remodeling, involves decreased nitric oxide (NO) bioavailability, impaired endothelial NO synthase functionality, increased oxidative stress, endothelial progenitor cells dysfunction and accelerated vascular senescence. Preventive approaches such as breastfeeding, supplementation with folate, vitamins, antioxidants, L-citrulline, L-arginine and treatment with NO modulators represent promising strategies for improving endothelial function, mitigating long-term outcomes and possibly preventing IUGR of vascular origin. Moreover, the identification of early biomarkers of endothelial dysfunction, especially epigenetic biomarkers, could allow early screening and follow-up of individuals at risk of developing cardiovascular and renal diseases, thus contributing to the development of preventive and therapeutic strategies to avert the long-term effects of endothelial dysfunction in infants born after IUGR.
Collapse
|
48
|
Yang W, Gao F, Zhang P, Pang S, Cui Y, Liu L, Wei G, Yan B. Functional genetic variants within the SIRT2 gene promoter in acute myocardial infarction. PLoS One 2017; 12:e0176245. [PMID: 28445509 PMCID: PMC5406008 DOI: 10.1371/journal.pone.0176245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Coronary artery disease (CAD), including acute myocardial infarction (AMI) is the complication of atherosclerosis. Recently, genome-wide association studies have identified a large number of CAD-related genetic variants. However, only 10% of CAD cases could be explained. Low frequent and rare genetic variants have been recently proposed to be main causes for CAD. SIRT2 is a member of sirtuin family, NAD(+)-dependent class III deacetylases. SIRT2 is involved in genomic stability, metabolism, inflammation, oxidative stress and autophagy, as well as in platelet function. Thus, we hypothesized that genetic variants in SIRT2 gene may contribute to AMI. In this study, SIRT2 gene promoter was analyzed in large cohorts of AMI patients (n = 375) and ethnic-matched controls (n = 377). Three novel heterozygous DSVs (g.38900888_91delTAAA, g.38900270A>G and g.38899853C>T) were identified in three AMI patients, but in none of controls. These DSVs significantly altered the transcriptional activity of the SIRT2 gene promoter (P<0.05) in both HEK-293 and H9c2 cells. Five novel heterozygous DSVS (g.38900562C>T, g.38900413A>C, g.38900030G>A, g.38899925A>C and g.38899852C>T) were only found in controls, which did not significantly affected SIRT2 gene promoter activity (P>0.05). In addition, four novel heterozygous DSVs and five SNPs were found in both AMI patients and control with similar frequencies (P>0.05), two SNPs of which were examined and did not affect SIRT2 gene promoter activity (P>0.05). Taken together, the DSVs identified in AMI patients may change SIRT2 level by affecting the transcriptional activity of SIRT2 gene promoter, contributing to the AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Feng Gao
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Pei Zhang
- College of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lixin Liu
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guanghe Wei
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- * E-mail:
| |
Collapse
|
49
|
Lin J, Lin S, Wu Y, Wang X, Wu S, Li H. Hypomethylation of the Angiotensin II Type I Receptor (AGTR1) Gene Along with Environmental Factors Increases the Risk for Essential Hypertension. Cardiology 2017; 137:126-135. [PMID: 28376480 DOI: 10.1159/000458520] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/24/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The present study aimed to evaluate the hypertension status of community residents, analyze environmental and epigenetic factors, and propose prevention measures for hypertension. METHODS In our study, different methylation levels were distinguished utilizing melting temperature (Tm) values in both the case and the control group. Multiple logistic regression analysis was used to estimate the risk of having essential hypertension (EH) between hypertensive and nonhypertensive participants. A receiver-operating characteristic curve was used to analyze Tm cutoff levels of methylation. RESULTS The average DNA Tm was 71.784 with a standard deviation of 0.210. The Tm value of community residents (Fujian, China) was inversely correlated with systolic and diastolic blood pressure. Student t test analysis showed a clear separation in Tm expression levels between the hypertensive and the control group (p < 0.05). The Tm value was lower in the hypertension group than in the normotensive group. Multivariate regression analysis showed that high levels of DNA methylation were a protective factor in hypertension with adjustment of demographic and environmental factors, whereas when the Tm value increased by 0.1 units, the risk of hypertension was reduced by 0.652 times. Patients that smoked and consumed an irregular diet demonstrated a lower degree of methylation in the presence of hypertension. CONCLUSIONS DNA methylation affects the risk for the development of hypertension; therefore, epigenetic markers could be used to measure hypertension levels to help elucidate the pathogenesis of EH.
Collapse
Affiliation(s)
- Jiabing Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | | | | | | | | | | |
Collapse
|
50
|
Martino F, Magenta A, Pannarale G, Martino E, Zanoni C, Perla FM, Puddu PE, Barillà F. Epigenetics and cardiovascular risk in childhood. J Cardiovasc Med (Hagerstown) 2017; 17:539-46. [PMID: 27367935 DOI: 10.2459/jcm.0000000000000334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) can arise at the early stages of development and growth. Genetic and environmental factors may interact resulting in epigenetic modifications with abnormal phenotypic expression of genetic information without any change in the nucleotide sequence of DNA. Maternal dietary imbalance, inadequate to meet the nutritional needs of the fetus can lead to intrauterine growth retardation, decreased gestational age, low birth weight, excessive post-natal growth and metabolic alterations, with subsequent appearance of CVD risk factors. Fetal exposure to high cholesterol, diabetes and maternal obesity is associated with increased risk and progression of atherosclerosis. Maternal smoking during pregnancy and exposure to various environmental pollutants induce epigenetic alterations of gene expression relevant to the onset or progression of CVD. In children with hypercholesterolemia and/or obesity, oxidative stress activates platelets and monocytes, which release proinflammatory and proatherogenic substances, inducing endothelial dysfunction, decreased Doppler flow-mediated dilation and increased carotid intima-media thickness. Primary prevention of atherosclerosis should be implemented early. It is necessary to identify, through screening, high-risk apparently healthy children and take care of them enforcing healthy lifestyle (mainly consisting of Mediterranean diet and physical activity), prescribing nutraceuticals and eventual medications, if required by a high-risk profile. The key issue is the restoration of endothelial function in the reversible stage of atherosclerosis. Epigenetics may provide new markers for an early identification of children at risk and thereby develop innovative therapies and specific nutritional interventions in critical times.
Collapse
Affiliation(s)
- Francesco Martino
- aDepartment of Pediatrics and Child Neuropsychiatry, Sapienza University of RomebVascular Pathology Laboratory, Fondazione Luigi Monti, Istituto Dermopatico dell'Immacolata-IRCCScDepartment of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, 'Sapienza' University of Rome, Rome, Italy*The authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|