1
|
Polzin A, Benkhoff M, Thienel M, Barcik M, Mourikis P, Shchurovska K, Helten C, Ehreiser V, Zhe Z, von Wulffen F, Theiss A, Peri S, Cremer S, Ahlbrecht S, Zako S, Wildeis L, Al-Kassis G, Metzen D, Utz A, Hu H, Vornholz L, Pavic G, Lüsebrink E, Strecker J, Tiedt S, Cramer M, Gliem M, Ruck T, Meuth SG, Zeus T, Mayr C, Schiller HB, Simon L, Massberg S, Kelm M, Petzold T. Long-term FXa inhibition attenuates thromboinflammation after acute myocardial infarction and stroke by platelet proteome alteration. J Thromb Haemost 2025; 23:668-683. [PMID: 39551435 DOI: 10.1016/j.jtha.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Immediate activated factor (F)X (FXa) inhibition exerts direct antiplatelet effects in the context of arterial thrombosis but little is known about the impact of long-term therapy on platelet function in ischemic cardiovascular diseases. OBJECTIVES Therefore, we analyzed platelet-derived effects of long-term FXa inhibition in the setting of acute myocardial infarction (AMI) and stroke. METHODS We evaluated the effect of acute versus chronic FXa inhibition on thromboinflammation following AMI and stroke in mice in vivo. Mechanistically, we identified changes in platelet gene expression and proteome under chronic FXa nonvitamin K antagonist oral anticoagulant treatment and characterized its functional consequence on platelet physiology. In a prospectively recruited cohort of patients with AMI, we determined cardiovascular magnetic resonance based cardiac endpoints under FXa nonvitamin K antagonist oral anticoagulant effects on clinical endpoints in a cohort of patients with AMI. RESULTS Chronic but not acute FXa inhibition reduced cerebral and myocardial infarct size and improved cardiac function 24 hours after AMI in mice. Mechanistically, we identified an attenuated thromboinflammatory response with reduced neutrophil extracellular trap formation in mice and patient samples. Proteome and RNA expression analysis of FXa inhibitor treated patients revealed a reduction of key regulators within the membrane trafficking and secretion machinery hampering platelet α and dense granule release. Subsequent, thromboinflammatory neutrophil extracellular trap density in thrombi isolated from stroke and myocardial infarction patients was reduced. Patients with AMI treated with FXa inhibitors showed decreased infarct size after myocardial infarction compared to patients without anticoagulation treatment. CONCLUSION Long-term FXa inhibition induces antithromboinflammatory proteome signatures in platelets, improving infarct size after myocardial infarction and stroke.
Collapse
Affiliation(s)
- Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Düsseldorf, Germany; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Manuela Thienel
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Maike Barcik
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Mourikis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Khrystyna Shchurovska
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vincent Ehreiser
- Deutsches Herzzentrum der Charité University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany; Friede Springer, Centre of Cardiovascular Prevention at Charité, Charité University Medicine Berlin, Berlin, Germany
| | - Zhang Zhe
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Franziska von Wulffen
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Alexander Theiss
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Sameera Peri
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Sophie Cremer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Samantha Ahlbrecht
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Saif Zako
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Laura Wildeis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gabrielle Al-Kassis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Metzen
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amelie Utz
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hao Hu
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lilian Vornholz
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Goran Pavic
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Enzo Lüsebrink
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Jan Strecker
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Mareike Cramer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Mayr
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Herbert B Schiller
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Lukas Simon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
| | - Steffen Massberg
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Tobias Petzold
- Deutsches Herzzentrum der Charité University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany; Friede Springer, Centre of Cardiovascular Prevention at Charité, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Mann C, van Alst C, Gorressen S, Nega R, Dobrev D, Grandoch M, Fender AC. Ischemia does not provoke the full immune training repertoire in human cardiac fibroblasts. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7201-7212. [PMID: 38652279 PMCID: PMC11422419 DOI: 10.1007/s00210-024-03107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Trained immunity of monocytes, endothelial, and smooth muscle cells augments the cytokine response to secondary stimuli. Immune training is characterized by stabilization of hypoxia-inducible factor (HIF)-1α, mTOR activation, and aerobic glycolysis. Cardiac fibroblast (CF)-myofibroblast transition upon myocardial ischemia/reperfusion (I/R) features epigenetic and metabolic adaptations reminiscent of trained immunity. We assessed the impact of I/R on characteristics of immune training in human CF and mouse myocardium. I/R was simulated in vitro with transient metabolic inhibition. CF primed with simulated I/R or control buffer were 5 days later re-stimulated with Pam3CSK for 24 h. Mice underwent transient left anterior descending artery occlusion or sham operation with reperfusion for up to 5 days. HIF-regulated metabolic targets and cytokines were assessed by qPCR, immunoblot, and ELISA and glucose consumption, lactate release, and lactate dehydrogenase (LDH) by chromogenic assay. Simulated I/R increased HIF-1α stabilization, mTOR phosphorylation, glucose consumption, lactate production, and transcription of PFKB3 and F2RL3, a HIF-regulated target gene, in human CF. PGK1 and LDH mRNAs were suppressed. Intracellular LDH transiently increased after simulated I/R, and extracellular LDH showed sustained elevation. I/R priming increased abundance of pro-caspase-1, auto-cleaved active caspase-1, and the expression and secretion of interleukin (IL)-1β, but did not augment Pam3CSK-stimulated cytokine transcription or secretion. Myocardial I/R in vivo increased abundance of HIF-1 and the precursor and cleaved forms of caspase-1, caspase-11, and caspase-8, but not of LDH-A or phospho-mTOR. I/R partially reproduces features of immune training in human CF, specifically HIF-1α stabilization, aerobic glycolysis, mTOR phosphorylation, and PFKB3 transcription. I/R does not augment PGK1 or LDH expression or the cytokine response to Pam3CSK. Regulation of PAR4 and inflammasome caspases likely occurs independently of an immune training repertoire.
Collapse
Affiliation(s)
- Constantin Mann
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr 55, 45147, Essen, Germany
| | - Carolin van Alst
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr 55, 45147, Essen, Germany
| | - Simone Gorressen
- Institute for Pharmacology and CARID Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rachel Nega
- Institute for Translational Pharmacology and CARID Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr 55, 45147, Essen, Germany
| | - Maria Grandoch
- Institute for Translational Pharmacology and CARID Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anke C Fender
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr 55, 45147, Essen, Germany.
| |
Collapse
|
3
|
Wang K, Wang A, Deng J, Yang J, Chen Q, Chen G, Ye M, Lin D. Rivaroxaban down-regulates pyroptosis and the TLR4/NF-κB/NLRP3 signaling pathway to promote flap survival. Int Immunopharmacol 2024; 128:111568. [PMID: 38266447 DOI: 10.1016/j.intimp.2024.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Flap placement remains the primary method for wound repair, but postoperative ischemic flap necrosis is of major concern. This study explored whether rivaroxaban, a factor Xa inhibitor, enhanced flap survival. METHODS Thirty-six rats were randomly divided into control, low-dose rivaroxaban (3 mg/kg/day), and high-dose rivaroxaban (7 mg/kg/day) groups. On postoperative day 7, the flap survival rate was analyzed and the average survival area calculated. After the rats were euthanized, immunological and molecular biological techniques were employed to assess vascular regeneration, pyroptosis, and inflammation. RESULTS Rivaroxaban upregulated VEGF expression, in turn enhancing angiogenesis, and it downregulated IL-1β, IL-6, and TNF-α expression, thereby mitigating inflammation. The drug also suppressed TLR4, NF-κB p65, NLRP3, caspase-1, and IL-18 syntheses, thus inhibiting pyroptosis. CONCLUSIONS Rivaroxaban enhanced random flap survival by down-regulating the TLR4/NF-κB/NLRP3 signaling pathway to suppress pyroptosis, promoting vascular regeneration and inhibiting inflammation.
Collapse
Affiliation(s)
- Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qingyu Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Minle Ye
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|