1
|
Huang Y, Qiu H, Chen W, Meng Z, Cai Y, Qiao D, Yue X. Identification of TRAF2, CAMK2G, and TIMM17A as biomarkers distinguishing mechanical asphyxia from sudden cardiac death base on 4D-DIA Proteomics: A pilot study. J Pharm Biomed Anal 2025; 258:116730. [PMID: 39921950 DOI: 10.1016/j.jpba.2025.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/10/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
In the context of forensic medicine, the differential diagnosis between mechanical asphyxia and sudden cardiac death is very important regarding the establishment of the cause of death. Traditional autopsy findings have generally been very nonspecific; accordingly, highlighting the need for more specific molecular biomarkers. This study employed four-dimensional data-independent acquisition (4D-DIA) proteomics technology, in combination with both animal models and human samples, to conduct a comprehensive protein expression analysis of cardiac tissues, identifying 7557 proteins, among which 142 shared differentially expressed proteins (DEPS) were screened out. Based on the protein interaction network and through rigorous screening, this study identified three proteins, namely TNF receptor-associated factor 2 (TRAF2), Calcium/calmodulin-dependent protein kinase II gamma (CAMK2G), and translocase of inner mitochondrial membrane 17 homolog A (TIMM17A), as biomarkers for differentiating mechanical asphyxia from sudden cardiac death. Further verification using Western Blot (WB) and immunohistochemistry (IHC) proved the differential expression of these biomarkers in both animal and human samples. These findings, besides deepening the molecular understanding of the pathophysiological differences between sudden cardiac death and mechanical asphyxia, also provided new biomarkers for forensic applications that could enable the improvement of accuracy and reliability in the determination of the cause of death.
Collapse
Affiliation(s)
- Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wen Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zilin Meng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Cheng H, Kong CHT, James AF, Cannell MB, Hancox JC. Modulation of Spontaneous Action Potential Rate by Inositol Trisphosphate in Myocytes from the Rabbit Atrioventricular Node. Cells 2024; 13:1455. [PMID: 39273026 PMCID: PMC11394215 DOI: 10.3390/cells13171455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The atrioventricular node (AVN) is a key component of the cardiac conduction system and takes over pacemaking of the ventricles if the sinoatrial node fails. IP3 (inositol 1,4,5 trisphosphate) can modulate excitability of myocytes from other regions of the heart, but it is not known whether IP3 receptor (IP3-R) activation modulates AVN cell pacemaking. Consequently, this study investigated effects of IP3 on spontaneous action potentials (APs) from AVN cells isolated from rabbit hearts. Immunohistochemistry and confocal imaging demonstrated the presence of IP3-R2 in isolated AVN cells, with partial overlap with RyR2 ryanodine receptors seen in co-labelling experiments. In whole-cell recordings at physiological temperature, application of 10 µM membrane-permeant Bt3-(1,4,5)IP3-AM accelerated spontaneous AP rate and increased diastolic depolarization rate, without direct effects on ICa,L, IKr, If or INCX. By contrast, application via the patch pipette of 5 µM of the IP3-R inhibitor xestospongin C led to a slowing in spontaneous AP rate and prevented 10 µM Bt3-(1,4,5)IP3-AM application from increasing the AP rate. UV excitation of AVN cells loaded with caged-IP3 led to an acceleration in AP rate, the magnitude of which increased with the extent of UV excitation. 2-APB slowed spontaneous AP rate, consistent with a role for constitutive IP3-R activity; however, it was also found to inhibit ICa,L and IKr, confounding its use for studying IP3-R. Under AP voltage clamp, UV excitation of AVN cells loaded with caged IP3 activated an inward current during diastolic depolarization. Collectively, these results demonstrate that IP3 can modulate AVN cell pacemaking rate.
Collapse
Affiliation(s)
| | | | | | | | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (H.C.); (C.H.T.K.); (A.F.J.); (M.B.C.)
| |
Collapse
|
3
|
Jin X. The inositol trisphosphate receptor can facilitate but does not initiate ventricular arrhythmogenesis. J Physiol 2024; 602:5-8. [PMID: 38010615 DOI: 10.1113/jp285786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
- Xin Jin
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
4
|
Hurley ME, Shah SS, Sheard TMD, Kirton HM, Steele DS, Gamper N, Jayasinghe I. Super-Resolution Analysis of the Origins of the Elementary Events of ER Calcium Release in Dorsal Root Ganglion Neurons. Cells 2023; 13:38. [PMID: 38201242 PMCID: PMC10778190 DOI: 10.3390/cells13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Coordinated events of calcium (Ca2+) released from the endoplasmic reticulum (ER) are key second messengers in excitable cells. In pain-sensing dorsal root ganglion (DRG) neurons, these events can be observed as Ca2+ sparks, produced by a combination of ryanodine receptors (RyR) and inositol 1,4,5-triphosphate receptors (IP3R1). These microscopic signals offer the neuronal cells with a possible means of modulating the subplasmalemmal Ca2+ handling, initiating vesicular exocytosis. With super-resolution dSTORM and expansion microscopies, we visualised the nanoscale distributions of both RyR and IP3R1 that featured loosely organised clusters in the subplasmalemmal regions of cultured rat DRG somata. We adapted a novel correlative microscopy protocol to examine the nanoscale patterns of RyR and IP3R1 in the locality of each Ca2+ spark. We found that most subplasmalemmal sparks correlated with relatively small groups of RyR whilst larger sparks were often associated with larger groups of IP3R1. These data also showed spontaneous Ca2+ sparks in <30% of the subplasmalemmal cell area but consisted of both these channel species at a 3.8-5 times higher density than in nonactive regions of the cell. Taken together, these observations reveal distinct patterns and length scales of RyR and IP3R1 co-clustering at contact sites between the ER and the surface plasmalemma that encode the positions and the quantity of Ca2+ released at each Ca2+ spark.
Collapse
Affiliation(s)
- Miriam E. Hurley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Shihab S. Shah
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas M. D. Sheard
- School of Biosciences, Faculty of Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Hannah M. Kirton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Derek S. Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Izzy Jayasinghe
- School of Biosciences, Faculty of Science, The University of Sheffield, Sheffield S10 2TN, UK
- EMBL Australia Node in Single Molecule Science, School of Biomedical Science, University of New South Wales, Kensington, Sydney 2052, Australia
| |
Collapse
|
5
|
Shemarova I. The Dysfunction of Ca 2+ Channels in Hereditary and Chronic Human Heart Diseases and Experimental Animal Models. Int J Mol Sci 2023; 24:15682. [PMID: 37958665 PMCID: PMC10650855 DOI: 10.3390/ijms242115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.
Collapse
Affiliation(s)
- Irina Shemarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
6
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Jin X, Meletiou A, Chung J, Tilunaite A, Demydenko K, Dries E, Puertas RD, Amoni M, Tomar A, Claus P, Soeller C, Rajagopal V, Sipido K, Roderick HL. InsP 3R-RyR channel crosstalk augments sarcoplasmic reticulum Ca 2+ release and arrhythmogenic activity in post-MI pig cardiomyocytes. J Mol Cell Cardiol 2023; 179:47-59. [PMID: 37003353 DOI: 10.1016/j.yjmcc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ca2+ transients (CaT) underlying cardiomyocyte (CM) contraction require efficient Ca2+ coupling between sarcolemmal Ca2+ channels and sarcoplasmic reticulum (SR) ryanodine receptor Ca2+ channels (RyR) for their generation; reduced coupling in disease contributes to diminished CaT and arrhythmogenic Ca2+ events. SR Ca2+ release also occurs via inositol 1,4,5-trisphosphate receptors (InsP3R) in CM. While this pathway contributes negligeably to Ca2+ handling in healthy CM, rodent studies support a role in altered Ca2+ dynamics and arrhythmogenic Ca2+ release involving InsP3R crosstalk with RyRs in disease. Whether this mechanism persists in larger mammals with lower T-tubular density and coupling of RyRs is not fully resolved. We have recently shown an arrhythmogenic action of InsP3-induced Ca2+ release (IICR) in end stage human heart failure, often associated with underlying ischemic heart disease (IHD). How IICR contributes to early stages of disease is however not determined but highly relevant. To access this stage, we chose a porcine model of IHD, which shows substantial remodelling of the area adjacent to the infarct. In cells from this region, IICR preferentially augmented Ca2+ release from non-coupled RyR clusters that otherwise showed delayed activation during the CaT. IICR in turn synchronised Ca2+ release during the CaT but also induced arrhythmogenic delayed afterdepolarizations and action potentials. Nanoscale imaging identified co-clustering of InsP3Rs and RyRs, thereby allowing Ca2+-mediated channel crosstalk. Mathematical modelling supported and further delineated this mechanism of enhanced InsP3R-RyRs coupling in MI. Our findings highlight the role of InsP3R-RyR channel crosstalk in Ca2+ release and arrhythmia during post-MI remodelling.
Collapse
Affiliation(s)
- Xin Jin
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Anna Meletiou
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joshua Chung
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium; Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Agne Tilunaite
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia; Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Australia
| | - Kateryna Demydenko
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Eef Dries
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Matthew Amoni
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Ashutosh Tomar
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Piet Claus
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | | | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Karin Sipido
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - H Llewelyn Roderick
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium.
| |
Collapse
|
8
|
Kiessling M, Djalinac N, Voglhuber J, Ljubojevic-Holzer S. Nuclear Calcium in Cardiac (Patho)Physiology: Small Compartment, Big Impact. Biomedicines 2023; 11:biomedicines11030960. [PMID: 36979939 PMCID: PMC10046765 DOI: 10.3390/biomedicines11030960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The nucleus of a cardiomyocyte has been increasingly recognized as a morphologically distinct and partially independent calcium (Ca2+) signaling microdomain, with its own Ca2+-regulatory mechanisms and important effects on cardiac gene expression. In this review, we (1) provide a comprehensive overview of the current state of research on the dynamics and regulation of nuclear Ca2+ signaling in cardiomyocytes, (2) address the role of nuclear Ca2+ in the development and progression of cardiac pathologies, such as heart failure and atrial fibrillation, and (3) discuss novel aspects of experimental methods to investigate nuclear Ca2+ handling and its downstream effects in the heart. Finally, we highlight current challenges and limitations and recommend future directions for addressing key open questions.
Collapse
Affiliation(s)
- Mara Kiessling
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
| | - Nataša Djalinac
- Department of Biology, University of Padua, 35122 Padova, Italy
| | - Julia Voglhuber
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Senka Ljubojevic-Holzer
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
9
|
Forzano I, Mone P, Mottola G, Kansakar U, Salemme L, De Luca A, Tesorio T, Varzideh F, Santulli G. Efficacy of the New Inotropic Agent Istaroxime in Acute Heart Failure. J Clin Med 2022; 11:7503. [PMID: 36556120 PMCID: PMC9786901 DOI: 10.3390/jcm11247503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Current therapeutic strategies for acute heart failure (AHF) are based on traditional inotropic agents that are often associated with untoward effects; therefore, finding new effective approaches with a safer profile is dramatically needed. Istaroxime is a novel compound, chemically unrelated to cardiac glycosides, that is currently being studied for the treatment of AHF. Its effects are essentially related to its inotropic and lusitropic positive properties exerted through a dual mechanism of action: activation of the sarcoplasmic reticulum Ca2+ ATPase isoform 2a (SERCA2a) and inhibition of the Na+/K+-ATPase (NKA) activity. The advantages of istaroxime over the available inotropic agents include its lower arrhythmogenic action combined with its capability of increasing systolic blood pressure without augmenting heart rate. However, it has a limited half-life (1 hour) and is associated with adverse effects including pain at the injection site and gastrointestinal issues. Herein, we describe the main mechanism of action of istaroxime and we present a systematic overview of both clinical and preclinical trials testing this drug, underlining the latest insights regarding its adoption in clinical practice for AHF.
Collapse
Affiliation(s)
- Imma Forzano
- Division of Cardiology, Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Pasquale Mone
- Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Mottola
- Casa di Cura “Montevergine”, Mercogliano, 83013 Avellino, Italy
| | - Urna Kansakar
- Division of Cardiology, Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Luigi Salemme
- Casa di Cura “Montevergine”, Mercogliano, 83013 Avellino, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Vanvitelli”, 81100 Caserta, Italy
| | - Tullio Tesorio
- Casa di Cura “Montevergine”, Mercogliano, 83013 Avellino, Italy
| | - Fahimeh Varzideh
- Division of Cardiology, Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Gaetano Santulli
- Division of Cardiology, Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|